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Abstract 

To simulate turbulent f low around moving bodies, we propose a new method capable of  automatic grid 

generation and accurate turbulent flow simulation in two- and three-dimension. The recursive f itting method 

(RFM) based on the Cartesian grid method is employed for the automatic body-fitted grid generation. Since 

the automatically generated body-fitted grids are used, near-wall treatment becomes straightforward in flow 

simulation. Further, the coupling of the RFM with the moving grid method allows the f low around moving bodies, 

such as electric fans and rotor blades, to be simulated. The grid moves with the body surface; thus, spurious 

pressure oscillations do not occur. To examine the capability of the proposed method, two- and three-

dimensional f low simulations are conducted. Results show that the RFM simulation agrees well with the 

experimental data and those of simulation on conventional body-fitted grids. 
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Nomenclature  
𝑎∞ Sonic speed 

𝐶𝑝 Surface pressure coefficient, 𝐶𝑝 = (𝑝 − 𝑝∞)/(𝜌∞𝑎∞
2 𝑀𝑡𝑖𝑝

2 (𝑟/𝑅)2/2 ) 

𝐶𝑄 Torque coefficient, 𝐶𝑄 = 𝑄/(𝜋𝑅3𝜌∞𝑎∞
2 𝑀𝑡𝑖𝑝) 

𝐶𝑇 Thrust coefficient, 𝐶𝑇 = 𝐹𝑇/(𝜋𝑅2𝜌∞𝑎∞
2 𝑀𝑡𝑖𝑝) 

𝐹𝑇  Thrust 

𝐹𝑀 Figure of Merit, 𝐹𝑀 = 𝐶𝑇
3/2

/(√2 𝐶𝑄) 

𝑀𝑡𝑖𝑝 Tip Mach number, 𝑀𝑡𝑖𝑝 = Ω𝑅/𝑎∞ 

𝑄 Torque 
𝑅 Radius of rotor 
Ω Angular velocity 

 

1. Introduction 
To achieve the green transformation, the development of  eco-friendly aircraft is crucial. Thus, 

hybrid-electric aircraft with distributed electric fans have been studied [1]. Meanwhile, urban air 
mobilities capable of vertical take-off and landing using the rotors are attracting attention as a new 
transportation system. Unlike conventional aircraft, little or no statistical and empirical knowledge exist  
for designing these innovative aircraft; therefore, high fidelity performance evaluation using 
Computational Fluid Dynamics (CFD) based on the Navier–Stokes equations is essential. CFD has 
been used to predict the aerodynamic performance of conventional fixed-wing aircraft in the field of  
aeronautical engineering. To utilize CFD for designing innovative flying vehicles, further development 
of numerical methods for unsteady flow simulation around moving bodies is necessary. 

To simulate the flow around electric fans and rotor blades, two methods are widely used: the fixed 
grid method [2-6] and the moving grid method [7-10]. In the fixed grid method, non-body-fitted grids 
fixed in space, such as Cartesian grids, are generated first. Then, moving bodies are tracked in a 
Lagrangian fashion. Level-set methods [11] are widely used to represent the body surface and its 
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motion. To simulate the flow near body surfaces, immersed boundary methods (IBMs) [2-5] or cut-
cell methods [6] combine with the fixed grid method. The fixed grid method is widely used to simulate 
the flow around the moving bodies. However, the application of this method to turbulent flow is 
challenging since the turbulent boundary layer sweeping through the cells along with the body motion 
needs to be simulated. Further, difficulties arise when a cell inside the body at one moment becomes 
a fluid cell at the next time step. This is the so-called “fresh cell” problem, and the generation of 
spurious pressure oscillations has been reported [3,4].  

Meanwhile, a grid moves with a body in the moving grid method. Conventional body-fitted grids are 
generally used [7,8]. The generation of body-fitted grids around complex geometries is a bottleneck 
in the CFD workflow since human intervention is required [12]. To overcome this problem, 
combinations of the moving grid method and IBMs are recently attracting attention [9,10]. Since non-
body-fitted Cartesian grids are used, the grid can be generated automatically. However, the flow near 
the body surface needs to be interpolated from the surrounding flow since the flow is simulated on 
non-body-fitted grids. Thus, simulation results sometimes depend on the location of the “image point,” 
which is used for interpolation.  

