
TOW TRUCK TAXI ALGORITHM

1

AN ENGINELESS TAXI OPERATIONS SYSTEM USING BATTERY-
OPERATED AUTONOMOUS TOW TRUCKS

Ing. Stefano Zaninotto1, Dr Ing. Jason Gauci2 & Dr Ing. Brian Zammit3

1Research Support Officer II, Institute of Aerospace Technologies, University of Malta, Malta
2Senior Lecturer, Institute of Aerospace Technologies, University of Malta, Malta

3Senior Lecturer, Electronic Systems Engineering, Faculty of Engineering, University of Malta, Malta

Abstract

One of the solutions proposed by the aerospace industry to reduce fuel consumption, air pollution and noise

at airports is to introduce electric trucks to tow aircraft from the stand to the runway (or vice-versa). However,

the introduction of tow trucks increases surface traffic which, from an Air Traffic Controller’s (ATCo) point of

view, is undesirable. Many solutions have been proposed to mitigate this increase in workload through the

introduction of automated planning and execution. However, most of these solutions suffer from one or more

of the following: severe limitations in the size of their solution spaces; inability to schedule and plan routes for

multiple active runways simultaneously; and inability to consider battery state-of-charge when assigning tow

trucks. In terms of performance testing of such solutions, only singular performance metrics (e.g., number of

potential conflicts between vehicles or average taxi time) have been considered in the literature, thus limiting

the validity and applicability of the results. This paper details a novel system for taxi operations using

autonomous tow trucks in order to improve ground operations and overcome some of the limitations of existing

solutions. The system identifies conflict-free solutions that minimise taxi-related delays and taxi route lengths,

while maximising the use of the tow trucks for taxi operations. It can cater for multiple active runways and

accounts for tow truck battery state-of-charge, as well as limits in the number of tow trucks and charging

stations. The proposed algorithm was tested for a large number of scenarios and was evaluated using various

performance metrics. The results show that the algorithm is capable of utilising the tow trucks for aircraft taxiing

without creating any traffic conflicts. To achieve this, almost 70% of the flights had to be slightly delayed to

ensure adequate traffic separation is maintained at all times, with delays of up to 3 minutes. Furthermore, the

algorithm was capable of assigning tow trucks to more than 80% of the flights, even with a tow truck fleet as

small as 25% of the airfield hourly traffic.

Keywords: engineless taxiing, tow trucks, Dijkstra

1. Introduction

The growth of air traffic during the last decades has significantly impacted the environment in terms

of fuel emissions, air and noise pollution. These effects have been recognized by the European

Commission and strict targets have been identified for the future through initiatives such as “Flight

Path 2050” [1] and the European Green Deal [2]. The first document sets ambitious targets, such as

a 70% reduction in CO2, a 90% reduction in NOx, and a reduction in noise emissions in comparison

to levels in the year 2000; while the second document targets emission reductions of 55% by 2030

in comparison to levels in the year 2019. In addition to these requirements, all taxiing procedures will

be required to be carbon neutral by 2050.

Historically, efforts related to reducing emissions have mainly focused on the airborne phase of flight

as this constitutes the majority of the flight’s duration. In addition, since the aircraft’s engines are

optimised for cruise operations, they are highly inefficient when taxiing. Furthermore, high traffic

levels at airports, coupled with inefficiencies in the management of taxi operations, often lead to

TOW TRUCK TAXI ALGORITHM

2

congestion on taxiways and queues at runway holding points. Such situations necessitate repeated

stop-and-go movements and introduce long engine idle times which increase emissions levels.

Unsurprisingly, aircraft are considered to be the largest single emission source at airports [3].

Reducing emissions throughout the taxi phase of flight is one of the challenges that is being

addressed by the Single European Sky ATM Research Joint Undertaking (SESAR JU) programme

and two main technologies are being considered by the aerospace industry [4]. One of these

technologies is that adopted by systems such as WheelTug [5] and the Electric Green Taxiing

System (EGTS) [6], which relies on the use of electric motors installed in the main (or nose) landing

gear of the aircraft. An alternative technology relies on the use of manned or unmanned electric tow

trucks to tow aircraft from the stand to the runway (or vice-versa). For instance, the TaxiBot solution

[7] uses a semi-robotic, pilot-controlled tow truck which has been successfully tested and is currently

in use at Frankfurt Airport. This solution does not require modifications to the aircraft and does not

add to aircraft weight. However, the introduction of tow trucks to taxi operations increases surface

traffic at the airport, potentially increasing ATCo workload and creating congestion. This work

focuses on the latter technology.

A number of concepts and systems which make use of tow trucks for taxi operations have been

proposed in the literature and were reviewed in previous work [8]. In [8], Zaninotto et al. proposed

an algorithm capable of overcoming some of the limitations of these concepts and systems; however,

this algorithm is only partially autonomous as it requires the intervention of ATCos to issue

clearances. Furthermore, it does not always identify conflict-free routes and was designed

specifically for one particular location (Malta International Airport), which limits the applicability of the

solution. Other limitations of the algorithm include its inability to adapt to a variable number of tow

trucks, and its inability to take into account the state-of-charge of tow truck batteries during

scheduling.

