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Abstract 

The coupling of the longitudinal and lateral stability modes of an aeroplane is considered in two cases: (i) 
weak coupling, when the changes in the frequency and damping of the phugoid, short period, dutch roll, and 
helical modes are small, i.e., the square of the deviation is negligible compared to the square of the 
uncoupled value; (ii) strong coupling, when the coupled values may differ significantly from the uncoupled 
values. This allows a comparison of three values for the frequency and damping of each mode: (i) exact, i.e., 
fully coupled; (ii) with the approximation of weak coupling; (iii) with the assumption of decoupling. The 
comparison of these three values allows an assessment of the importance of coupling effects. The method is 
applied to two flying wing designs, concerning all modes in a total of eighteen flight conditions. It turns out 
that lateral-longitudinal coupling is small in all cases, and thus classical handling qualities criteria can be 
applied. The handling qualities are considered for all modes, namely the phugoid, short period, dutch roll, 
spiral, and roll modes. Additional focus is given to the pitch axis, considering the control anticipation 
parameter (CAP). The latter relates to the two kinds of manouever points, where damping vanishes, that are 
calculated for minimum speed, take-off, and initial and final cruise conditions. The conclusion compares two 
flying wings designs (the “long narrow” and “short wide” fuselage concepts) not only from the point of view of 
flight stability, but also from other viewpoints. 
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1. Introduction 
The longitudinal stability of an aeroplane is specified by a 4 × 4 matrix, which determines the 
phugoid and short-period modes [1–5]. Likewise, the lateral stability is specified by a 4 × 4 matrix, 
which specifies the dutch roll and helical modes [6–10]. In the present account, the possibility of 
lateral-longitudinal coupling (Section 2.1) is considered leading to an 8 × 8 matrix, which includes 
[11,12], besides the longitudinal and lateral stability matrices, two 4 × 4 coupling matrices (Section 
2.2). Relative to the case of negligible coupling, there may be weak coupling (Section 2.3) which is a 
small perturbation, or strong coupling (Section 2) for which significant differences occur. In the case 
of helicopters [13], larger stability matrices may be needed due to rotor-body coupling. The theory 
developed applies both to strong and weak coupling, and in the latter case specifies the error in 
neglecting coupling effects. The application is made to two flying wings designs (Section 3), and it is 
found that in all flight configurations considered the terms in the coupling matrices are quite small 
compared with those in the longitudinal and lateral matrices. The general theory in the weak 
coupling casa confirms that the small coupling terms have a negligible effect on the airplane modes 
(Section 3.1). This implies that it is possible to apply (Section 3.2) classical handling qualities (HQs) 
criteria [14–18] to the phugoid, short-period, dutch roll and helical modes. Focusing on pitch 
response the CAP (Control Anticipation Parameter) criterion is also considered. It relates to the 
manouever points that correspond to center of gravity positions for which mode damping vanishes 
and are also calculated (Section 3.3).  

The stability assessment concerns two flying wing designs, a “long-narrow” and a “short-wide” 
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fuselage concept (Section 4). The helical mode always splits into roll and spiral modes (Section 
4.1), but the dutch roll mode never splits into two non-oscillatory modes. The phugoid and short-
period modes do, in some flight conditions, split into two non-oscillatory modes (Section 4.2). It is 
found that the HQs are level 2 and level 3 for the slow modes (phugoid and dutch roll) which are 
easily mastered [19–22] by a fly-by-wire control system, whereas the fast (short-period, spiral and 
roll) modes tend to have level 1 HQs (Section 3.3). The manouever points may limit the c.g. travel, 
but maybe there is no need for fuel trim tanks (Section 5), as the stability matrices provide indicated 
generally acceptable flight characteristics [23,24]. The analysis in this paper shows that long-and-
narrow BWB1 and short-and-wide BWB2 configurations can have similar stability characteristics for 
some modes and dissimilar for others. Each configuration difference between BWB1 and BWB2 can 
affect several stability derivatives. Conversely, each stability derivative can be affected by several 
configuration differences between BWB1 and BWB2. A detailed relation among configuration 
differences and changes of stability derivatives is a complex process beyond the scope of the 
present paper. The scope for the paper, for which the necessary and sufficient data is provided, is to 
consider the HQs flight modes, the CAP criterion and the manouever points comparing two BWB 
configurations in several low and high-speed flight conditions, including cruise, take-off, and initial 
and final climb.  

There is considerable interest in the flying wing [25–29] as it is favourable from an 
aerodynamic [30–36] point-of-view of the lift-to-drag ratio, promising less drag for a given weight, 
and hence needing less power and implying lower fuel consumption and emissions for the same 
flight distance. Two alternatives of efficient aircraft configurations are the flying wing [37–47] and 
box wing [48,49]. A high-aspect ratio flying wing with wide-short centerbody or “fuselage” (BWB 2) 
would appear to be aerodynamically preferable to a low-aspect ratio flying wing with long-narrow 
centerbody (BWB 1) closer to a conventional tube-and-wing Cayley-type aircraft configuration [50–
52]. However, there are counterarguments favouring BWB1 such as control [53]. The short-wide 
BWB2 has a smaller moment arm for pitch control and for rotation at take-off. If the flying wing has 
overwing engines for noise shielding, there is a strong pitch-down moment to be compensated more 
easily with a long moment arm by smaller deflection of pitch control surfaces with less area. The 
overwing engine location, while ideal for noise shielding [54–59], places the engine nacelles in an 
accelerated flow leading to significant wave drag at lower cruising speeds. The short-and-wide 
BWB2 would subject outboard passengers to larger roll motions than the long-and-narrow BWB 1. 
The advantages and disadvantages of the long-and-narrow (BWB 1) and short-and-wide (BWB 2) 
designs suggest the comparison of two notional designs as regards their stability, control, HQs, and 
manoeuvre points in addition to other aspects covered in the literature [60–63]. 