Recently, the recursive fitting method (RFM) based on Cartesian grid methods has been proposed 
to simulate a three-dimensional (3D) flow of fixed-wing aircraft [13,14]. This method is based on the 
simplif ied cut-cell method proposed by Harada et al. [15,16]. The RFM is capable of automatic grid 
generation around 3D geometries while the flow is simulated on the automatically generated body-
fitted grids. Compared with IBMs on non-body-fitted Cartesian grids, the near-wall treatment becomes 
straightforward in flow simulation since the same wall boundary conditions as the conventional body-
fitted grid can be used.  

In this study, we proposed a new method capable of automatic grid generation and accurate 
turbulent flow simulation around two-dimensional (2D) and 3D moving bodies. The RFM combines 
with the moving grid method; thus, the automatically generated body-fitted Cartesian grids move 
following body motion. The near-wall treatment becomes straightforward in the RFM flow simulation, 
as opposed to the IBM. Further, the “fresh cell” problem does not occur since the grid moves with the 
body surface. The solver used in this study is developed based on the hierarchical Cartesian-grid-
based grid generator and flow solver: the University of  Tokyo Cartesian-grid-based automatic flow 
solver (UTCart) [17,18]. To examine the proposed method, 2D and 3D unsteady turbulent flow 
simulations around moving bodies are conducted. First, the 2D Reynolds averaged Navier–Stokes 
(RANS) simulation around the pitching airfoil is conducted. Then, detached eddy simulation (DES) 
around 3D rotor blades is conducted. The results are compared with those of the experiment and the 
simulations on body-fitted grids. 

The structure of this paper is as follows. Section 2 describes the numerical methods. In section 3, 
a 2D test problem is simulated to validate the proposed method. A 3D turbulent flow simulation of 
rotor blades is conducted to demonstrate the proposed approach in section 4. Finally, section 5 
concludes this paper. 
 

2. Numerical Methods 

2.1  Cartesian grid generation 

A quadtree (2D) or an octree (3D) structure is used for the staircase Cartesian grid generation 
around body surfaces. When one or more computer-aided design (CAD) data defines fluid regions 
and the interiors of bodies, UTCart can generate hierarchical Cartesian grids automatically . Figure 1 
shows the technical terms used in this study. The cells are classified into two types, with the cells in 
the fluid region labeled “fluid cells,” and those that intersect with the body surface labeled “wall cells.” 
To determine the intersection of cells to input CAD data, the separating axis theorem is used [19]. 
The cell faces between the fluid and wall cells are “wall faces,” and fluid cells with wall faces are “the 
f irst cells.” Note that the cells completely inside the body are not used in this study. 

As Fig. 1 shows, a staircase grid, which wall faces do not match the body surface, is generated. To 
generate the body-fitted grid, the first cells expand to body surfaces using simple projection strategies. 
The following section explains the details. 

 

2.2  Recursive fitting method. 

This section describes the RFM’s grid generation. 2D and 3D grids can be generated through the 
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same procedure. For simplicity, a 2D case is considered in the following explanation.  

Figure 2a is the original Cartesian grid, while the first cells expand to the body surface using the 

closest points on the body surfaces to wall face vertices in Fig. 2b. The grid in the state shown in Fig. 