This paper proposes a re-design of the system in [8] which aims to fully automate and optimise the

taxi phase by assigning tow trucks to aircraft and generating conflict-free routes to satisfy at pre-

defined flight schedule. The proposed algorithm is tested in a simulation environment that was

developed for the testing of engine-less taxi solutions [9] and performance analysis is carried out by

defining a number of performance metrics and extracting statistical data from a large number of

scenarios.

The rest of the paper is organised as follows. Section 2 describes the design of the algorithm. Section

3 defines the performance metrics and test scenarios, and presents and discusses the results.

Finally, Section 4 outlines the key conclusions of this paper and highlights areas for future work.

2. Design of Algorithm

The algorithm described in this section is partly based on the previous work [8], where various

elements of the aerodrome environment in the context of taxi operations were designed and

developed. These include the modelling of the airport layout (through the use of a directed graph),

the generation of flight schedules, and the modelling of aircraft and tow truck movement. The core

functionality has been redesigned based on the principle that ATCo intervention is now not required

in any part of the process. This means that the system is fully autonomous, thus imposing no

additional ATCo workload.

The core algorithm was implemented in Matlab and a control flow graph of the system is shown in

Figure 1. The algorithm consists of nine main modules that will be detailed in the following sections.

TOW TRUCK TAXI ALGORITHM

3

Figure 1 - Control flow graph of the modules of the system.

2.1 Data Loader and Data Store

From the Data Store, the Data Loader extracts layout information related to the selected airport,

relevant simulation settings (e.g., number of flights and number of tow trucks per depot), and creates

the airport environment together with a random flight schedule. The Data Loader and the Data Store

were extensively described in previous work [9].

2.2 Flight Dispatcher

The Flight Dispatcher is responsible for identifying conflict-free routes between the assigned runway

and the allocated stand for arrivals, or between the stand and the runway for departures.

The algorithm attempts to minimise the delay of each flight, which is indicated by the Solution Cost

(SC) and is given by:

 𝑆𝐶 = 𝑇𝑇𝐷 + 𝑆𝑇𝐷 (1)

where TTD is Taxi Time Delay and STD is the Start Time Delay.

The TTD is given by:

 𝑇𝑇𝐷 = 𝐴𝑇𝑇 − 𝐼𝑇𝑇 (2)

where ATT is the Actual Taxi Time on the assigned path and ITT is the Ideal Taxi Time, measured

along the ideal (shortest) taxi path.

STD is the delay accumulated by the aircraft while waiting next to the runway (for arrivals) or at the

stand (for departures) and is given by:

 𝑆𝑇𝐷 = 𝐴𝑆𝑇 − 𝐹𝑆𝑇 (3)

TOW TRUCK TAXI ALGORITHM

4

Where AST is the Actual Start Time when the aircraft starts taxiing and FST is the Flight Scheduled

Time.

The pseudocode for this module is shown in Figure 2.

Figure 2 - Pseudocode for the Flight Dispatcher module.

TOW TRUCK TAXI ALGORITHM

5

Each flight is analysed sequentially and solutions are explored for each active runway, as follows.

First, as shown in lines 8-18 of the pseudocode in Figure 2, the path’s start node (nst), equal to the

runway node for an arrival and to the parking node for a departure, and the path’s end node (nend),

equal to the parking node for an arrival and to the runway node for a departure, are set. These nodes

are input to the Path Finder module (see Section 2.3), in which the ideal (i.e. shortest) taxi distance

is computed. This distance is then divided by an average speed (va), set equal to 10 m/s, to find the

ideal taxi time.

Then, the module attempts to find a conflict-free solution. First, the Path Finder is executed once

again (lines 26-28 of the pseudocode in Figure 2) and a path, consisting of a Set of Path Nodes

(Pnodes), is generated; then, a Set of Path Times (Ptimes), indicating when the aircraft will traverse each

node, is calculated (as explained in Section 2.3) and the feasibility of the path – indicating whether

the module found a feasible path – is checked.

If the path is not feasible, the solution is discarded; otherwise Pnodes and Ptimes are processed by the

Conflict Detector (described in Section 2.4). This module checks if the path is conflict-free; produces

a Vehicle Occupation Table (VOT), which stores all the time windows during which the edges of the

path are occupied by the vehicle; and, if potential conflicts are detected, stores them in the Edges in

Conflict List (ECL) (lines 29-38 of the pseudocode in Figure 2).

This process (indicated in lines 25-40 of the pseudocode in Figure 2) is repeated until a conflict-free

path is identified or, as mentioned, until the path is flagged as not feasible. In case a conflict-free

path is found, the module calculates and store the SC of the current iteration (lines 41-42 of the

pseudocode in Figure 2).

Then, a new iteration is set, and the STD is incremented by 10 s. New solutions are calculated until

the STD of a new solution is greater than or equal to the SC of any solution, making useless the

search for further solutions for the analysed active runway. The whole process (lines 3-49 of the

pseudocode in Figure 2) is repeated for the following runway until all the active runways are

analysed.

In case no conflict-free solutions are found (meaning that all of the solutions are discarded, as all of

the corresponding paths are considered to be unfeasible), the simulation is marked as unfeasible

and the algorithm stops the calculations for the selected simulation (lines 50-53 of the pseudocode

in Figure 2).

Finally, as shown in lines 54-56 of the pseudocode in Figure 2, the solution with the lowest SC is

selected and the VOT of the selected solution is appended to the Global Occupation Table (GOT),

which represents the combination of all the VOTs of the selected solutions of the previously analysed

flights (therefore, when the first flight is analysed, the GOT is empty).