2. Theory of Longitudinal-Lateral Coupling  
The link between the decoupled and strongly coupled lateral and longitudinal motions of an 
aeroplane (Section 2.1), is made through the case of weak coupling (Section 2.2), for which the 
frequency and damping changes can be calculated from the decoupled state (Section 2.3). 

2.1. Basic Coupled and Decoupled Modes 
We choose the usual body reference system with 0z axis vertically downwards 0x axis in the plane of 
symmetry, in the direction of motion, and thus 0y is orthogonal to the plane of symmetry. The 
decoupled motion is extensively covered in the literature [1–10,13–24] and will be mentioned in 
passing. The decoupled longitudinal motion for a rigid aircraft is specified by the variables (1): 

 1, 2, 3, 4 : , , , , ii X u w q  (1)

and denoting by dot time derivatives, they are related linearly Equation (2a) for small perturbations: 

, 1, 2, 3, 4 : , / ,     
i ij j ij i ji j X Z X Z X X  (2a,b)

through the longitudinal stability matrix Equation (2b), whose eigenvalues Equation (3a): 

    2 2 2 2, 1, 2, 3, 4 : det = 2 2 ,                ij ij p p p s s si j A Z  (3a,b)

specify Equation (3b) the natural frequency ω and damping ratio ζ (or amplification ratio ξ = −ζ) of the 
phugoid ‘p’ and short period ‘s’ modes. 

Still, in the case of decoupled motion, the lateral variables (4): 

 5, 6, 7,8 :                                   , , , , ii X v p r  (4a)



On Lateral-Longitudinal Control Coupling 
 

 

 

 

are related to their time derivatives linearly Equation (2a) though the lateral stability matrix Equation 
(2b) with i, j = 5, 6, 7, 8. Its eigenvalues:  

    2 2 2 2, 5, 6, 7, 8 : det  = 2 2                ij ij d d d h h hi j B Z  (4b)

specify the natural frequency ω and damping ratio ζ of the dutch roll ‘d’ and helical ‘h’ modes; by 
helical mode is meant the combination of spiral “l” and roll “r” convergence modes; when these are 
separate, the complex conjugate roots for λ in (6) are replaced by distinct real roots.  

In the case of arbitrary strong coupling of longitudinal Equations (1a,b) and lateral Equations 
(4a,b) motions, the eight variables (1) and (4) combined in (5): 

 , 1, 2, 3, 4, 5,6,7 ,8 :                 , , , ; , , , ,ii j X u w q v p r    (5)

are related by a complete matrix Equation (2b) of linear stability derivatives, whose eigenvalues 

   
4 4

2 2

1 1
, 1,2,3,4, 5,6,7,8 : det = 2 ,ij ij g g d g

g g
i j C Z C     

 

      

  
(6a,b)

specify the natural frequencies ωg and damping ratios ζg of four modes g = 1, ..., 4. The fundamental 
issue is whether these four modes can be related to the phugoid ‘1′, short period ‘2′, dutch roll ‘3′ and 
helical ‘4′ modes, as suggested in Table 1. This identification should be possible when the coupling is 
weak, that is the coupled modes g  with g = 1,..., 4, differ little from the decoupled modes g , in the 

sense  2 2.   g g g  

Table 1. Stability modes of a rigid airplane. 

 
 

 
 
 
 
 

 

2.2. Weak Coupling and Mode Properties  
The exact, coupled stability relation Equation (2b) with i, j = 1, …, 8, involves four 4 × 4 submatrices 
namely longitudinal Equation (7a), lateral Equation (7b) and upper Equation (7c) and lower Equation 
(7d) coupling: 




 
    
  

, 1,2,3,4 : longitudinal ~ (1),
, 5,6,7,8 : lateral ~ (1),

1,2,3,4; 5,6,7,8 : upper coupling ~ ( ),
5,6,7,8; 1,2,3,4 : lower coupling ~ ( ),

ij

i j O
i j O

Z
i j O
i j O

 (7a–d) 

and by weak longitudinal-lateral coupling it is meant (8): 

2

(1) (1) (1) (1) | ( ) ( ) ( ) ( )
(1) (1) (1) (1) | ( ) ( ) ( ) ( )
(1) (1) (1) (1) | ( ) ( ) ( ) ( )
(1) (1) (1) (1) | ( ) ( ) ( ) ( )

1 :     =  |

u O O O O O O O O
w O O O O O O O O
q O O O O O O O O

O O O O O O O O

v O
p
r

   
   
   

    




 
 
 
 
 
 
          
 
 
 
 
 
 
 

















 ,
( ) ( ) ( ) ( ) | (1) (1) (1) (1)
( ) ( ) ( ) ( ) | (1) (1) (1) (1)
( ) ( ) ( ) ( ) | (1) (1) (1) (1)
( ) ( ) ( ) ( ) | (1) (1) (1) (1)

u
w
q

O O O O O O O v
O O O O O O O O p
O O O O O O O O r
O O O O O O O O



   
   
   
    

   
   
   
   
   
   
   
   
   
   
   
   
   
   

 

(8)

that the upper Equation (7c) and lower Equation (7d) coupling matrices have terms of O(ε) smaller 
than O(1) for the longitudinal Equation (7a) and lateral Equation (7b) coupling matrices where ε2 is 
negligible.  

In the general case of strong coupling, the natural frequency Δωg and damping ratio Δζg 
changes due to coupling: 

Type Mode Frequency Damping 

Longitudinal 
Phugoid 1p     1p  

Short period 2s     2s  

Lateral 
Dutch roll 3d     3d  

Helical 4h   
4h   
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1,..., 4 :g  , ,g g g g g g           (9a,b)

can be introduced into the modal factors Equation (6b) of the characteristic polynomial (6a) for the 
coupled system: 

 
     

2 2

22

2

2 .

