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Abstract

The selection of an appropriate measurement system for an inertial navigation system requires an analysis of
the impact of sensor errors on the position and orientation determination accuracy to ensure that the selected
solution is cost effective and complies with the requirements. In the solutions reported in the literature, this
problem is solved based on the navigation duration only, by considering the time-dependent errors due to
sensors bias and random walk parameters, or by simulation. In the former case, oversimplifying the analysis
will not allow accurate values to be determined, while the latter method does not provide direct insight into the
emerging dependencies. The article presents the results of the analysis carried out in an analytic way. General
formulas are presented, which are also written in detail for the adopted model of the measurement system
and various maneuvers. Although general equations are complicated, piece–wise constant motion variables
were adopted, which allowed to distinguish fragments of equations, corresponding to individual error sources,
which were discussed in the article. Presented formulas make evident and allow to understand dependencies
occurring between motion parameters and navigation errors emerging as a consequence of maneuvers.
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1. Introduction
Inertial navigation systems provide continuous localization even in case of outage or failure of other
navigational means. However, the influence of measurement system errors results in a position de-
termination error that increases with time and distance traveled. On the other hand, as the accuracy
of sensors increases, their price also increases very rapidly. Thus, it is necessary to select an appro-
priate measurement system that provides a cost-effective solution and at the same time of sufficient
accuracy, as it may determine the success of the mission. For this purpose it is necessary to analyze
thoroughly how the measurement errors of the considered inertial measurement unit will influence
the accuracy of the position determination.
As a first step, a coarse estimate of the required sensors accuracy can be determined based on the
navigation duration only, by considering the time–dependent errors due to sensors bias and random
walk parameters [2]. A more detailed analysis, however, requires consideration of errors that build up
during motion due to the predicted trajectory and sensors sensitivity to motion parameters.
However, to the authors’ knowledge and according to the literature review, there is a deficiency of
such detailed analysis of this problem in the literature. In the analyses found, only the biases of the
gyroscopes and accelerometers are considered, and for the more complicated cases that consider
the influence of motion-dependent errors, only graphs for specific simulation or test cases are pre-
sented, without deriving detailed formulas. Nevertheless, the motion-dependent errors turn out to be
significant, and the resulting effects, intriguing.
Article [8] presents results of an experimental study of a rotating inertial navigation system, showing
that the introduction of system rotation can significantly reduce navigation errors. Indeed, the method
of reducing navigational errors by setting the system into continuous rotation is generally known as
’carouseling’ [7]. In contrast, [10] points out that in a practical implementation of rotating system,
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additional orientation determination errors may arise. Analytical analysis of the navigational systems
accuracy is performed in [1], where the reduction of position determination errors as a result of
navigation system rotation is analytically presented. However, considerations are again limited to the
errors of accelerometers and gyroscopes. A more complex model of the measurement system is
presented by [12], although the model is used not to analyze the accuracy of the navigation system,
but to calibrate the measurement system.
The paper will present the results of calculations of errors of orientation and position determination
by an inertial navigation system. Calculations will be carried out for selected, different maneuvers
and the assumed model of the measuring system. The emerging relationships will be analyzed
and discussed. In the next section, the navigation and measurement system models used for the
analysis will be described, and navigation error propagation formulas will be presented. Section 3
describes the methodology used and the maneuver cases considered. Detailed parameters of the
measurement system are also presented. In Section 4 the obtained results are presented along with
a discussion. The latest section contains conclusions.

2. General models
Accuracy analysis will be performed using basic unaided inertial navigation system (INS), presented
in Figure 1, with the assumption of navigation coordinate system being inertial and orthogonal (flat-
earth approximation). The measurement system is an inertial measurement unit (IMU), consisting of
triad of orthogonal gyroscopes and triad of orthogonal accelerometers, whose outputs are measured
values of specific force and body angular rate expressed in body coordinate system.
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Figure 1 – Block diagram of basic strap-down INS

The values measured by the sensors include a measurement error described by an error model. The
adopted model, presented in Equations (1) and (2), was developed based on information contained
in standards, [4],[5],[6], and literature, [9],[13], whereby the effect of environmental conditions was
neglected. In all of the following equations, the rule is that vectors are written in bold, while matrices
in capital letters.