2.3 Path Finder

The Path Finder module computes the shortest path between two nodes using Dijkstra’s algorithm.

First, the module checks the ECL and excludes any edges contained in this list from the airport

graph. Then, the shortest path between the nst and nend is determined. If the exclusion of certain

edges results in an unfeasible path, the Path Finder indicates that that path is not feasible. Instead,

if a feasible path is found, the function returns Pnodes and Ptimes. Pnodes is given by:

 𝑃𝑛𝑜𝑑𝑒𝑠 = {𝑛1, … , 𝑛𝑛, … , 𝑛𝑁} (4)
where:

n1 is the first node of the path and is it equal to nst,

nn is the nth node of the path,

TOW TRUCK TAXI ALGORITHM

6

nN is the last node of the path and it is equal to nend, and

N is the total number of nodes of the path.

Ptimes, which is calculated immediately after the execution of the Path Finder module, is given by:

 𝑃𝑡𝑖𝑚𝑒𝑠 = {𝑡1, … , 𝑡𝑛, … , 𝑡𝑁} (5)
where:

t1 is the time when the vehicle passes through the first node n1 and it is equal to AST,

tn is the time when the vehicle passes through the nth node nn, and

tN is the time when the vehicle passes though the last node nN.

2.4 Conflict Detector

The purpose of the Conflict Detector is to create a VOT; to determine if the path provided by the Path

Finder is conflict-free; and to store the edges where potential conflicts are detected in the ECL.

First, the Set of Path Edges (Pedges) of the path is determined from Pnodes as follows:

 𝑃𝑒𝑑𝑔𝑒𝑠 = {𝑒1, … , 𝑒𝑛, … , 𝑒𝐸} (6)

where:

e1 is the first edge of the path passing between nodes n1 and n2,

en is the nth edge of the path passing between nodes nn and nn+1,

eE is the last edge of the path passing between nodes nN-1 and nN, and

E is the total number of edges of the path and it is equal to N - 1.

Then, the Set of Minimum Path Times (Ptimes.min) is calculated from Ptimes. Ptimes.min represents the time

when the vehicle enters each edge as follows:

 𝑃𝑡𝑖𝑚𝑒𝑠.𝑚𝑖𝑛 = {𝑡𝑚𝑖𝑛1, … , 𝑡𝑚𝑖𝑛𝑛, … , 𝑡𝑚𝑖𝑛𝑁} (7)
where:

tmin1 is the time when the vehicle enters the first edge, and is equal to t1 - tb,

tminn is the time when the vehicle enters the nth edge, and is equal to tn - tb,

tminE is the time when the vehicle enters the last edge, and is equal to tN-1 - tb, and

tb represents a buffer time equal to 10 s.

Finally, the Set of Maximum Path Times (Ptimes.max) is calculated using Ptimes. Ptimes.max represents the

time when the vehicle leaves each edge, as follows:

 𝑃𝑡𝑖𝑚𝑒𝑠.𝑚𝑎𝑥 = {𝑡𝑚𝑎𝑥1, … , 𝑡𝑚𝑎𝑥𝑛, … , 𝑡𝑚𝑎𝑥𝑁} (8)
where:

tmax1 is the time when the vehicle leaves the first edge, and it is equal to t2 + tb,

tmaxn is the time when the vehicle leaves the n-edge, and it is equal to tn+1 + tb, and

tmaxE is the time when the vehicle leaves the last edge, and it is equal to tN + tb.

The purpose of the buffer time tb is to slightly increase the time reserved for a vehicle to cross an

edge. This is expected to increase the traffic separation and, in turn, the robustness of the system

to uncertainties in vehicle positions and other parameters.

Next, Ptimes.min and Ptimes.max are compared with a table called the Time Windows Table. This table

divides the simulation time into intervals (time windows) and assigns an ID to each of them. Table 1

shows an example of a Time Windows Table, with twID representing the time window ID, twtime.st

indicating the start time of each time window and twtime.end indicating the end time of each time

window.

TOW TRUCK TAXI ALGORITHM

7

Table 1 - Time Windows Table.

For each edge in the path of a vehicle, the Conflict Detector identifies all the time windows which

partially or completely overlap the interval between Ptimes.min and Ptimes.max values corresponding to

the edge. All the identified pairs {e, twID} are then stored in the VOT.

In order to better understand how the Conflict Detector works, a simple graph is shown in Figure 3.

This graph shows node IDs, edge IDs and a path (marked in red) between a START node and an

END node. The time when the vehicle passes through each node is indicated in brackets. As

explained in Section 2.3 and in this section, the first step is to obtain Pnodes, Ptimes and Pedges; then,

the sets Ptimes.min and Ptimes.max are calculated (Table 2). For each edge 𝑒𝑛, the interval between 𝑡𝑚𝑖𝑛𝑛

and 𝑡𝑚𝑎𝑥𝑛 is then compared with the time intervals defined in the Time Windows Table (Table 1).

The overlapping time windows are stored in the VOT, as shown in Table 3.

Figure 3 - Example of graph with path.

Table 2 - Path parameters in the Conflict Detector module.