2b is named the “initial RFM grid.” Compared with the original Cartesian grid, the number of fluid 
cells does not change while the initial RFM grid has the additional fluid-fluid cell faces. Since the 

closest point on the body surface to an arbitrary point in the fluid region can be uniquely determined, 

the initial RFM grid generation is automatic and robust. In the initial RFM grid, one wall face consists 

of one line segment. To improve the shape reproducibility of the grid, additional points on the body 

surface are calculated. Then, the cell properties such as cell volume and cell centroid coordinates 

are modified. The grid shown in Fig. 2c is the “RFM grid.” This modification is the key point of the 

RFM grid generation when the body surface comprises the geometric features, such as wing–

fuselage junctures of the aircraft. Details of the RFM are explained in Refs [13,14]. Notably, the 
number of the fluid cells and cell faces is kept unchanged through cell property modification. Although 

flow around bodies with simple geometries, such as airfoil and rotor blades are calculated in this 

study, the grid of much more complex geometries can be automatically generated by the RFM.   

 

 

Figure 1 – Schematic of the Cartesian grid and definitions of the technical terms. 

 

  

(a) Original Cartesian grid (b) Initial RFM grid 

 

(c) RFM grid 

Figure 2 – RFM grid generation. 
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2.3  Flow simulation methods 

The time-dependent Navier–Stokes equations for moving grids can be expressed in integral form 

as follows: 

 

𝜕

𝜕𝑡
∭ 𝑸𝑐𝑑𝑉

𝑉
+ ∬ {(𝑭(𝑸𝑐 ,𝒏) − 𝑸𝑐𝑊𝑛)− 𝑭𝑣}𝑑𝑆

𝑆
= 0, (1) 

 

where the vector 𝑸𝑐 = [𝜌,𝜌𝑢, 𝜌𝑣,𝜌𝑤, 𝐸]T denotes conservative variables. The total energy 𝐸 is equal 

to the sum of the internal energy 𝜌𝑒 and the kinetic energy 𝜌|𝒖|2/2. 𝑉 denotes the control volume, 𝑆 

denotes the boundary of the control volume 𝑉, and vector 𝒏 = [𝑛𝑥 , 𝑛𝑦, 𝑛𝑧]
T
 is the outward-pointing 

unit normal vector to 𝑆. The vectors 𝑭 and 𝑭𝑣 are the inviscid and viscous flux, respectively. The 

scalar 𝑊𝑛 denotes the normal component of the grid velocity to the control volume boundary, as 

 

𝑊𝑛 = 𝑾∙ 𝒏, (2) 

 

where 𝑾 = [𝑊𝑥 ,𝑊𝑦,𝑊𝑧]
T

  is the velocity vector of the grid. In Eq. 1, the advection flux due to the grid 

motion 𝑸𝒄𝑊𝒏 is added to the Navier–Stokes equations for stationary grids. For a given problem, the 

simulation results should be identical when the velocity of  the airflow relative to the grid velocity is 

the same, regardless of the grid motion. In this study, inviscid fluxes 𝑭 and flux due to grid motion 

𝑸𝒄𝑊𝑛 are treated as one flux. Following the references [19,20], the matrix 𝒯𝑐 is introduced as defined 

below: 

 

𝒯𝑐 =

[
 
 
 
 
 

1 0 0 0 0
−𝑊𝑥 1 0 0 0
−𝑊𝑦 0 1 0 0

−𝑊𝑧 0 0 1 0
|𝑾|2

2
−𝑊𝑥 −𝑊𝑦 −𝑊𝑧 1]

 
 
 
 
 

. (3) 

 

Then, the fluxes are calculated as follows: 

 

𝐹(𝑸𝑐 , 𝒏)− 𝑸𝑐𝑊𝑛 = 𝒯𝑐
−1𝑭(𝒯𝑐𝑸𝑐 ,𝒏), (4) 

𝒯𝑐𝑸𝑐 = [𝜌, 𝜌(𝑢 − 𝑊𝑥), 𝜌(𝑣 − 𝑊𝑦), 𝜌(𝑤 − 𝑊𝑧), 𝜌𝑒 +
𝜌|𝒖 − 𝑾|

2
]

T

. (5) 

 

In Eqs. 4 and 5, the vector 𝒯𝑐𝑸𝑐 denotes the conservative variables based on the relative velocity of 

the airflow to the control volume boundary. The vector 𝒯𝑐𝑸𝑐 is evaluated first. Then, the flux for the 

conservative variables 𝑸𝑐 is obtained via the inverse matrix 𝒯𝑐
−1 . 