    

       

  

     

g g g g

g g g g g g

C
 (10)

It may be expected, in case (8) of weak coupling: 

          22 2 2
, , ,             g g g g g g g g  (11a–c)

that the natural frequency and damping ratio changes be relatively small. 
In the case of weak coupling Equations (11a–c), the modal factor (10) in the coupled 

characteristic polynomial Equation (6b) simplifies to: 
2 1 :    2 22 2 .                     g g g g g g g g g gC  (12)

where the first three terms on the r.h.s. of (12) correspond Equation (13a) to the decoupled modal 
factor: 

4
2 2

1
2 , ,    


     g g g g gg

C C C AB  (13a,b)

for which the decoupled characteristic polynomial is Equation (13b) the product of the longitudinal (3) 
and lateral (4) characteristic polynomials. The deviation from decoupling in the modal factors (10) of 
the complete characteristic polynomial is specified (12) and Equation (13a) by Equations (14a,b): 

2 2 , ,               g g g g g g g g g g gC C C E E  (14a–c)

where is introduced the weak coupling coefficient Equation (14c). 
Before proceeding to calculate the changes in frequency and damping (Section 2.3), a brief 

review is conducted of the mode properties needed in the sequel (Section 3). The time response is 
specified by (15) with natural frequency g  and damping ratio  g  for the decoupled modes: 

22 0,     
g g g g g gX X X  (15)

and likewise, with g , g  correspond to the coupled modes: 

22 0.     
g g g g g gX X X  (16)

In both instances the eigenvalues are the roots of (17):  
2 20 2 ,      (17)

where ω is the natural frequency and ζ the damping ratio of any mode. Three cases I to III arise 
[9,24,64]. In case I of subcritical damping Equation (18a), the eigenvalues are complex conjugate 
Equation (18b):  

21: 1 ,       i  (18a,b)

and: (i) the real part is the product amplification ratio Equation (19a) or minus the damping ratio 
Equation (19b) by the natural frequency:  

    2Re ; Im 1 ,              (19a–d)

(ii) the imaginary part is the oscillation frequency Ω that equals the natural frequency Ω = ω in the 
absence of damping ζ = 0, it is smaller 0 < Ω < ω in the presence of subcritical damping 0 < ζ < 1 and 
vanishes Ω = 0 for critical damping ζ = 1. 

For case II of supercritical damping Equation (20a), the oscillation frequency Equations 
(19c,d) would be imaginary, which means that the two eigenvalues are real Equation (20b) and 
involve the modulus of the oscillation frequency Equation (20c): 



On Lateral-Longitudinal Control Coupling 
 

 

 

 

21: 1 .             (20a–c)

Thus, in case of supercritical damping Equation (20a) there are two damped modes with eigenvalues 
0 > λ+ > λ− since |Ω| < ω, so that λ− has the slowest decay. In the case of amplification Equations 
(21a,b), the response is still oscillatory Equations (18a,b) if ζ2 < 1, but it has exponentially increasing 
instead of decreasing amplitude with time constant Equation (21b) 

1 log2
0 : , 0.693 ,   

 
     T  (21a–d)

and time to double amplitude Equations (21c–d). In the case of overcritical amplification 0 > ξ > −1, 
the real eigenvalues Equations (20b,c) would be positive λ+ > λ− > 0 and the fastest growing mode is 
λ+, which could be used instead of |ζ| in the time constant Equation (20b) and time to double 
amplitude Equations (21c,d).  

For an initial value 0X  and rate 0
X  at time t = 0, the solution of (15) or (16) specifies the 

response at time t that is: (i) oscillatory Equation (22a) in the case I of subcritical damping 0 < ζ < 1 or 
amplification 0 > ξ > −1 in Equation (22b); (ii) monotonic Equation (24a) in the case II of supercritical 
damping ζ > 1 or amplification ξ < −1 in Equation (24b); (iii) linear in time Equation (23a) in the case 
III between (i) and (ii) of critical damping ζ = 1 or amplification in Equation (23b):  

                     

     

 
     

0 0 0

0 0 0

0 0 0

cos / sin

exp

cosh / sinh

X t X X t

X t t X X X t

X t X X t



 



       
    


       







 
if
if
if

 

2

2

1

1

1






 


  
(22a,b)
(23a,b)
(24a,b)

In all three cases, there is an exponential factor which dominates the asymptotic response 
because |Ω| < ω in Equation (19d), leading to decay for ζ < 0 and growth for ζ > 0 as time t increases. 

 2.3. Calculation of Frequency and Amplification Changes 
The perturbation in natural frequency Equation (9a) and damping ratio Equation (9b) leads to a 
perturbation in the characteristic polynomial (6) of the coupled system Equations (25a): 

4

1
,


        gg
C C C C AB C AB C , (25a,b)

relative to that Equation (25b) of the uncoupled system, which is specified by: 

 
4 4 4 4

1 11 1   


       g g g g h
g hg g

h g

C C C C C C C , (26a,b)

to first order in the perturbations by (27): 

 
44

1 1

2 ,  
 



     g g g h
g h

h g

C E C  (27)

where Equations (14a,b) was used. 
The perturbation of the characteristic polynomial Equation (25a) is a polynomial of degree 

seven in λ: 
8

1

1

, 



    a
a

a

C C AB d  (28)

because the term of degree eight is the same λ8 in C in Equation (6b) and in the product of A in 
Equation (3b) by B in Equation (4b), and thus cancels by subtraction. The coefficients in (27) are the 
products of three modal factors of the coupled characteristic polynomial Equation (6b), and thus are 
polynomials of degree six in λ, with leading term λ6, viz.: 

64
6 1

1
1

.  




   b
h gb

h
bh g

C d  (29)
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Note that the eight coefficients ad  with a = 1, …, 8 in (28), and 4 × 6 = 24 coefficients gbd  with 

(g = 1, …, 4; b = 1, …, 6) in (29) are all determined from the 2 × 4 × 4 = 32 elements of the 
longitudinal Equation (7a) and lateral Equation (7b) stability matrices for the decoupled case. 
Substituting (28) and (29) in (27) leads to an identity between polynomials of degree seven in λ, viz.: 

 
8 4 6

1 6 1

1 1 1
2 .a b

a g g g gb
a g b

d E d      

  

 
     

 
  

 
(30)

Equating the coefficients of equal powers of λ in (30) leads to a system of 8 equations, which 
are linear in the 4 pairs of variables  ,g gE  with g = 1, …, 4. These variables are equivalent to 

 ,  g g , Equation (14c) in the form (31): 

  / ,      g g g g gE  (31)

and thus the changes in natural frequency and damping ratio can be determined by solving the 
system (30). 