Finally, the Conflict Detector compares the VOT with the GOT (which includes the VOTs of all the

vehicles analysed previously) and looks for pairs of edges and time windows which appear in both

tables. If no matches are found – meaning that the analysed vehicle does not occupy any of the

edges of previously analysed vehicles at the same time – the module considers the path to be

conflict-free. Otherwise, the path is considered to conflict with other paths, and the edges contained

in the matching pairs are added to the ECL (and, as explained in Section 2.3, they will be excluded

twID twtime.st twtime.end

1 00:00 00:10

2 00:10 00:20

3 00:20 00:30

4 00:30 00:40

5 00:40 00:50

6 00:50 01:00

… … …

Pnodes Ptimes Pedges Ptimes.min Ptimes.max

3 00:21 5 00:11 00:37

5 00:27 10 00:17 00:48

8 00:38 12 00:28 00:59

9 00:49 14 00:39 01:17

10 01:07 - - -

TOW TRUCK TAXI ALGORITHM

8

from the airport graph by the Path Finder module when searching for a new shortest path). For

instance, if both the VOT and GOT contain the pairs [10, 2], [10, 3] and [12, 5], Edges 10 and 12 will

be included in the ECL.

Table 3 - Example of VOT.

2.5 Tug Dispatcher

If the Flight Dispatcher module is able to assign a route to each flight, the Tug Dispatcher is activated.

This module is responsible for: assigning a tow truck to each flight; finding a conflict-free route for

each tow truck between each depot and the start node of the aircraft, and between the end node of

the aircraft and each depot; assigning a depot to each tow truck once a towing mission is completed;

and updating the status of the assigned tow trucks and of their destination depots.

In order to accomplish this, the Tug Dispatcher analyses each flight sequentially and, for each flight,

uses the sub-modules Tug Paths Generator in order to generate conflict-free routes (refer to Section

2.6); Tug Selector to assign a tow truck to the flight (refer to Section 2.7); and Tug Status Updater to

update the status of the assigned tow trucks and of their destination depot (refer to Section 2.8).

The objectives of this module are: to maximise the use of the tow trucks available in the simulation

(thus minimising the number of aircraft which need to taxi using their main engines); to generate

routes for the tow trucks which do not conflict with any aircraft route assigned by the Flight

Dispatcher; and to balance the load between the available tow trucks, allowing them to recharge in

the depots when their battery level drops below a predefined threshold.

An important aspect of the Tug Dispatcher is that only tow trucks which are parked at a depot can

be assigned to an aircraft. Therefore, after completing a mission, a tow truck must return to a depot

before being assigned to a new mission.

2.6 Tug Paths Generator

The aim of the Tug Paths Generator is to generate conflict-free paths (each one with an ATT) which

the tow trucks can follow to reach an aircraft on time, or to return to a depot. To accomplish this, the

module is run twice: first to search for paths from all the depots to the attachment node (i.e. the

aircraft start node) with the analysed flight, and another time from the detachment point (i.e. the

e twID

5 2

5 3

5 4

10 2

10 3

10 4

10 5

12 3

12 4

12 5

12 6

14 4

14 5

14 6

14 7

14 8

TOW TRUCK TAXI ALGORITHM

9

aircraft end node) with the analysed flight to the depots. The Tug Dispatcher reports to the Tug Paths

Generator the type of mission which has to be analysed – Reaching the Aircraft Mission Type

(RAMT) or Returning to Depot Mission Type (RDMT) – and the module adapts the settings

accordingly.

The operation of the Tug Paths Generator is almost identical to that of the Flight Dispatcher;

however, there are a number of differences which should be taken into account. First, it is assumed

that two unloaded tow trucks can pass through an edge (e.g. a taxiway) side by side. Therefore, if a

conflict-free path is found by the Tug Paths Generator, the VOT is not added to the GOT, unlike what

happens in the case of the Flight Dispatcher. This allows multiple tow trucks to use the same paths

(or parts of them) at the same time.

While the Flight Dispatcher attempts to find solutions between the active runways and the designated

gate (in the case of an arrival), or between the gate and the active runways (in the case of a

departure), the Tug Paths Generator looks for solutions between the depots and the start node of

the aircraft (in case of RAMT), or between the end node of the aircraft and the depots (in case of

RDMT). Also, while the Flight Dispatcher selects only one solution, the Tug Paths Generator selects

one solution for each depot, in order to provide a potential conflict-free route for each tow truck to

reach the aircraft.

With regards to the RAMT, Ptimes is calculated in reverse, from the last node (equal to the aircraft

start node) to the first node (equal to the depot). This is done because the tow trucks must arrive at

the attachment point not later than the predefined attachment time (which is equal to the AST of the

aircraft minus Tattach, which is the time taken for the tow truck to attach to an aircraft, and is assumed

to be 30 s) in order not to disrupt the aircraft’s route defined by the Flight Dispatcher. In the case of

a departure, since the aircraft is waiting at a stand, the Tug Paths Generator explores more solutions,

such as sending the tow truck to the stand earlier and comparing the SCs (as the Flight Dispatcher

does). However, in the case of an arrival, this operation is not allowed in order to prevent the tow

truck from waiting near the runway, as this might create traffic congestion.