ωωωeee(t) = (Sω Mω − I) ωωω(t)+ωωωbbb +Ωg Mω fff bbb(t)+nω (1)
aaaeee(t) = (Sa Ma − I) fff bbb(t)+aaabbb +na (2)

where
ωωωbbb, aaabbb — vector of measurement bias, for gyroscopes and accelerometers;
Sω , Sa — matrix of sensitivity, for gyroscopes and accelerometers;
Mω , Ma — matrix of input axes misalignment, for gyroscopes and accelerometers;
Ωg — matrix of gyroscopes sensitivity to acceleration;
nω , na — gyroscopes and accelerometers measurement noise.
In addition to measurement errors, the navigation system also suffers from errors in determining initial
conditions, and resulting errors in determining navigation parameters. However, an accurate knowl-
edge of the gravity vector is assumed. A block diagram of the navigation system under consideration
with the used symbols is shown in Figure 2. The symbols presented in the Figure 2, are:
ppp(t), pppeee(t) — position in navigation coordinate system and error of its determination;
vvv(t), vvveee(t) — velocity in navigation coordinate system and error of its determination;
ααα(t), αααeee(t) — vector of rotation from navigation coordinate system to body coordinate system and
error of its determination;
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Figure 2 – Block diagram of basic strap-down INS signals propagation for accuracy analysis

R(ααα(t)) = exp
(
[ααα(t)]×

)
— Matrix of rotation from navigation coordinate system to body coordinate

system;
[ααα(t)]× — vector of rotation skew–symmetric matrix;
fff bbb(t) = aaa(t)+ωωω(t)×uuu(t)−R(ααα(t))ggg — specific force;
uuu(t) — velocity in body coordinate system;
aaa(t) = u̇uu(t) — body acceleration, expressed in body coordinate system;
ωωω(t) — body angular rate expressed in body coordinate system;
ggg — vector of gravity;
ωωωe(t), aaae(t) — vectors of angular rate and acceleration measurement error.
Symbols with subscript 0 denote initial values.

2.1 Error propagation model
For the considered navigation system shown in Figure 2, having made the following assumptions:

1. the navigation system is orthogonal and inertial (flat earth approximation);

2. orientation errors during navigation are small;

3. error products are ignored;

the following error propagation model can be determined [13]

α̇ααeee(t) = RT (ααα(t))ωωωeee(t) (3)

v̇vveee(t) = αααeee(t)× fff nnn(t)+RT (ααα(t))aaaeee(t) (4)
ṗppeee(t) = vvveee(t) (5)

From the above model of the navigation system, and the error propagation model, the general for-
mulas, equations (6) and (7) , for the orientation and position determination error are derived, which
are difficult to solve in the general case for the whole trajectory, and a typical approach would be a
numerical simulation.

αααeee(t) = αααe,0 +
∫ t

0
RT (ααα(t)) (ωωωbbb +(Sω Mω − I) ωωω(t))dt +

∫ t

0
RT (ααα(t))Ωg Mω fff bbb(t)dt (6)

pppeee(t) = ppp0,e + t vvv0,e +
∫ t

0

∫ t

0
αααeee(t)×RT (ααα(t)) fff bbb(t)dt dt +

∫ t

0

∫ t

0
RT (ααα(t)) (aaabbb +(Sa Ma − I) fff bbb(t)) dt dt (7)
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3. Methodology and considered cases
However, solution of the equations (6) and (7) can be done quite easily, after assuming piecewise
constant motion characteristics, according to equations (8) to (11).

aaa(t) = aaa = const (8)
ωωω(t) = ωωω = const (9)
uuu(t) = uuu000 +aaat (10)

R(ααα(t)) = exp(−Ω t)R(ααα000) (11)

where
Ω = [ω]× — angular rate skew–symmetric matrix.
The symbolic solution is still a complicated task for human, however, it can be done easily with
the help of symbolic computing software. In the case of this paper, Matlab with Symbolic Math
Toolbox was used. Nevertheless, still the results obtained turn out to be very extensive. Thus, to
facilitate the reader’s understanding of the results presented, the analysis does not consider the whole
assumed trajectory, but decomposes it into individual stages, considering each maneuver separately,
and analyzing changes in the obtained error equations. The cases considered are summarized in
Table 1.