Equation 1 is discretized using the cell-centered finite volume method as follows: 

 

𝜕𝑸𝑐,𝑖

𝜕𝑡
𝑉𝑖 + ∑(𝒯𝑝

−1𝑭𝑖𝑗(𝒯𝑝𝑸𝑝,𝐿, 𝒯𝑝𝑸𝑝,𝑅) − 𝑭𝑣,𝑖𝑗)𝑠𝑖𝑗

𝑗

= 0, (6) 
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𝒯𝑝 =

[
 
 
 
 
 
 
 
 

1 0 0 0 0

−
𝑊𝑥

𝜌
1 0 0 0

−
𝑊𝑦

𝜌
0 1 0 0

−
𝑊𝑧

𝜌
0 0 1 0

0 0 0 0 1]
 
 
 
 
 
 
 
 

, (7) 

 

where 𝑉𝑖 is the cell volume of cell i,  𝑠𝑖𝑗 is the face area between cells i and j. The vectors 𝑸𝑝,𝐿 and 

𝑸𝑝,𝑅 are the reconstructed primitive variables. The vector 𝒯𝑝𝑸𝑝 denotes the primate variables based 

on the relative velocity of the airflow to the cell face. 

The approximate Riemann solver is used for the inviscid flux evaluation. In this study, the simple 

low-dissipation advection upstream splitting method (SLAU) is used [22]. When the relative velocity 

of airflow to the grid is transonic, Hishida’s limiter is used to preserve monotonicity [23]. The viscous 

flux is evaluated by the second-order central difference. The unsteady flow problems are solved in 

time using the second-order backward difference with dual time stepping and Matrix-Free Gauss–

Seidel implicit scheme (MFGS) [22]. Spalart–Allmaras (SA) one equation model [24] is used for 2D 
simulation, while the delayed detached eddy simulation-protected (DDES-p) [18,25] based on the 

SA model is used for 3D simulation. The DDES-p model introduces a simple modified shielding 

function to protect the RANS regions when the stream-wise grid size is small; thus, this model is 

suitable for unsteady flow simulations using Cartesian grids. To simulate the turbulent flow on moving 

Cartesian grids, the wall function is used to calculate the wall shear stress.   

 

2.4  Implementation of wall function 

In this study, the wall boundary conditions are the non-slip and adiabatic conditions; thus, the mass 

and heat fluxes through the wall face are strictly zero. The RFM grid does not comprise thin -layer 

cells near body surfaces. To accurately simulate the turbulent flow, the wall function is used to 

estimate the friction velocity 𝑢𝜏 and wall shear stress 𝜏𝑤𝑎𝑙𝑙 = 𝜌𝑤𝑎𝑙𝑙𝑢𝜏
2. Using the Newton–Raphson 

method, the friction velocity 𝑢𝜏 is iteratively calculated as follows:  

 

𝑢𝜏
𝑚+1 = 𝑢𝜏

𝑚 −
𝑔(𝑢𝜏

𝑚)

𝑔′(𝑢𝜏
𝑚) 

 , (8) 

𝑔(𝑢𝜏)= 𝑢𝜏𝑓𝑤𝑎𝑙𝑙(𝑦
+)− (𝑢𝑡,1 − 𝑊𝑡), 𝑔

′(𝑢𝜏) = 𝑓𝑤𝑎𝑙𝑙(𝑦
+)+ 𝑢𝜏 {

𝜕𝑓𝑤𝑎𝑙𝑙

𝜕𝑢𝜏

(𝑦+)}, (9) 

𝜕𝑓𝑤𝑎𝑙𝑙

𝜕𝑢𝜏
=

𝜕𝑦+

𝜕𝑢𝜏

𝜕𝑓𝑤𝑎𝑙𝑙

𝜕𝑦+ =
𝑦+

𝑢𝜏

𝜕𝑓𝑤𝑎𝑙𝑙

𝜕𝑦+  , (10) 

 

where the subscription 1 denotes the values of the first cell, 𝑓𝑤𝑎𝑙𝑙 is the SA wall function proposed 

by Allmaras et al. [26,27], 𝑦+ = 𝑦1𝑢𝜏/𝜈1 is the dimensionless distance between the body surface and 

the first cell centroid. The tangential component of the grid velocity 𝑊𝑡 = 𝑾 ∙ 𝒕 becomes part of Eq. 