With regards to the RDMT, Ptimes is calculated from the first node (equal to the detachment node) to

the last node (equal to the depot), with t1 equal to the detachment time, which is equal to the arriving

time of the aircraft (calculated as the sum of AST and ATT) plus Tdetach (which is the time taken for

the tow truck to detach from an aircraft, and is assumed to be 30 s). In the case of an arrival, since

the aircraft arrives at a stand, the Tug Paths Generator explores more solutions, such as postponing

the departure of the tow truck from the stand and comparing the SCs (as the Flight Dispatcher does).

However, in the case of a departure, this operation is not allowed in order to prevent the tow truck

from waiting next to the runway, as this might create traffic congestion.

If, for both RAMT and RDMT, no solutions are found for any depot, the analysed aircraft cannot be

towed – meaning that it will have to taxi using its main engines – and the Tug Dispatcher moves onto

the next flight in the schedule.

2.7 Tug Selector

The Tug Selector is responsible for assigning a tow truck to an aircraft and identifying the depot

which the tow truck returns to after the taxi mission is completed. In order to do this, the module

analyses a number of tow truck parameters and the availability of each depot. These parameters are

stored in two sets of tables: a set consisting of a Tug Status Table (TST) for each tow truck, which

shows the status of the tow truck at each time window (see example in Table 4), and another set

consisting of a Depot Status Table (DST) for each depot, which shows the status of the depot at

each time window (see example in Table 5).

TOW TRUCK TAXI ALGORITHM

10

Table 4 - Example of part of a TST.

Table 5 - Example of part of a DST.

For each time window, the TST indicates the depot in which the tow truck is located; whether the tow

truck is parked; whether it is attached to an aircraft; its battery level; whether sufficient charge is

available to handle a towing mission (the minimum threshold is set to 20%); and the tow truck’s

availability. A tow truck is only considered to be available if it is parked and adequately charged. The

tow truck is assumed to have an endurance of 30 minutes with a full battery and an average load.

With an average speed of va = 10 m/s, it is therefore able to travel a distance of 18 km on a single

battery charge.

The DST indicates the availability of a depot for each time window in terms of the number of available

tow trucks and parking spaces (charging points). The number of parking spaces available per depot

is a design choice that is driven by the infrastructure of the airfield. To ensure an adequate number

of free charging points, the number of parking spaces at each depot is defined as follows:

 𝑛𝑝𝑎𝑟𝑘𝑖𝑛𝑔.𝑠𝑙𝑜𝑡𝑠 = ⌈1.5 × (𝑛𝑡𝑢𝑔𝑠 𝑛𝑑𝑒𝑝𝑜𝑡𝑠⁄)⌉ (9)

where:

ntugs is the total number of tow trucks, and

ndepots is the number of depots in the airfield.

Using this equation, the total number of charging points is always greater than the number of tugs

and scales in proportion to the size of the tow truck fleet.

The Tug Selector first excludes the parked tow trucks for which no conflict-free path to the analysed

aircraft was found, as well as tow trucks that are unavailable between the relevant departure time

window during which they should leave their depot (twID.tug.st), as calculated by the Tug Paths

Generator, and the time window during which they should detach from the aircraft (twID.det). The list

of remaining (non-excluded) tow trucks is the Candidate Tugs List (CTL).

Then, a destination depot is assigned to each of the tow trucks in the CTL based on three criteria:

1. the Tug Paths Generator successfully identifies a conflict-free route from the aircraft end

node (i.e. detachment node) to the depot under consideration;

twID Depot ID Parked Loaded
Battery

charge

Battery

sufficient
Available

… … … … … … …

77 - FALSE FALSE 20.5% TRUE FALSE

78 - FALSE FALSE 20.4% TRUE FALSE

79 - FALSE TRUE 20.3% TRUE FALSE

80 - FALSE TRUE 20.1% TRUE FALSE

… … … … … … …

twID

Number of

available tugs

Number of avilable

parking spots

… … …

77 1 5

78 1 5

79 1 5

80 1 5

… … …

TOW TRUCK TAXI ALGORITHM

11

2. the depot under consideration has at least one available parking slot at the time window

during which the tow truck arrives at the depot (twID.tug.end); and

3. the cost (SC) of returning to the depot under consideration is less than the cost of

returning to any other depot.

For each tow truck i, a towing cost, (ci
towing) is defined as the total taxi mission time. In addition, the

associated battery charge level, 𝑏𝑖, is imported from the TST. The battery charge level is converted

into a battery cost, ci
bat, and scaled to the magnitude levels of the towing cost using Equation (10):

 𝑐𝑏𝑎𝑡
𝑖 = 𝑐𝑡𝑜𝑤𝑖𝑛𝑔.𝑚𝑎𝑥 −

𝑐𝑡𝑜𝑤𝑖𝑛𝑔.𝑚𝑎𝑥

(𝑏𝑚𝑎𝑥− 𝑏𝑚𝑖𝑛)
× (𝑏𝑖 − 𝑏𝑚𝑖𝑛) (10)

where:

ctowing.max is the maximum ctowing cost of the tow trucks in the CTL,

bmin is the minimum battery level of the tow trucks in the CTL, and

bmax is the maximum battery charge set to 100%.