Table 1 – List of considered maneuvers

No. case α0 ω v0 a Eq. αe Eq. pe motion description

1 000 000 000 ggg (16) (24) free fall
2 ααα000 000 000 ggg (17) (25) free fall in arbitrary orientation
3 000 000 000 000 (18) (26) rest
4 ααα000 000 000 000 (19) (27) rest in arbitrary orientation
5 ααα000 000 vvv000 000 (19) (27) steady rectilinear motion

6 000
[ 0

0
wz

]
000 ggg, u̇uu = 000 (20) (28) free fall with rotation

7 000
[ 0

0
wz

]
000 000 (21) (29) rotation without translation

8 000
[ 0

0
wz

] [ v0,x
0
0

]
000 (22) (30) circular motion

9 000
[ 0

0
wz

] [ v0,x
0
0

] [ asx
0
0

]
(23) (31) spiral motion

In order to maintain the detail of the presented results and direct insight into the emerging dependen-
cies, the individual components of the vectors were decomposed. However, for this to be possible,
a detailed model of the measurement system had to be adopted by specifying the exact structure of
the sensor model matrices.

3.1 Detailed measurement system model
Based on a review of the documentation of commercially available sensors, it is possible to distinguish
the parameters that are given in almost every specification, so their use in the model will allow a direct
comparison of IMU capabilities by substituting the parameters of their sensors into the formulas
obtained from the analysis. The parameters thus selected are summarized in Table 2. It should
be noted that listed parameters are typical for IMUs available on the market, which represent only a
cross-section of existing sensor technologies. Therefore, it should be assumed that models presented
below, based on these parameters, are applicable to optical gyroscopes (RLG, FOG) and sensors
manufactured with MEMS technology.
Since in the considered measuring system triads of sensors are used, while in the specification only
one value of each parameter is given, identical errors of each sensor in the triad were assumed. It
was also assumed that gyroscopes and accelerometers have the same error matrix structures. The
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adopted matrices are shown in equations (12) to (14).

Si =

1+ εi 0 0
0 1+ εi 0
0 0 1+ εi

 (12)

Mi =


√

1−δ 2
i δi/

√
2 δi/

√
2

δi/
√

2
√

1−δ 2
i δi/

√
2

δi/
√

2 δi/
√

2
√

1−δ 2
i

 (13)

Ωg =

ωg 0 0
0 ωg 0
0 0 ωg

 (14)

where index i should be replaced by a for accelerometers or ω for gyroscopes, while
δi = sin(αi), and αi is sensor input axis misalignment [3].

3.2 Notes on analysis
In the analysis of the cases where rotation occurs, sensor measurement errors due to measurement
noise have been omitted. The analysis of the impact of stochastic errors in a rotating navigation
system is addressed, e.g., in [11].
It is assumed that the object makes ’coordinated’ turns, that is, an object moving at speed uuu ̸= 000
cannot change orientation without changing direction of motion (except in the case of rotation along
the direction of motion), and the resulting centripetal acceleration is equal ωωω × uuu. This assumption
follows from the practical consideration that most objects move in a particular direction – ’forward’.
The exception is the case with free fall, for which considered is motion with velocity uuu ≈ 000 or in orbit,
where the constraint may not hold.
In the analysis, the error of the initial velocity is expressed in the navigation coordinate system.
However, if the initial velocity in the coordinate system is determined by the velocity expressed in the
body system and the orientation of the body, the initial velocity error results from the velocity errors in

Table 2 – Sensors parameters specified in almost all of IMU datasheets

Symbol Parameter Units

Gyroscopes

— Input range °/s
ωb Bias instability °/s or °/h
εω Scale factor accuracy % or ppm
ARW Angle Random Walk °/

√
h

— Noise density (°/s)/
√

Hz
αω Input axis misalignment ◦ or mrad
— Bandwidth Hz
ωg bias acceleration sensitivity (°/s)/g

Accelerometers

— Input range g
ab Bias instability mg
εa Scale factor accuracy % or ppm
VRW Velocity Random Walk (m/s)/