In order to implement this solution, the system (30) is first written explicitly in the form (32), 

8

7
6

6
5

4
5

4

14
3

3
2

2
1

1

0 0 0 00 0
1

0 0 0 00

0 0 00 0

0 00 0 0

0 00 0 0
00 0 0 0

0 0 00 0

0 0 0 0 0 0














           
   
                  
   
               



g

g g
g

gg
g

g g
g

g gg
g

gg

g
g g

g
g

d

Ed
d

Ed
d

Ed
d

d E
d

Ed
d

Ed
d

d E

 (32)

in which the 8-vector on the l.h.s. is the sum of four terms, each consisting of an 8 × 7 matrix 
multiplying a 7-vector. The variables  , g gE  equivalent to frequency and damping changes appear 

linearly in the 8 × 7 matrices in (32), which can be re-written as a linear relation with the vector 
 , g gE  leading to an 8 × 8 matrix: 

8

6361 62 647

6361 62 645351 52 546

5351 52 544341 42 445

434 41 42 4431 32 33 34

333 31 32 3421 22 23 24

232 21 22 2411 12 13 14

1 11 12 13

00 0 011 1 1

11 1 1

0 0 00

 
 

 
 
 
 
 
 
 
 
 
  

d

dd d dd

dd d ddd d dd

dd d ddd d dd

dd d d dd d d d

dd d d dd d d d

dd d d dd d d d

d d d d

1

2

3

4

1

2

3

14 4

.






   
      
   
   

   
   
   
   
   
   
     

E

E

E

d E

 (33)

This system can be inverted to specify the  , g gE  and thus the changes (31) in damping 

ratios  g  and natural frequencies g . We have thus obtained three sets of results, indicated in 

Table 2: (i) the natural frequencies and damping ratios of the decoupled modes Equations (3a,b) and 
Equations (4a,b) in Table 1; (ii) the natural frequencies and damping ratios of the strongly Equations 
(9a,b) coupled modes Equations (6a,b); (iii) the natural frequency and damping ratio changes 
Equations (33, 31) for weak coupling Equations (11a–c). 
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Table 2. Comparison of coupled, weakly and strongly coupled modes. 

 
 
 
 

 
 
 
 
 
 

3. Natural Stability of Flying-Wing Aircraft  
The flying wing configuration has attracted considerable interest for a long-time because it offers a 
high lift-to-drag ratio, and thus good aerodynamic efficiency. The early attempts to realize its 
potential, faced the stability problems inherent in the configuration. The preceding theory is applied 
to two flying wing aeroplane designs, considering the natural modes (Section 3.1) and resulting 
HQs (Section 3.2) and manouever points (Section 3.3). 

3.1. Relevance of Longitudinal-Lateral Coupling  
The complete 8 × 8 stability matrix Equation (2b) ≡ Equations (7a–d) with i, j = 1, 2, 3, 4, 5, 6, 7, 8 
written explicitly (34): 

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

51 52 53 54 55 56 57 58

61 62 63 64 65 6

|
|
|
|

=  |
|
|

Z Z Z Z Z Z Z Zu
Z Z Z Z Z Z Z Zw
Z Z Z Z Z Z Z Zq
Z Z Z Z Z Z Z Z

Z Z Z Z Z Z Z Zv
Z Z Z Z Z Zp

r





 
 
 
 
 
 
         
 
 
 
 
 
 
 

















6 67 68

71 72 73 74 75 76 77 78

81 82 83 84 85 86 87 88

 ,

|
|

u
w
q

v
Z Z p

Z Z Z Z Z Z Z Z r
Z Z Z Z Z Z Z Z





   
   
   
   
   
   
   
   
   
   
   
   
   

  

 (34)

where the forces and moments are divided by the mass and inertia, and steady, straight, and level 
flight parameters are used so that Zij has the dimensions of inverse time. There are three cases: (i) if 
the coupling sub-matrices vanish Equations (7c,d) then the longitudinal and transversal modes are 
strictly decoupled; (ii) if the coupling submatrices Equations (7c,d) have terms comparable to those of 
the longitudinal Equation (7a) or lateral Equation (7b) stability matrices Equations (7a,d), then there is 
strong coupling; (iii) if, when compared with the longitudinal Equation (7a) and lateral Equation (7b) 
stability matrices of O(1), the coupling submatrices Equations (7c,d) have terms O(ε) which are small 
but non-negligible ε2 << 1, then weak coupling results.  

The application given next concerns two flying wing designs (“1” and “2”) in a total of eighteen 
flight conditions indicated in Table 3. Four flight conditions are broadly similar for the two 
configurations: (a,b) a minimum speed flying condition; (c,d) the take-off condition corresponding to a 
speed 14% higher; (e–h) in contrast with the preceding low-speed (a to d) flight conditions, the high-
speed flight conditions (e to h) concern the final (e,f) and initial (g,h) stages of cruise, respectively, 
with lower and higher weight whose difference is the fuel consumption. For the first design, two 
further flight conditions are considered: (i) initial climb and; (j) final climb at an intermediate weight. 
For the four flight conditions common to the two designs, two positions of the mean aerodynamic 
chord are considered, leading to eight cases (“a” to “h”). The clean configuration is considered for all 
cases, including the extra climb cases (“i” and “j”) for the first design, the exception being the first 
design low-speed and take-off (cases “1a” to “1d”).  