Equation (10) was designed with the aim of making it possible to add ci
bat to ci

towing (without restricting

the maximum value of ci
bat to 100%) and of assigning a low cost for a high battery charge (so as to

promote tow trucks with higher levels of battery). In fact, Equation (10) results in zero battery cost

for fully charged tow trucks. For partial charges, the cost is linearly increased up to a maximum of

ctowing.max. Finally, the total cost of the towing mission ci
tot is computed as follows:

 𝑐𝑡𝑜𝑡
𝑖 = 𝑐𝑡𝑜𝑤𝑖𝑛𝑔

𝑖 + 𝑐𝑏𝑎𝑡
𝑖 (11)

The tow truck with the minimum ci
tot cost is selected and assigned to the aircraft under consideration.

2.8 Tug Status Updater

Once a tow truck is assigned to an aircraft, its Tug Status Table (TST) is updated from twID.tug.st to

twID.tug.end (except for the battery charged which is updated until the last time window of the

simulation). The battery charge is updated on the basis of the following three parameters:

• a discharging rate of 2% per minute, applied when the tow truck is in motion and unloaded;

• a discharging rate of 3% per minute, applied when the tow truck is in motion and loaded; and

• a charging rate of 2% per minute, applied when the tow truck is at a charging point in a depot.

Subsequently, all the DSTs are updated according to the new values of the TSTs.

Then, the Tug Dispatcher moves onto next flight in the schedule and repeats the whole process, as

described in Sections 2.5 to 2.8.

2.9 Performance Indicator

At the end of each simulation, the Performance Indicator computes various metrics (described in

Section 3.1) to give an indication of the performance of the algorithm.

3. Simulation Testing and Results

This section first defines the test objectives and performance metrics. Then, it describes the test

scenarios and discusses the results obtained.

TOW TRUCK TAXI ALGORITHM

12

3.1 Objectives and Performance Metrics

One of the two main objectives of the simulation tests was to assess the ability of the algorithm to

create conflict-free routes which minimise flight schedule delays and taxi times. The performance of

the algorithm in this regard was measured using the following metrics:

• Average Taxi Time Delay (TTDavg): This is the average time delay accumulated by the

aircraft while taxiing and is given by:

 𝑇𝑇𝐷𝑎𝑣𝑔 =
∑ 𝑇𝑇𝐷𝑖

𝑁𝑎𝑖𝑟𝑐
𝑖=1

𝑁𝑎𝑖𝑟𝑐
 (12)

where Nairc is the number of aircraft and TTDi is the TTD for aircraft i.

• Average Start Time Delay (STDavg): This is the average time delay accumulated by the

aircraft while waiting next to the runway (for arrivals) or at the stand (for departures) and is

given by:

 𝑆𝑇𝐷𝑎𝑣𝑔 =
∑ 𝑆𝑇𝐷𝑖

𝑁𝑎𝑖𝑟𝑐
𝑖=1

𝑁𝑎𝑖𝑟𝑐
 (13)

where STDi is the STD for the aircraft i.

• Percentage of Delayed Aircraft (DA): This is the percentage of aircraft whose start time is

delayed and is given by:

 𝐷𝐴 =
∑ 𝑇𝐹𝑑𝑒𝑙𝑎𝑦𝑒𝑑

𝑖𝑁𝑎𝑖𝑟𝑐
𝑖=1

𝑁𝑎𝑖𝑟𝑐
 × 100 (14)

where 𝑇𝐹𝑑𝑒𝑙𝑎𝑦𝑒𝑑
𝑖 is equal to 1 if STDi > 0, and 0 otherwise.

The other main objective of the simulation tests was to assess the ability of the algorithm to

maximise the number of aircraft towing operations and to use the available tow trucks. The

performance of the algorithm in this regard was measured using the following metrics:

• Percentage of Towing Time (TT): This is the percentage of taxiing time of the aircraft during

which they are towed and is given by:

 𝑇𝑇 =
∑ (𝐴𝑇𝑇𝑖 × 𝑇𝐹𝑡𝑜𝑤𝑖𝑛𝑔

𝑖)
𝑁𝑎𝑖𝑟𝑐
𝑖=1

∑ (𝐴𝑇𝑇𝑖)
𝑁𝑎𝑖𝑟𝑐
𝑖=1

 × 100 (15)

where 𝑇𝐹𝑡𝑜𝑤𝑖𝑛𝑔
𝑖 is equal to 1 if the aircraft i is towed, and 0 otherwise.

• Percentage of Towed Aircraft (TA): This is the percentage of towed aircraft and is given by:

 𝑇𝐴 =
∑ 𝑇𝐹𝑡𝑜𝑤𝑖𝑛𝑔

𝑖𝑁𝑎𝑖𝑟𝑐
𝑖=1

𝑁𝑎𝑖𝑟𝑐
 × 100 (16)

• Percentage of Average Tow Trucks Utilisation Time (TTUTavg): This is the percentage of

the simulation time during which the tow trucks are used (on average) and is given by:

 𝑇𝑇𝑈𝑇𝑎𝑣𝑔 =
∑ 𝑁𝑃𝑇𝑖

𝑁𝑡𝑢𝑔𝑠
𝑖=1

𝑆𝑇 × 𝑁𝑡𝑢𝑔𝑠
 × 100 (17)

where NPTi is the total time during which a tow truck is not parked (as indicated in its TST)

and ST is the total simulation time.

TOW TRUCK TAXI ALGORITHM

13

3.2 Test Scenarios

The system was tested in a simulated environment using airfields at four different airport locations.