√
h

— Noise density mg/
√

Hz
αa Input axis misalignment ◦ or mrad
— Bandwidth Hz
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the body system and the orientation error, as in equation (15).

vvve,0 = αααe,0 × vvv000 +RT (ααα000)uuue,0 (15)

4. Analysis of results
The analysis of the obtained results will begin with the simplest case, and we will gradually move
through the more complicated ones, adding successively the individual motion parameters. We will
begin by analyzing the error of orientation determination, as the error obtained will be used further to
determine the position error.
The first two cases is free fall, with the body coordinate system aligned to the navigation coordinate
system and in arbitrary orientation. As can be seen in equations (16) and (17), consists of only initial
and time dependent errors (bias and random walk).

αααeee(t) =

αe,0,x
αe,0,y
αe,0,z

+

ωb,x t + arw
√

t
ωb,y t + arw

√
t

ωb,z t + arw
√

t

 (16)

αααeee(t) =

αe,0,x
αe,0,y
αe,0,z

+RT (ααα000)

ωb,x t + arw
√

t
ωb,y t + arw

√
t

ωb,z t + arw
√

t

 (17)

If we place the system stationary, as in case 3 shown in equation (18), there is an error due to the
acceleration sensitivity of the gyroscopes. Generalizing to arbitrary orientation in case 4, presented in
equation (19), the only results is error rotation. Due to the change in the basis of the g-sensitivity ma-
trix and the appearance of multiple trigonometric functions, the gravitational acceleration dependent
term is not expanded and is written in the general, matrix, form. In the case shown, the acceleration
is the ground reaction against the gravitational force, but an identical term will appear for any acceler-
ation aaa(t). It is interesting to note, however, that identical results to those presented by the equation
(19) will also be obtained for case 5, that is, when the object is moving in steady rectilinear motion, in
arbitrary direction with arbitrary speed and orientation. This means that, from the point of view of the
orientation error, it does not matter whether the body is at rest or moves with constant velocity. And
hence, in the case of steady motion, an analysis that only takes into account time-dependent errors
is perfectly sufficient.

αααeee(t) =

αe,0,x
αe,0,y
αe,0,z

+

ωb,x t + arw
√

t
ωb,y t + arw

√
t

ωb,z t + arw
√

t

+ωg t


− 1√

2
δw

− 1√
2

δw

−
√

1−δw
2

 g0 (18)

αααeee(t) =

αe,0,x
αe,0,y
αe,0,z

+RT (ααα000)

ωb,x t + arw
√

t
ωb,y t + arw

√
t

ωb,z t + arw
√

t

+ t RT (ααα000)Ωg Mω R(ααα000)(−ggg) (19)

The next cases present formulas for the error of orientation determination, for motion containing
rotations.
Case 6, shown in equation (20), represents free fall, similar to that shown in equation (16), but with
rotation around Z axis. Comparing the two equations, one can see that the errors depend on time
(only bias in this case), as well as gyroscope misalignment and scale factor errors. Most significantly,
however, the errors in axes perpendicular to the rotation vector no longer increase linearly with time,
but have a limited maximum value. This implies a significant reduction of the attitude errors and
analytically demonstrate the correctness of results from the publications [1] and [8]. Moreover, it
extends the results from the aforementioned publications, since, as can be seen from the formulas
(21) and (22), for cases 7 and 8, the identical effect as for the gyroscope bias also occurs for g–
sensitive errors emerging from gravitational and centripetal acceleration during circular motion.
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αααeee(t) =

αe,0,x
αe,0,y
αe,0,z

+


(

ωb,x
wz

+ 1√
2

δw (εw +1)
)

sin(t wz)+
(
−2ωb,y

wz
−
√

2δw (εw +1)
)

sin
( t wz

2

)2(
ωb,y
wz

+ 1√
2

δw (εw +1)
)

sin(t wz)+
(

2ωb,x
wz

+
√

2δw (εw +1)
)

sin
( t wz

2

)2(
ωb,z −wz

(
1− (εa +1)

√
1−δa

2
))

t


=

αe,0,x
αe,0,y
αe,0,z

+RT (ααα000)
∫ t

0
exp(Ω t)dt (ωωωbbb +(Sω Mω − I)ωωω)