The stability matrices (for example in Table 4 for the case 1a in Table 3) show that the terms 
of the coupling matrices Equations (7c,d) are small compared with the terms of the longitudinal 
Equation (7a) and lateral Equation (7b) matrices and the general theory for weak coupling shows that 
the effect on frequency Equation (9a) and damping Equation (9b) can be neglected Equations (11a–
c). The general theory with strong coupling was developed in the expectation of longitudinal-lateral 
coupling that may occur is some flight conditions, like high angle-of-attack close to stall. In the 
present cases of flight at moderate angles-of-attack far from stall, the weak coupling version of the 

Mode Natural frequency Damping ratio 

Decoupled g  
g  

Weakly coupled g g    
g g    

Condition    2 2

g g       2 2

g g    

Strongly coupled g  g  

Condition ~g g g g       ~g g g g       



On Lateral-Longitudinal Control Coupling 
 

 

 

 

general theory is still useful to confirm that the small terms in the coupling matrices do not affect to a 
significant extent the frequencies and dampings, allowing the application of the decoupled HQs 
criteria, for which there exists substantial literature [64–80]. 

As an example, the oscillation frequency and damping ratio of all modes is indicated in the 
Table 5 for the case 1g in the Table 3: (i) the phugoid and dutch roll are oscillatory modes, with 
oscillation frequency Ω and damping ratio ζ; (ii) the short-period and helical modes degenerate into 
two real modes, that may be stable ζ > 0, neutral ζ = 0 or unstable ζ < 0. The de-coupled modes, 
calculated from 4 × 4 longitudinal and lateral matrices, are very close to the fully coupled modes 
calculated from the 8 8  stability matrix; they coincide to three significant digits, so the weakly coupled 
approximations are not necessary at this level of accuracy. In most instances the decoupled and fully 
coupled values are not distinguishable at the sixth digit, as can be seen for two modes in the Table 5 
and holds also for all modes in most cases in the Table 3.  

 

Table 3. Flying-wing flight conditions. 

Design 
Flight 

condition 
Mass Speed Altitude Flaps c.g. 

BWB Case 
  x103 

kg 
kts x103 ft degrees 

% 
mac 

 
 
 
 

1 
 
 
 
 
 

1a 550 176 0 15/25 25 
1b 550 176 0 15/25 35 
1c 550 200 0 15/25 25 
1d 550 200 0 15/25 35 

1e 670 
M = 
0.85 

39 clean 35 

1f 670 
M = 
0.85 

39 clean 39 

1g 760 
M = 
0.85 

35 clean 35 

1h 760 
M = 
0.85 

35 clean 39 

1i 700 300 0 clean 35 

1j 700 
M = 
0.70 

30 clean 39 

 
 
 
 

2 
 
 
 

2a 550 176 0 clean 35 
2b 550 176 0 clean 39 
2c 550 200 0 clean 35 
2d 550 200 0 clean 39 

2e 670 
M = 
0.85 

39 clean 35 

2f 670 
M = 
0.85 

39 clean 39 

2g 760 
M = 
0.85 

35 clean 35 

2h 760 
M = 
0.85 

35 clean 39 

3.2. Longitudinal and Lateral Handling Qualities 
The stability analysis is similar for all eighteen cases. The steps are as follows: (i) the starting point is 
the 9 × 9 stability matrix relating linear velocities  , ,u v w , rates  , ,p q r  and Euler angles  , ,    and 

their rates, for example in the Table 6 for the case 1a; (ii) by omitting  ,   and re-arranging the 

remaining terms as in (34), the 8 × 8 stability matrix is obtained in the Table 4 again for the case 1a; 
(iii) the eigenvalues of the upper-left 4 × 4 matrix apply to the phugoid and short-period modes, and 
the eigenvalues of the lower-right 4 × 4 matrix apply to the dutch roll and the helical (spiral and roll) 
modes and their values are shown in the Table 7 for the case 1a and all others (whose stability 
matrices are omitted for brevity); (iv) since the fully coupled modes specified by the eigenvalues of 
the 8 × 8 matrix, are identical to the third digit in accuracy, i.e., the lateral-longitudinal coupling is 
negligible, the eigenvalues in the Table 7 indicate the damping or amplification ratio for all modes and 
oscillation frequencies of all oscillatory modes; (v) the relations between damping ζ and amplification 
ξ ratio Equation (19b) and natural ω and oscillation Ω frequencies Equation (19d) are recalled in 
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Table 8; (vi) they are applied to Table 7 to specify in Table 9 the damping or amplification ratio and 
natural frequency for all oscillatory modes and the real eigenvalues for the non-oscillatory or 
monotonic modes. Tables 7 and 9 include data for all the eighteen cases in Table 3, calculated from 
the original 9 × 9 and re-arranged 8 × 8 stability matrices respectively, of which only one example 
(case 1a) is given in Tables 4 and 6.  

Table 4. Re-arranged 8x8 stability matrix for case a in Table 3. 

 
Table 5. Oscillation frequency and damping ratio of natural modes for case 1g in the Table 3. 
 

Type Mode 
Frequency 
Damping 

De-coupled 
Weakly coupled 
approximation 

Fully coupled 

 
Longitudinal 

Phugoid 
1

1

/

/
p

p



 






 0.201769 

0.114 
0.202 
0.114 

0.201968 
0.113596 

 Short period 2

2

/
/





s

s


 

 /0.124521 
/1.7013 

/0.124 
/-1.700 

/0.124266 
/-1.70135 

 
Lateral 

Dutch roll 3

3

/
/





d

d


 

 0.845291 
0.0595375 

0.845291 
0.0595 

0.845291 
0.0595375 

 Helical 4

4

/
/





h

h


 

 /-4.28162x10-6  
/-1.13662 

/-4.28x10-6 
/-1.137 

/-4.28162x10-6  
/-1.13662 

 

Table 6. Complete 9x9 stability matrix for case 1a in Table 3. 