9 to calculate the friction velocity. Further, the Crocco–Busemann relation [28] is employed to 

calculate the wall temperature, following the references. When IBMs are combined with wall 

functions, it has been reported that linearizing the tangential velocity profiles is crucial for the 

turbulent flow simulation. This is because the nonlinear velocity profiles cause an imbalance of the 

mass flux in the vicinity of the body surface [29,30]. Unlike the IBM simulation, the conservation laws 

are strictly satisfied in the RFM simulation. Therefore, the wall function used in this study is the 

original SA wall model assuming the near-wall velocity profiles to be nonlinear. 

Figure 3 compares the point used for the friction velocity estimation based on the wall function. 
When combining Cartesian grid methods with wall funct ions, flow variables at the “image point” are 

widely used to calculate the friction velocity (Fig. 3a) [27,29,30]. Image points are set on the lines 
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perpendicular to the body surface. The distance between the body surface and image point 𝑑𝐼𝑃 is 

usually a constant parameter defined by the user, and the typical value of 𝑑𝐼𝑃 is two to three times 

the minimum grid size. Although turbulent boundary layers can be predicted on Cartesian grids by 

introducing the image point, the simulation result sometimes depends on the choice of 𝑑𝐼𝑃. To avoid 

the dependence of the results on the user-specified parameter 𝑑𝐼𝑃, the flow variables at the first cell 

centroid are used in this study (Fig. 3b). The distance between the body surface and first cell centroid 

𝑑1 is uniquely determined in each cell. As opposed to the simulation using image points, the distance 

between the body surface and the points used for the friction velocity estimation is not necessarily 

constant since cells with different shapes are generated around the body surface  using the RFM. 
However, previous research shows that turbulent flow near the body surface can be predicted [13]. 

 

 

  

(a) Cartesian grid method with image point (b) Proposed method 

Figure 3 – Comparison of the point used for the friction velocity estimation based on the wall 

function. 

 

3. Two-dimensional flow of simulation 

The unsteady RANS simulation of the pitching oscillating airfoil is conducted to demonstrate that 

unsteady aerodynamic characteristics can be predicted using the proposed method.  The flow 

conditions and airfoil pitching motion are chosen to represent AGARD Case 3 [31]. The shape of an 

airfoil is NACA0012. The free-stream Mach number is 𝑀∞ = 0.6, the Reynolds number based on the 

airfoil chord length 𝑐 and free-stream velocity is Re = 4.8 ×106, and the center of rotation is 25% of 

the chord length. The angle-of-attack 𝛼(𝑡) is described using the following expression: 

 

𝛼(𝑡) = 𝛼𝑚 + 𝛼0 sin(𝜔𝑡), (11) 

 

where 𝑡 denotes time, 𝛼𝑚 = 4.86∘, and 𝛼0 = 2.44∘. The reduced frequency is 𝑘𝑟 = (𝜔𝑐)/(2𝑈∞)=
0.081. To investigate the dependency of the simulation results on the grid size around an airfoil, three 

grids with different grid size is used. Table 1 summarizes the grid setting while Fig. 4 shows the 

computational grid around an airfoil. The grid represents the sharp corner of the trailing edge, as Fig. 

4b shows. The dimensionless time step is Δ𝑡 = 0.08, which corresponds to 800 steps/cycles. The 

initial conditions are steady-state solutions at 𝛼 = 𝛼𝑚. The simulations are run over three cycles. The 

number of the inner sub-iterations for the dual time stepping is 50. The simulation on the RFM grid 

is compared with those on conventional body-fitted grids in Refs. [32,33]. One reference simulation 

is conducted by Biedron et al. using FUN3D [7], and the other simulation is conducted by Takahashi 

et al. using TAS [32]. 