(20)

αααeee(t) =

αe,0,x
αe,0,y
αe,0,z

+


(

ωb,x
wz

+ 1√
2

δw (εw +1)
)

sin(t wz)+
(
−2ωb,y

wz
−
√

2δw (εw +1)
)

sin
( t wz

2

)2(
ωb,y
wz

+ 1√
2

δw (εw +1)
)

sin(t wz)+
(

2ωb,x
wz

+
√

2δw (εw +1)
)

sin
( t wz

2

)2(
ωb,z −wz

(
1− (εa +1)

√
1−δa

2
))

t



+ωg


−

√
2δw sin(t wz)

2wz
+

√
2δw sin( t wz

2 )
2

wz

−
√

2δw sin(t wz)
2wz

−
√

2δw sin( t wz
2 )

2

wz

−t
√

1−δw
2

 g0

=

αe,0,x
αe,0,y
αe,0,z

+RT (ααα000)
∫ t

0
exp(Ω t)dt (ωωωbbb +(Sω Mω − I)ωωω)

+RT (ααα000)
∫ t

0
exp(Ω t)Ωg Mω exp(−Ω t)dt R(ααα000)(−ggg)

(21)

αααeee(t) =

αe,0,x
αe,0,y
αe,0,z

+


(

ωb,x
wz

+ 1√
2

δw (εw +1)
)

sin(t wz)+
(
−2ωb,y

wz
−
√

2δw (εw +1)
)

sin
( t wz

2

)2(
ωb,y
wz

+ 1√
2

δw (εw +1)
)

sin(t wz)+
(

2ωb,x
wz

+
√

2δw (εw +1)
)

sin
( t wz

2

)2(
ωb,z −wz

(
1− (εa +1)

√
1−δa

2
))

t



+ωg


−

√
2δw sin(t wz)

2wz
+

√
2δw sin( t wz

2 )
2

wz

−
√

2δw sin(t wz)
2wz

−
√

2δw sin( t wz
2 )

2

wz

−
√

1−δw
2

 g0 +ωg


1√
2

δw sin(t wz)−2sin
( t wz

2

)2
√

1−δw
2

sin(t wz)

√
1−δw

2 +
√

2δw sin
( t wz

2

)2

+ 1√
2

δw t wz

 u0,x

=

αe,0,x
αe,0,y
αe,0,z

+RT (ααα000)
∫ t

0
exp(Ω t)dt (ωωωbbb +(Sω Mω − I)ωωω)

+RT (ααα000)
∫ t

0
exp(Ω t)Ωg Mω exp(−Ω t)dt R(ααα000)(−ggg)+RT (ααα000)

∫ t

0
exp(Ω t)dt Ωg Mω (ωωω ×uuu000)

(22)

It is only the addition of constant acceleration in case 9, shown in equation (23) that causes the
orientation error to increase linearly over time.
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αααeee(t) =

αe,0,x
αe,0,y
αe,0,z

+


(

ωb,x
wz

+ 1√
2

δw (εw +1)
)

sin(t wz)+
(
−2ωb,y

wz
−
√

2δw (εw +1)
)

sin
( t wz

2

)2(
ωb,y
wz

+ 1√
2

δw (εw +1)
)

sin(t wz)+
(

2ωb,x
wz

+
√

2δw (εw +1)
)

sin
( t wz

2

)2(
ωb,z −wz

(
1− (εa +1)

√
1−δa

2
))

t



+ωg


−

√
2δw sin(t wz)

2wz
+

√
2δw sin( t wz

2 )
2

wz

−
√

2δw sin(t wz)
2wz

−
√

2δw sin( t wz
2 )

2

wz

−t
√

1−δw
2

 g0 +ωg


1√
2

δw sin(t wz)−2sin
( t wz

2

)2
√

1−δw
2

sin(t wz)

√
1−δw

2 +
√

2δw sin
( t wz

2

)2

1√
2

δw wz t

 u0,x

+ωg

t
√

1−δw
2 − 2

√
2δw sin( t wz

2 )
2

wz

− 1√
2

δw t +
√

2δw sin(t wz)
wz

1√
2

δw t

 asx +ωg


1√
2

δw t sin(t wz)−2 t sin
( t wz

2

)2
√

1−δw
2

t sin(t wz)