 u [m/s] v  [m/s] w  [m/s] p  [rad/s] q  [rad/s] r  [rad/s]  [rad]  [rad]  [rad] 

u  [m/s2] -2,10E-04 1,13E-07 1,51E-01 0 -8,91 0 0 -9,94E-01 0 

v  [m/s2] 4,66E-17 -5,27E-02 4,66E-17 1,11E+01 0 

-

8,81E+01 9,94E-01 0 0 

w  [m/s2] -1,54E-01 -1,24E-06 -6,55E-01 0 8,05E+01 0 0 1,10E-01 0 

p  [rad/ s2] -1,34E-16 -6,68E-03 -1,19E-17 -9,07E-01 0 2,30E-01 0 0 0 
q  [rad/ s2] 5,98E-04 -1,07E-09 -7,16E-03 -4,93E-05 -6,13E-01 4,93E-05 0 0 0 

r  [rad/ s2] -5,06E-15 2,68E-03 -2,03E-19 -1,85E-01 0 -1,12E-01 0 0 0 

  [rad/s] 0 0 0 1,00 0 1,11E-01 0 0 0 

  [rad/s] 0 0 0 0 1,00 0 0 0 0 
  [rad/s] 0 0 0 0 0 1,01 0 0 0 

 

 

 

 u [m/s] w  [m/s] q  [rad/s]  [rad] v  [m/s] p  [rad/s] r  [rad/s]  [rad] 

u [m/s2] -2,10E-04 1,51E-01 -8,91 -9,94E-01 1,13E-07 0 0 0 

w [m/s2] -1,54E-01 -6,55E-01 8,05E+01 1,10E-01 -1,24E-06 0 0 0 

q [rad/ s2] 5,98E-04 -7,16E-03 -6,13E-01 0 -1,07E-09 -4,93E-05 4,93E-05 0 

 [rad/ s] 0 0 1,00 0 0 0 0 0 

v [m/s2] 4,66E-17 4,66E-17 0 0 -5,27E-02 1,11E+01 -8,81E+01 9,94E-01 

p [rad/ s2] -1,34E-16 -1,19E-17 0 0 -6,68E-03 -9,07E-01 2,30E-01 0 

r [rad/ s2] -5,06E-15 -2,03E-19 0 0 2,68E-03 -1,85E-01 -1,12E-01 0 

 [rad/s] 0 0 0 0 0 1,00 1,11E-01 0 
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Table 7 Eigenvalues 
 of natural modes involving the damping ratio  , natural 

 
and oscillation   

frequencies.  

Stability 
Mode 

Longitudinal Lateral 
Phugoid Short-Period Dutch roll Roll Spiral 

  
 

   p p pi  or 1 1/       s s si  or 2 2/       d d di  or 3 3/    4r r     4l l     

1a -0.102±i0.0374 -0.624±i0.768 -0.0759±i0.602 -0.920 -0.000397 

1b - 0.000684±i0.0719 -1.031 / 0.268 -0.0605±i0.522 -0.853 -0.000382 

1c -0.00816±i0.0332 -0.720±i0.877 -0.0916±i0.657 -1.065 -0.000205 

1d -0.000146±i0.0641 -1.495 / 0.308 -0.0738±i0.576 -0.985 -0.000112 

1e -0.0727±i0.186 -1.503 / 0.138 -0.0458±i0.774 -0.958 -0.0000104 

1f -0.00150±i0.0695 -2.172 / 0.804 -0.0426±i0.748 -0.956 -0.0000110 

1g -0.114±i0.202 -1.701 / 0.124 -0.0595±i0.845 -1.136 -0.00000428 
1h 0.00227±i0.0771 -2.429 / 0.798 -0.0545±i0.819 -1.136 -0.0000258 
1i -0.00479±i0.0332 -1.031±i1.346 -0.141±i1.000 -1.743 -0.000181 
1j -0.0037±i0.0208 -0.576±i1.181 -0.0587±i0.848 -1.087 -0.000296 
2a -0.0130±i0.0386 -0.652±i0.995 -0.0305±i0.636 -0.873 -0.00226 
2b -0.0286 /-0.00306 -0.555±i0.281 -0.0267±i0.511 -0.874 0.00160 
2c -0.00982±i0.0352 -0.751±i1.131 -0.0359±i0.632 -1.010 - 0.00160 
2d -0.0241 /0.000679 -0.642±i0.299 -0.0325±i0.519 -1.009 0.00112 
2e -0.00344±i0.00246 -0.567±i1.051 -0.00800±i0.644 -1.193 0.000336 
2f -0.00419±i0.0155 -0.706±i1.867 -0.00271±i0.746 -1.211 0.000471 
2g -0.00566±i0.00194 -0.677±i1.142 -0.0173±i0.700 -1.407 0.000316 
2h -0.00194 /0.00459 -0.841±i2.028 -0.0144±i0.808 -1.421 0.000442 

 

Table 8. Eigenvalues of the stability matrix (– natural frequency;  – damping ratio;  – amplification ratio).  

 

 
 

 
 
 
 
 

 

Table 9. Parameters of flight modes:   – eigenvalues; – natural frequency;  – damping ratio; CAP = 
control anticipant parameter. 

Stability Longitudinal Lateral  
CAP Mode Phugoid Short-Period Dutch roll Roll Spiral 

Parameter 
1/p    1/p    2/s    2/s    3/d  

 
3/d    4r r      4l l      

units s-1 - / s-1 s-1 - / s-1 s-1 - / s-1 s-1 s-1 s-2 
1a 0.109 0.936 0.990 0.630 0.607 0.125 0.920 0.000397 0.0939 
1b 0.0719 0.00651 /1.301 /0.208 0.525 0.115 0.853 0.000382 0.0114 
1c 0.0342 0.239 1.135 0.647 0.663 0.138 1.065 0.000205 0.122 

1d 0.0641 0.00228 /1.495 /0.308 0.581 0.127 0.985 0.000112 0.0151 
1e 0.200 0.363 /1.503 /0.138 0.775 0.0591 0.958 -0.0000104 0.00303 
1f 0.0695 0.0216 /2.172 /0.804 0.749 0.0569 0.956 0.0000110 0.103 
1g 0.240 0.475 /1.701 /0.124 0.847 0.0702 1.136 0.00000428 0.00245 
1h 0.0771 -0.0295 /2.429 /0.798 0.820 0.0605 1.136 0.0000258 0.101 
1i 0.0335 0.143 1.695 0.608 1.010 0.140 1.743 0.000181 0.288 
1j 0.0211 0.175 1.314 0.438 0.850 0.0691 1.087 0.000296 0.222 
2a 0.411 0.0316 1.189 0.548 0.637 0.0479 0.873 0.000226 0.158 