Figure 5 shows the pressure distribution as the airfoil pitches up at 𝛼 = 5.92∘, and shock is 

observed on the upper surface. Figure 6 shows the dependency of  unsteady aerodynamics 

prediction on the grid size. In all simulations, lift and pitching moment coefficients are the same when 

the airfoil pitches up. By contrast, compared with Grid 2 and 3, the lift coeff icient is underestimated 
while the pitching moment coefficient is overestimated in Grid 1 simulation when the airfoil pitch 

downs. Figure 7 shows Mach number distributions and streamlines when the airfoil pitches down. 

First cell centroidImage point

Wall

𝑑𝐼𝑃

Wall

𝑑1
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The flow separates around the trailing edge in Grid 1 simulation. As Fig. 6 shows, almost the same 

unsteady aerodynamic forces are predicted in Grid 2 and 3 simulations. Therefore, the results of 

Grid 2 are compared with the reference simulations on conventional body-fitted grids. As Fig. 8a 

shows, a hysteresis loop is observed, i.e., the lift coefficient depends on whether the angle-of-attack 
increases or decreases for a given angle. The inversion of the lift coefficient trajectory at 𝛼~6∘ is 

observed in the RFM simulation, with the inversion found to be consistent with the experiment. 

Further, the result of the RFM simulation agrees with those of TAS and FUN3D simulations on body-
fitted grids. Figure 8b shows the pitching moment coefficient vs. angle-of-attack. The result of the 

RFM simulation is almost the same as those of the experiment and the FUN3D simulation. As above, 

the unsteady aerodynamics predicted by the RFM are in good agreement with those of the wind 

tunnel test and the reference simulations on conventional body-fitted grids. The dependency on the 

angle-of-attack and the hysteresis loop of the aerodynamic coefficients are also predicted by the 

RFM. 

 

Table 1 – Grid settings (AGARD problem). 

 Grid 1 Grid 2 Grid 3 

Grid size around airfoil 

Δ𝑥/𝑐 
2.50×10-4 1.25×10-4 6.25×10-5 

Total cell number 84,542 164,798 326,392 

𝑦+ at 𝑥/𝑐~0.5 Approx. 40 Approx. 20 Approx. 10 

 

  

(a) Overall (b) Close-up view around trailing edge 

Figure 4 – Computational grid (Grid2). 

 

 
Figure 5 – Pressure distribution as the airfoil pitched up (𝛼 = 5.92∘, Grid2). 
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(a) Lif t coefficient vs. angle of attack (b) Pitching moment coefficient vs. angle of attack 

Figure 6 – Effect of grid refinement on unsteady aerodynamics prediction. 

 

  

(a) Grid 1 (b) Grid 2 

Figure 7 – Comparison of Mach number distributions and streamlines at 𝛼 = 6.52∘ (pitch-down). 

 

  

(a) Lif t coefficient vs. angle of attack (b) Pitching moment coefficient vs. angle of attack 

Figure 8 – Comparison of predicted unsteady aerodynamics with reference simulations on 

conventional body-fitted grids.  
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4. Three-dimensional Turbulent Flow Simulation of Rotor Blade 

4.1  Problem definition 

To investigate the capacity of the proposed method to predict the unsteady aerodynamics of 3D 

moving bodies, unsteady turbulent flow simulations of the rotor in hover conditions are conducted. 

The conditions are the same as the experimental tests conducted by Caradonna and Tung [33]. 
Table 2 summarizes the geometric parameters and flow conditions. In this study, the tip Mach 

number is 𝑀𝑡𝑖𝑝 = Ω𝑅/𝑎∞ = 0.439 and 0.890, where Ω and 𝑅 are the angular velocity and rotor radius, 

respectively. The collective pitch angle is 𝜃 = 8∘. Note that the boundary layers on the rotor blades 

are assumed to be fully turbulent in the simulation.  