√
1−δw

2 +
√

2δw t sin
( t wz

2

)2

1
2
√

2
δw wz t2

 asx

=

αe,0,x
αe,0,y
αe,0,z

+RT (ααα000)
∫ t

0
exp(Ω t)dt (ωωωbbb +(Sω Mω − I)ωωω)

+RT (ααα000)
∫ t

0
exp(Ω t)Ωg Mω exp(−Ω t)dt R(ααα000)(−ggg)

+RT (ααα000)
∫ t

0
exp(Ω t) t dt Ωg Mω (ωωω ×aaa)+RT (ααα000)

∫ t

0
exp(Ω t)dt Ωg Mω (ωωω ×uuu000 +aaa)

(23)

However, rotation of the navigation system does not affect the orientation error in the axis parallel
to the rotation vector. Moreover, continuous rotation causes an increase in the error of orientation
determination in this axis due to the linearly increasing scale factor error.
The presented formulas assume velocity and acceleration in the X axis of the body coordinate system
and rotation about the Z axis of the body coordinate system. However, the presented effects are
satisfied for any cases of rotation. The observed effects will occur just on a different plane. To cover
other cases, more general, matrix formulas are also presented for equations (20) to (23).
In the following part, we will again pass through all the considered maneuvers, this time analyzing
the position determination error.
Analyzing cases 1 and 2 again, this time in terms of the position determination error, shown in the
equations (24) and (25), one can find a similar relationship as for the orientation errors from equations
(16) and (17) – the error depends only on the initial orientation errors and the time-dependent errors
(bias and random walk). It can also be seen that as long as the specific force is equal to zero, the
orientation and position errors are independent of each other (assuming the initial velocity error does
not depend on the orientation errors)

pppeee(t) =

pe,0,x + t ve,0,x
pe,0,y + t ve,0,y
pe,0,z + t ve,0,z

+

1
2 ab,x t2 + 2

3 vrw t3/2

1
2 ab,y t2 + 2

3 vrw t3/2

1
2 ab,z t2 + 2

3 vrw t3/2

 (24)

pppeee(t) =

pe,0,x + t ve,0,x
pe,0,y + t ve,0,y
pe,0,z + t ve,0,z

+RT (ααα000)

1
2 ab,x t2 + 2

3 vrw t3/2

1
2 ab,y t2 + 2

3 vrw t3/2

1
2 ab,z t2 + 2

3 vrw t3/2

 (25)

Only for cases 3 and 4, shown in equations(26) and (27), does the position determination error
includes the misalignment and scale factor errors of accelerometers and incorporates the effect of
orientation error on the position determination error. Leaving aside the scale and misalignment errors
of accelerometers, this is the case that is typically used to determine the accuracy of a navigation
system based on navigation duration.
Due to the increasing complexity of the relationships for case 4, some errors in equation (27) are
presented in a general, matrix, form. For case number 5, similar to the orientation determination

8
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error, the position determination error does not depend on the direction and velocity of the object
motion and the errors equation is identical to case 4, presented in equation (27).

pppeee(t) =

pe,0,x + t ve,0,x
pe,0,y + t ve,0,y
pe,0,z + t ve,0,z

+

1
2 ab,x t2 + 2

3 vrw t3/2

1
2 ab,y t2 + 2

3 vrw t3/2

1
2 ab,z t2 + 2

3 vrw t3/2

+
1
2

t2


− 1√

2
δa (εa +1)

− 1√
2

δa (εa +1)

1−
√

1−δa
2 (εa +1)

 g0

+

−1
2 αe,0,y t2 − 1

6 ωb,y t3 − 4
15 arw t5/2 +

√
2

12 δw ωg g0 t3

1
2 αe,0,x t2 + 1

6 ωb,x t3 + 4
15 arw t5/2 −

√
2

12 δw ωg g0 t3

0

 g0

(26)

pppeee(t) =

pe,0,x + t ve,0,x
pe,0,y + t ve,0,y
pe,0,z + t ve,0,z

+RT (ααα000)