Eigenvalue Quantity Symbol = Value 
Complex 
    i  Oscillation frequency 21     

 
Real part 
Re( )    

Positive 
0   Damping ratio Re( ) /        

Negative 
0   

Time constant 1/ Re( )   

Time to double amplitude  0.693 / Re 0.693T     
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2b /0.0286 /0.00300 0.622 0.892 0.512 0.0521 0.874 -0.00160 0.0126 
2c 0.0364 0.270 1.356 0.554 0.633 0.0567 1.01 0.00160 0.204 
2d /0.024 /-0.000679 0.708 0.907 0.520 0.0625 1.009 -0.00112 0.0142 
2e 0.0161 0.214 1.194 0.475 0.746 0.0125 1.211 -0.000471 0.176 
2f 0.00422 0.993 1.996 0.354 0.644 0.00363 1.193 -0.000336 0.555 
2g 0.0169 0.335 1.328 0.510 0.700 0.0247 1.421 -0.000442 0.208 
2h /0.0194 /0.00459 2.195 0.383 0.808 0.0178 1.407 -0.000316 0.655 

 
The natural ω and oscillation Ω frequencies and damping ratio ζ are related by Equation (19d) 

that can be inverted leading to Equation (35a) that is used to calculate the natural frequencies in 
Table 9 from the values in Table 7:  

   22 2; Re / ,         (35a,b)

the damping ratio for oscillatory modes Equations (19a–d) in Table 9 is calculated by Equation (35b) 
from the real part of the eigenvalues in Table 7. For example, in Table 7, there is only one case 1i 
with ζω > 1 for the short-period mode: 

1 11.031 , 1.346 .     s s ss s  (36a,b) 

Since this is an oscillatory mode, the damping ratio must be smaller than unity ζs < 1. This is checked 
next noting that: (i) using Equation (35b) the natural frequency is Equation (37a): 

2 2 11.031 1.346 1.695   s s  (37a)

using Equation (36a) the damping ratio Equation (35b) is Equation (37b):  

1.031/1.695 0.3608 1,   s  (37b)

which is less than unity, implying subcritical damping Equation (22b), that is consistent with 
oscillatory motion Equation (22a). 

The data in Table 9 allows an assessment of the longitudinal and lateral HQs. The latter are 
considered for the standard flight phase categories A, B, C and the first three levels of the Cooper-
Harper [25] rating scale. Table 10 lists the main longitudinal and lateral HQs criteria [24]. Using the 
data in Table 9, follows the HQs levels are listed in Table 11 for all eighteen cases illustrated in 
Figures 1–7.  

Table 10. Longitudinal and lateral handling qualities criteria. 

Mode Level 1 Level 2 Level 3 
Phugoid ζp > 0.04 ζp > 0 Tp > 55 s 

 
Short 
period 

 

A+C 0.35 < ζs < 1.30 0.25 < ζs < 2.30 
 

ζs > 0.15 
 

B 
0.30 < ζs < 2.00 

 
0.20 < ζs < 2.00 

 

ζs > 0.15 
 
 

 
Dutch Roll 

A:    ζd > 0.19 
B+C:  ζd > 0.08 

ζd > 0.02 
 

ζs > 0.02 
 

A:     Ωdζd > 0.35 rad/s 
B+C:   Ωdζd > 0.15 rad/s 

Ωdζd > 0.05 rad/s - 

Ωd > 0.40 rad/s Ωd > 0.40 rad/s Ωd > 0.40 rad/s 
Spiral Mode Ts > 20 s Ts > 12 s Ts > 4 s 
Roll Mode τr < 1.4 s τr < 3.0 s τr < 10 s 

Table 11. Handling Qualities for all-natural modes (− means that not even level 3 criteria are met by at that 
mode or a sub-mode). 

Mode Phugoi
d 

Short-
Period 

Dutch roll Roll Spiral CAP 

1a 1 1 2 1 1 2 
1b 2 − 2 1 1 - 
1c 1 1 2 1 1 2 
1d 2 − 2 1 1 - 
1e 1 − 3 1 1 - 
1f 2 − 3 1 1 - 
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The HQs for the phugoid mode (Table 9) depend only on the damping (Table 10) with higher 
minimum values leading to better piloting characteristics in a ladder pattern in the Figure 1. The HQs 
are level 1 and 2 for the phugoid mode in all flight conditions in Table 11, except for 1h, 2b, 2d and 2h 
that are the only cases of amplification. The amplification is very small and thus level 3 is met, with 1h 
being oscillatory and 2b, 2d and 2h monotonic with one damped and one amplified mode, indicated in 
Table 11 and illustrated in Figure 1.  

In the case of the short period mode (Table 10), it is necessary to distinguish (Figure 2) the 
high-gain flight phases (Figure 2, top half) like aggressive flight tracking (A) and precision landing (C) 
from low gain tasks (Figure 2, bottom half) like cruise flight (B). In both cases, the HQs depend only 
on damping, improve with greater damping that: (i) has the same lower bound for level 3; (ii) for 
levels 1 and 2 has a higher lower bound for high A + C relative to low B gain tasks. The short-period 
is stable (Table 9) in all oscillatory cases 1a, 1c, 1i, 1j an 2a–h with sufficiently large damping ζp > 
0.04 in Table 10 to ensure level 1 HQ in Table 11. The short-period is monotonic in the remaining 
flight conditions 1b and 1d-1h, with one stable and one unstable mode (Table 7). Since the damping 
is negative, it follows (Table 10) that HQs do not even meet level 3. The oscillatory cases of short-
period mode all have damping (Figure 3) in the range of level 1 HQ (Table 11) for all flight cases A, 
B, C as indicated in Table 11 and illustrated in Figure 2.  