 

4.2  Grid setting 

Figure 9 and Table 3 show the grid settings. The airf low speed relative to the blade increases from 
the blade root to the blade tip. Accordingly, the Reynolds number based on the relative airflow speed 

increases; therefore, the cells around the blade tip are refined. The grid size at the blade tip is Δ𝑥/𝐶 =

1/500. To accurately predict the flow in the wake region, the grid is uniformly refined, as Fig.  9b 

shows. Note that the shape of the uniformly refined region is cuboid. Figure 10 shows the distribution 

of dimensionless wall distance at the first cells. The dimensional wall distance 𝑦+ is about 100 on 

the upper surface of the blades when the tip Mach number is 𝑀𝑡𝑖𝑝 = 0.439.  

 

Table 2 – Rotor properties and flow conditions. 

Number of blades 2 

Rotor radius 𝑅 45 [in.] 

Chord length 𝐶 7.5 [in.] 

Airfoil NACA0012 

Temperature of air  288 [K] 

Collective pitch angle 𝜃𝑐 8 [deg] 

Revolutions per minute 1,250 and 2,540 

Tip Mach number 0.439 and 0.890 

Reynolds number based on the chord length 

and the sonic speed 

4.44×106 

 

 

Table 3 – Grid settings for rotor simulation. 

Grid size (blade root side)  3.00×10-2 [in.] 

Grid size (blade tip side) 1.50×10-2 [in.] 

Grid size (wake) 2.40×10-1 [in.] 

Total cell number 76,141,294 
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(a) Grid size around rotor blades (b) Grid size in uniform refined region 

Figure 9 – Grid settings of Caradonna–Tung rotor problem. 

 

 

Figure 10 – Dimensionless distance distribution (𝑀𝑡𝑖𝑝 = 0.439). 

 

4.3  Solution approach 

In this problem, the unsteady flow around rotor blades is simulated using DDES-p. To predict 
unsteady aerodynamics, it is crucial to accurately simulate the unsteady flow at the rotor wake region.  

Besides, from the viewpoint of post-processing, it is convenient that the simulation steps for both 

cases are the same. In this study, the dimensionless time step is Δ𝑡 = 0.179 for 𝑀𝑡𝑖𝑝 = 0.439 and 

Δ𝑡 = 0.0882 for 𝑀𝑡𝑖𝑝 = 0.890, corresponding to 3,600 steps/revolutions for both cases. With these 

values, the Courant number based on the sonic speed and blade tip velocity is approximately 1 at 

the rotor wake. When 𝑀𝑡𝑖𝑝 = 0.890, the shock wave appears around rotor tips; thus, the limiter for 

inviscid flux evaluation is used to preserve monotonicity. 

Figure 11a shows the history of the thrust coefficients 𝐶𝑇. Based on the findings in Refs. [10,34], 

the first 10 revolutions are calculated using two sub-iterations ((1) in Fig. 11a). Here, the aim is not 
to obtain accurate solutions but to quickly remove any initial transients. Following this, the number 

of sub-iterations increases to 10. In this simulation, the inner residual drops one order of magnitude 

after the inner sub-iterations. Although the number of sub-iterations for implicit time integration is an 

open issue for unsteady simulations, a one-order-of-magnitude reduction of the inner residual is 

widely used as a convergence criterion, and such a reduction is sufficient for yielding good results, 

as demonstrated in Refs [8,35]. The simulations are run over 12 rotor revolutions ((2) and (3) in Fig. 

11a), with the time-averaged values calculated using the data of the last four rotations ((3) in Fig. 

11a). 