1
2 ab,x t2 + 2

3 vrw t3/2

1
2 ab,y t2 + 2

3 vrw t3/2

1
2 ab,z t2 + 2

3 vrw t3/2

+
1
2

t2 RT (ααα000) (Sa Ma − I) R(ααα000)(−g)

+

1
2

t2

αe,0,x
αe,0,y
αe,0,z

+RT (ααα000)

1
6

t3

ωb,x
ωb,y
ωb,z

+
4
15

t5/2

arw
arw
arw

+
1
6

t3
ωg Mω R(ααα000)(−g)

× (−g)

=

pe,0,x + t ve,0,x
pe,0,y + t ve,0,y
pe,0,z + t ve,0,z

+RT (ααα000)

1
2 ab,x t2 + 2

3 vrw t3/2

1
2 ab,y t2 + 2

3 vrw t3/2

1
2 ab,z t2 + 2

3 vrw t3/2

+
1
2

t2 RT (ααα000) (Sa Ma − I) R(ααα000)(−g)

+
∫ T

0

∫ T

0
αααeee(((ttt)))× (−g)dt dt

(27)

Comparing case 6 from equation (28) to case 1 from equation (24), and case 7 from equation (29)
to case 3 from equation (26), it can be seen that, also in the case of position determination error,
rotation of navigation system allows the error dependence on time to be reduced from a quadratic to
a linear dependence. the position error resulting from the orientation error in equation will be similar
to that for (27). However, due to the more complicated formula for orientation error (from equation
(21)), this component will not be expanded.

pppeee(t) =

pe,0,x + t ve,0,x
pe,0,y + t ve,0,y
pe,0,z + t ve,0,z

+


−ab,y

(
t

wz
− sin(t wz)

wz2

)
+2ab,x

sin( t wz
2 )

2

wz2

ab,x

(
t

wz
− sin(t wz)

wz2

)
+2ab,y

sin( t wz
2 )

2

wz2

+1
2 ab,z t2


=

pe,0,x + t ve,0,x
pe,0,y + t ve,0,y
pe,0,z + t ve,0,z

+RT (ααα000)
∫ t

0

∫ t

0
exp(Ω t)dt dt aaabbb

(28)

pppeee(t) =

pe,0,x + t ve,0,x
pe,0,y + t ve,0,y
pe,0,z + t ve,0,z

+


−ab,y

(
t

wz
− sin(t wz)

wz2

)
+2ab,x

sin( t wz
2 )

2

wz2

ab,x

(
t

wz
− sin(t wz)

wz2

)
+2ab,y

sin( t wz
2 )

2

wz2

1
2 ab,z t2



+


1√
2

δa (εa +1)
(

t
wz
− sin(t wz)

w2
z

)
+−

√
2δa (εa +1)

sin( t wz
2 )

2

wz2

− 1√
2

δa (εa +1)
(

t
wz
− sin(t wz)

w2
z

)
+−

√
2δa (εa +1)

sin( t wz
2 )

2

wz2

1
2

(
1− (εa +1)

√
1−δa

2
)

t2

 g0 +
∫ t

0

∫ t

0
αααeee(t)× (−ggg)dt dt

=

pe,0,x + t ve,0,x
pe,0,y + t ve,0,y
pe,0,z + t ve,0,z

+RT (ααα000)
∫ t

0

∫ t

0
exp(Ω t)dt dt aaabbb

+RT (ααα000)
∫ t

0

∫ t

0
exp(Ω t) (Sa Ma − I) exp(−Ω t)dt dt R(ααα000)(−ggg)+

∫ t

0

∫ t

0
αααeee(t)× (−ggg)dt dt

(29)
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Result for case 8 in equation (30) relative to the case in equation (29) adds a component resulting
from centripetal acceleration in circular motion. The last of the analyzed cases, presented in equation
(31) turned out to be too complex to be presented in expanded form in the paper. Hence, only the
general, matrix form is presented. However, it is the most general form, including all of motion
parameters, and divided so that interpretation of the individual components is straightforward.

pppeee(t) =

pe,0,x + t ve,0,x
pe,0,y + t ve,0,y
pe,0,z + t ve,0,z

+


−ab,y

(
t

wz
− sin(t wz)

wz2

)
+2ab,x

sin( t wz
2 )