For each simulation a number of critical parameters were varied, specifically the runways in use, the

traffic levels and the ratio of tow trucks to aircraft movement. A total number of 1,698 simulation runs

were conducted. The simulation time ST was set equal to 1 hour resulting in the number of aircraft

in each simulation being equal to the number of aircraft movements per hour. For each simulation a

randomized flight schedule was generated taking into account the selected traffic levels and the

duration of the simulation. The system was tested on two scenarios.

Test Scenario 1 was designed to test the performance of the algorithm according to the metrics

TTDavg, STDavg and DA. Since these metrics are related to the Flight Dispatcher module – which is

executed before and independently of the allocation of tow trucks – the percentage of tow trucks in

Test Scenario 1 was set equal to zero. While the minimum number of aircraft movements per hour

was set equal for all airports, the maximum was set in proportion to the size of each airport. For each

airport, simulations were repeated for levels of traffic ranging from the minimum number of aircraft

per hour to the maximum number of aircraft per hour, in increments of two aircraft per hour. The

parameters of Test Scenario 1 are shown in Table 6.

Table 6 - Airfield parameters used for the Test Scenario 1.

Test Scenario 2 was designed to test the performance of the algorithm according to the metrics TT,

TA and TTUTavg. For each airport, the level of traffic was fixed and simulations were repeated for

different percentages of tow trucks (between 0 and 50%, in increments of 5%), where the percentage

of tow trucks is relative to the number of aircraft per hour. For instance, a percentage of tow trucks

of 50% means that there is a tow truck for every two aircraft. The parameters of Test Scenario 2 are

shown in Table 7.

Table 7 - Airfield parameters used for Test Scenario 2.

3.3 Results and Discussion

After obtaining all simulation results and computing the performance metrics, the results for each

group of runways in the same airport were averaged for ease of reporting. More specifically, in TLS

and in DFW the results are averaged between two groups of runways (consisting of 2 runways in

TLS and of 4 runways in DFW), while the results in MLA (which has 4 runways in total) and in TLV

(which has 6 runways in total) are averaged between each single runway. This section therefore

presents the average results obtained.

Figures 4-6 show the results of Test Scenario 1. Figure 4 shows TTDavg for different levels of traffic

Minimum Maximum

Malta International Airport (MLA) Small 1 40

Toulouse–Blagnac Airport (TLS) Medium 2 60

Ben Gurion Airport (TLV) Medium 1 60

Dallas/Fort Worth International Airport (DFW) Large 4 80

20

Airport name

(with IATA code)

Active runways

per simulation

Aircraft per hour
Airport size

0

Percentage of

tow trucks

(%)

Minimum Maximum

Malta International Airport (MLA) Small 1 30

Toulouse–Blagnac Airport (TLS) Medium 2 40

Ben Gurion Airport (TLV) Medium 1 40

Dallas/Fort Worth International Airport (DFW) Large 4 50

0 50

Aircraft

per hour

Percentage of

tow trucks (%)
Airport name

(with IATA code)
Airport size

Active runways

per simulation

TOW TRUCK TAXI ALGORITHM

14

for each airport under test. In all cases, TTDavg is relatively low and shows a weak association with

the volume of traffic. This result was expected since the traffic levels being simulated are within the

handling capacity of the airfields and therefore no significant changes to the ideal (shortest) taxi route

were required. It is interesting to note that, despite the different dimensions of the airports, the

differences of values of TTDavg between the airports are very small (generally less than 20 seconds),

except for TLV, which has slightly higher values. This might be due to the airport’s geometry; for

instance, DFW is large, but most of the gates are situated in the middle of the aerodrome. In contrast,

MLA is small, but a number of gates are distant from some of the runways. Also, DFW has an

extensive taxiway network – which provides the opportunity to find several alternative routes to the

ideal one – whereas, in MLA, the number of taxiways is very limited and aircraft might be forced to

follow long detours to avoid potential conflicts with other vehicles.

Figures 5 and 6 show STDavg and DA, respectively, for different levels of traffic in each of the airports

under test. The figures show similar trends: for each airport, STDavg and DA increase with the level

of traffic first moderately, then sharply. The trend of each airport also depends on the airport’s size

and geometry. For instance, in the case of MLA, the small dimensions of the airport cause the values

to increase significantly for levels of traffic exceeding 30 aircraft per hour. While TLV has a

complicated geometry (e.g. many taxiways cross the runways) and only one active runway at a time,

TLS features a simple geometry and two active runways; therefore, it has lower average delays and

a smaller percentage of delayed aircraft compared to TLV for similar levels of traffic.

Figure 4 - TTDavg with percentage of tow trucks equal to 0%.

TOW TRUCK TAXI ALGORITHM

15

Figure 5 - STDavg with percentage of tow trucks equal to 0%.

Figure 6 - DA with percentage of tow trucks equal to 0%.

Figures 7-9 show the results of Test Scenario 2. Since the results are comparing airfields with

different traffic handling capacities, it was decided to report results obtained using around 75% of

the traffic handling capacity for each airfield under evaluation.

Figures 7 and 8 show TT and TA, respectively, for different percentages of tow trucks for each airport.

Both percentages initially increase with an increasing percentage of tow trucks but then flatten out.