The flow simulations are performed on Fujitsu PRIMERGY CX400M1/CX2550M5 system 

(Oakbridge-CX) at the University of Tokyo using 896 cores with Message Passing Interface (MPI) 

parallelization [36]. The wall-clock time for 22 revolutions is 88 hours when 𝑀𝑡𝑖𝑝 = 0.439, while 96 

hours are required when  𝑀𝑡𝑖𝑝 = 0.890. Since the limiter is used for inviscid flux evaluation when 

𝑀𝑡𝑖𝑝 = 0.890, the computational cost increases. 
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4.4  Results 

Figures 11a and b show the histories of thrust coefficients (𝐶𝑇) and Figure of Merit (𝐹𝑀). Although 

𝐶𝑇 and 𝐹𝑀 histories oscillate, the last four revolutions are in quasi-steady states. Table 4 shows 

comparisons of the time-averaged 𝐶𝑇 and 𝐹𝑀 values. When the tip Mach number increases, the 

thrust coefficients increase while the Figure of Merit decreases. As the reference [33] shows, 𝐶𝑇 also 

increases in the experiment. It seems that the 𝐹𝑀 decreases due to the wave drag at blade tips. 

Meanwhile, Figs. 12 and 13 show comparisons of the time-averaged blade surface pressure 

coefficient 𝐶𝑝 distributions at three sections 𝑟/𝑅 = 0.50, 0.80,0.96. The results of the RFM simulation 

agree with the experimental data. As Fig. 12 shows, it is observed that the suction peak increases 

from the blade root to the blade tip in the experimental data when the tip Mach number is 𝑀𝑡𝑖𝑝 =

0.439. The same trend is observed in the RFM simulation. Further, discontinuous changes of 𝐶𝑝 due 

to the shock wave are observed when the tip Mach number is 𝑀𝑡𝑖𝑝 = 0.890, as Fig. 13 shows. Figure 

14 shows the iso-surface of the Q criterion colored by the velocity along the rotational axis at 22 

revolutions, with the helical blade tip vortices being observed. As discussed above, although the 

proposed approach can generate the body-fitted Cartesian grid automatically, the results of flow 

simulation are in good agreement with the results of the experimental data. This is advantageous 

over the simulation on conventional body-fitted structured/unstructured grids in terms of grid 

generation. 

 

Table 4 – Comparison of the thrust coefficients and Figure of Merit values. 

Tip Mach number Thrust coefficient Figure of Merit 

0.439 0.00516 0.543 

0.890 0.00577 0.457 

 

  

(a) Thrust coefficients (b) Figure of Merit 

Figure 11 – Histories of predicted rotor aerodynamics. 

 

   

(a) 𝑟/𝑅 = 0.50 (b) 𝑟/𝑅 = 0.80 (c) 𝑟/𝑅 = 0.96 

Figure 12 – Surface pressure coefficient distributions (𝑀𝑡𝑖𝑝 = 0.44). 
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(a) 𝑟/𝑅 = 0.50 (b) 𝑟/𝑅 = 0.80 (c) 𝑟/𝑅 = 0.96 

Figure 13 – Surface pressure coefficient distributions (𝑀𝑡𝑖𝑝 = 0.89). 

 

 

  

(a) 𝑀𝑡𝑖𝑝 = 0.439 (b) 𝑀𝑡𝑖𝑝 = 0.890 

Figure 14 – Iso-surface of the Q criterion colored by the velocity along the rotational axis. 

 

5. Conclusions 

In this study, a new method capable of automatic grid generation and accurate turbulent flow 
simulation around 2D and 3D moving bodies was proposed. The RFM based on the Cartesian grid 

method was used to generate the body-fitted grid automatically, while the body motion was simulated 

using the moving grid method. Since the automatically generated body-fitted Cartesian grid was used, 

near-wall treatment became straightforward in flow simulation compared with IBMs. To examine the 

capability of the proposed method, 2D and 3D unsteady turbulent flow was simulated. To examine 

the capacity of the proposed method, a 2D RANS simulation of the pitching airfoil and a 3D DES 

simulation of the rotor blades was conducted. 3D simulations were performed on the supercomputer 
system at the University of Tokyo. The results showed that the RFM simulations were in good 

agreement with the results of the experimental tests and the simulations on conventional body-fitted 

grids. 
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