2

wz2

ab,x

(
t

wz
− sin(t wz)

wz2

)
+2ab,y

sin( t wz
2 )

2

wz2

1
2 ab,z t2



+


1√
2

δa (εa +1)
(

t
wz
− sin(t wz)

w2
z

)
+−

√
2δa (εa +1)

sin( t wz
2 )

2

wz2

− 1√
2

δa (εa +1)
(

t
wz
− sin(t wz)

w2
z

)
+−

√
2δa (εa +1)

sin( t wz
2 )

2

wz2

1
2

(
1− (εa +1)

√
1−δa

2
)

t2

 g0

+


(

1− (εa +1)
√

1−δa
2
) (

t − sin(t wz)
wz

)
+
√

2δa (εa +1)
sin( t wz

2 )
2

wz

1√
2

δa (εa +1)
(

t − sin(t wz)
wz

)
−2

(
1− (εa +1)

√
1−δa

2
)

sin( t wz
2 )

2

wz

1
2
√

2
δa wz (εa +1) t2

 u0,x

+
∫ t

0

∫ t

0
αααeee(t)×

(
RT (ααα000) exp(Ω t)(ωωω ×uuu000)−ggg

)
dt dt

(30)

pppeee(t) = pppe,0 + t vvve,0 +RT (ααα000)
∫ t

0

∫ t

0
exp(Ω t)dt dt aaabbb

+RT (ααα000)
∫ t

0

∫ t

0
exp(Ω t) (Sa Ma − I) exp(−Ω t)dt dt R(ααα000)(−ggg)

+RT (ααα000)
∫ t

0

∫ t

0
exp(Ω t)dt dt (Sa Ma − I) (aaa+ωωω ×uuu000)

+RT (ααα000)
∫ t

0

∫ t

0
exp(Ω t) t dt dt (Sa Ma − I) (ωωω ×aaa)

+
∫ t

0

∫ t

0
αααeee(t)×

(
RT (ααα000) exp(Ω t)(aaa+ωωω ×uuu000 +ωωω ×aaat)−ggg

)
dt dt

(31)

The conducted analysis shows that assuming piecewise values of motion parameters, each fragment
of the trajectory can be analyzed separately. It is only necessary to assign appropriate initial con-
ditions resulting from the preceding fragments. Moreover, the impact of each error within a single
trajectory fragment can be analyzed separately.
The analyzed cases of maneuvers in which there was no rotation seem to be trivial. However, they
made it possible to show the influence of the individual motion parameters and the parameters of
the measurement system model on the resulting errors of orientation or position determination. The
obtained results indicate that the errors accumulating during steady motion do not differ from the
errors accumulating when the object is stationary, and depend only on time. This observation allows
to conclude that it is sufficient to determine errors on the basis of navigation duration complemented
with more detailed analysis only for fragments containing high dynamics of motion (significant accel-
erations, or changes of direction – especially the rapid ones).
The analysis of cases of maneuvers with rotation returns more interesting results. It can be seen
that in many of the analyzed cases, the orientation or position error is the product of the appropriate
integral of exp(Ω(t)) and a constant vector. Equation (32) presents the first integral of exp(Ω(t)) for
rotation about the Z axis.

∫ t

0
exp(Ω t)dt =


sin(t wz)

wz
−2sin( t wz

2 )
2

wz
0

2sin( t wz
2 )

2

wz

sin(t wz)
wz

0
0 0 t

 (32)
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Already that allows to notice that continuous rotation allows to reduce the dependence of the error on
time, in the plane perpendicular to the rotation axis, by reducing the exponent at variable t by 1.

5. Conclusions
The paper presents an analysis of the results of calculations of errors of orientation and position
determination for an unaided strapdown inertial navigation system under the influence of various
maneuvers. The method used allowed for the determination of analytical formulas, which made it
possible to clearly observe and understand the existing dependencies. On the basis of the presented
formulas, conclusions were drawn concerning the propagation of navigation errors both in the case of
the occurrence of low and high dynamic motion. This will allow more accurate analysis of navigational
systems and more precise specification of requirements for selecting measurement systems.
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