In both cases, when the percentage of tow trucks exceeds approximately 25%, 80% (or more) of the

traffic is handled by the tow trucks. This means that only 20% (or less) of the aircraft have to taxi

using their main engines and there is no significant improvement when the percentage of tow trucks

TOW TRUCK TAXI ALGORITHM

16

is increased beyond 25%.

Figure 9 shows TTUTavg for different percentages of tow trucks where, as expected, TTUTavg steadily

decreases for all airports as the percentage of tow trucks is increased. Interestingly, TTUTavg never

exceeds 50%; one of the reasons for this could be the fact that the tow trucks have to recharge their

battery. This clearly shows that battery performance is a crucial factor in tow truck-based electric taxi

operations. Apart from using fast charging tow trucks, this utilisation value can be improved by adding

a feature to the system which assigns tow trucks not only when these are parked in a depot, but also

whilst returning to a depot after a previous mission. In this case, the remaining battery charge needs

to be confirmed adequate for the mission being assigned.

Figure 7 - Percentage of Towing Time (TT).

Figure 8 - Percentage of Towed Aircraft (TA).

TOW TRUCK TAXI ALGORITHM

17

Figure 9 - Percentage of Tow Trucks Utilisation Time (TTUTavg).

4. Conclusion and Future Work

This paper introduced an algorithm to automate and optimise taxi operations using autonomous tow

trucks. The algorithm generates conflict-free routes for the aircraft and tow trucks; minimises taxi-

related delays; and maximises the use of the tow trucks. The proposed algorithm was tested in a

simulation environment and its performance was assessed on the basis of various metrics. The

results show that the algorithm is effective in limiting delays with respect to the flight schedule (even

for high volumes of traffic) and in exploiting the use of the tow trucks.

In terms of quantity, the introduced delays depend on the size and layout of the airfield, together with

the levels of traffic selected for the simulation. The maximum taxi time delay introduced when

compared to the shortest path was around 30 seconds and the maximum average delay in the taxi

start time was around 130 seconds. The percentage of delayed aircraft varied significantly with the

size of the airport, with almost 70% of the aircraft suffering some delay in the case of the smallest

airport being considered (i.e. MLA).

With regards to the tow truck allocations, the results indicate that when the number of tow trucks

exceeds approximately 25% of the number of aircraft per hour, most of the aircraft (around 80%) are

serviced by the tow trucks, with only around 20% of the taxiing aircraft having to use their main

engines. At this level of usage, the tow truck utilisation time was found to be around 30%. Increasing

the size of the tow truck fleet presented no major improvements, beyond these values.

In future work, the algorithm will be modified such that it is able to assign a tow truck to a new towing

mission as soon as it detaches from an aircraft, as long as it has sufficient battery charge. The

algorithm will also be modified such that, in the event that no conflict-free routes are found for any

available tow truck to reach an aircraft, the algorithm will be able to make slight adjustments to the

AST of that aircraft in order to produce a conflict-free route for the tow trucks.

Another area of future work is the design of a simulator which models uncertainties related to taxi

operations, including uncertainties in vehicle speed; aircraft arrival and departure times; battery

charging and discharging rates; etc. This simulator will make it possible to check the sensitivity and

robustness of the algorithm to various uncertainties and unforeseen changes.

TOW TRUCK TAXI ALGORITHM

18

5. Contact Author Email Address

To reach the contact author (Ing. Stefano Zaninotto), send an email to: stefano.zaninotto@um.edu.mt

6. Copyright Statement

The authors confirm that they, and/or their company or organization, hold copyright on all of the original material

included in this paper. The authors also confirm that they have obtained permission, from the copyright holder

of any third party material included in this paper, to publish it as part of their paper. The authors confirm that

they give permission, or have obtained permission from the copyright holder of this paper, for the publication

and distribution of this paper as part of the ICAS proceedings or as individual off-prints from the proceedings.

References

[1] European Commission. Flightpath 2050, Europe’s Vision for Aviation. [Online]. Available:
https://www.acare4europe.org/sites/acare4europe.org/files/document/Flightpath2050_Final.pdf
[Accessed: 8 June 2022].

[2] [Online]. Available: https://ec.europa.eu/clima/policies/transport/aviation_en [Accessed: 8 June 2022].

[3] Fleuti E and Maraini S. Taxi-Emissions at Zurich Airport. 2017.

[4] Guo R, Zhang Y and Wang Q. Comparison of emerging ground propulsion systems for electrified

aircraft taxi operations. Department of Civil and Environmental Engineering, University of South Florida,

Florida, USA.

[5] [Online]. Available: https://www.wheeltug.com/. [Accessed: 8 June 2022].

[6] Norris G. Honeywell/Safran Joint Venture Tests Electric Taxiing. 24 June 2013. [Online]. Available:
https://aviationweek.com/awin/honeywellsafran-joint-venture-tests-electric-taxiing. [Accessed 8 June
2022].

[7] Taxibot. [Online]. Available: https://www.taxibot-international.com [Accessed 8 June 2022].

[8] Zaninotto S, Gauci J, Farrugia G and Debattista J. Design of a Human-in-the-Loop Aircraft Taxi
Optimisation System Using Autonomous Tow Trucks. University of Malta, Malta, 2019.

[9] Zaninotto S, Gauci J and Zammit B. A Testbed for Performance Analysis of Algorithms for Engineless
Taxiing with Autonomous Tow Trucks. University of Malta, Malta, 2021.