 

 

Figure 1. Handling Qualities for the phugoid mode. 

 

Figure 2. Handling Qualities for the short-period mode. 

1g 1 − 2 1 1 - 
1h 3 − 2 1 1 - 
1i 1 1 2 1 1 1 
1j 1 1 2 1 1 1 
2a 2 1 3 1 1 1 
2b 3 1 3 1 1 3 
2c 1 1 3 1 1 1 
2d 3 1 3 1 1 3 
2e 1 1 − 1 1 1 
2f 1 1 − 1 1 1 
2g 1 1 3 1 1 1 
2h 3 1 − 1 1 1 
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Figure 3. Damping of Short Period mode in oscillatory flight conditions. 

The roll mode is damped in all flight conditions (Tables 7 and 9) whereas HQ levels 1, 2 and 3 
allow (Table 10) progressively higher limits for the time constant (Figure 4) of instability Equation 
(21b). Thus, the roll mode meets level 1 HQs for all flight conditions (Table 11). The HQs levels 1, 2 
and 3 for the spiral mode (Table 10) allow progressively smaller minimum time to double amplitude 
Equations (21c,d) as shown in Figure 5. Thus, the flight conditions with stable spiral mode 1a-1d, 1e-
1j, 2a and 2c in Tables 7 and 9 all have level 1 HQs in Table 11. The flight conditions 1e, 2b and 2d-
2h with unstable spiral mode (Tables 7 and 9) have long-time to double amplitude and thus also have 
level 1 HQs in Table 11. Thus, in all flight conditions the spiral mode has level 1 HQs, regardless of 
whether it is stable or not, as illustrated in Figure 5. The HQs depend (Table 10) on a single 
parameter, namely the damping of the phugoid (Figure 1) and short-period (Figures 2 and 3) 
oscillatory modes, and the time to double amplitude of the spiral mode (Figure 4) and time constant 
of the roll mode (Figure 5) that are unstable.  

 

Figure 4. Handling Qualities levels for the roll mode. 

 

 

 

 

 

 

Figure 5. Handling Qualities levels for the spiral mode. 

 

Figure 6. Level 3 Handling Qualities for the dutch roll mode. 

Concerning the HQs for the dutch roll mode (Table 10) is necessary to distinguish level 3 in 
Figure 6 from level 2 in Figure 7 that apply to all flight conditions, from level 1 that applies differently 
to flight conditions A and flight conditions B+C in Figure 8. The level 3 HQs for the dutch roll (Table 
10) set a minimum for the damping (Figure 6) and can be represented on a straight line as in all the 
preceding cases (Figures 1–5); they are met in all flight conditions except 2e, 2f and 2h when the 
damping is too small, so that not even level 3 HQs are met as indicated in Table 11 and illustrated in 
Figure 6. The level 2 and 1 HQs for the dutch roll (Table 10) depend both on damping and oscillating 
frequency and require representation on a plane (Figures 7 and 8). In the case of level 2 HQs for the 
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dutch roll (Table 10) there is (Figure 7) a minimum damping ξd > 0.02 and oscillation frequency Ωd > 
0.40 rad.s−1 specifying an upper rectangle. Their product Ωd.ξd > 0.008 rad.s−1 may not satisfy the 
third condition Ωd.ξd > 0.05 rad.s−1 that specifies a hyperbola. The hyperbola Ωd.ξd = 0.05 cuts ξd = 
0.02 at Ωd = 0.05/0.02 = 2.5 rad.s−1 and cuts Ωd = 0.4 rad.s−1 at ξd = 0.05/0.4 = 0.125. Thus, the 
region of level 2 HQs for the dutch roll lies on the right and level 3 HQs on the left of the hyperbola in 
Figure 7. The hyperbola on Figure 7 is one of the three hyperbolas on Figure 8, namely that which 
coincides with the hyperbola closest to the axis in Figure 8. The level 1 HQs for the dutch roll in flight 
conditions B + C impose the same condition on oscillation frequency Ωd > 0.40 but higher damping ξd 
> 0.08 shifting the rectangle to the right; the third condition is also more stringent Ωd.ξd > 0.15 than for 
level 2 shifting the second hyperbola upward and to the right in Figure 8. The level 1 HQs for flight 
condition A are still more stringent shifting the rectangle (Ωd > 0.40, ξd > 0.19) further the right and the 
third hyperbola Ωd.ξd > 0.35 further upward and to the right in Figure 8. None of the flight conditions 
lies within the third or second hyperbolas in Figure 7 and thus Level 1 HQs for the dutch roll are not 
attained. Since for the dutch roll level 1 HQs are not met in any flight condition, and not even level 3 
is met for flight conditions 2e, 2f and 2h, all other flight conditions are level 2 or 3. As indicated in the 
Table 11 and illustrated in Figure 7. The dutch roll HQs are level 3 for flight conditions 1f, 1g, 2a–2d 
and 2g; the remaining flight conditions 1a–1d and 1g–1j have level 2 HQs for the dutch roll as 
indicated in Table 11 and illustrated in Figures 7 and 8.  

 

 

 

 

 

 

 

 

 

 

Figure 7. Level 2 Handling Qualities for the dutch roll mode. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Level 1 and 2 Handling Qualities for the dutch roll mode. 
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The HQs have been considered for all modes in the Tables 7 and 9–11 and Figures 1–7 using 
only one criterion for each mode. Unsurprisingly it is the pitch axis that has received most attention in 
HQs criteria, including the control anticipation parameter [65], the pitch sensivity criterion [66], the 
bandwidth criterion [67], the Neal-Smith criterion [68], and the Gibson criteria for dropback [69], 
attitude pitch rate [70] and phase rate [71], plus multiple variants of several of these criteria. Most of 
these criteria were developed for military aircraft [72,73] for high-gain tasks like target acquisition and 
precision tracking. These aggressive flight manoeuvres are not relevant to civil aircraft flown as 
smoothly as possible so as not to upset passengers and keep far away from flight envelope 
boundaries that could lead to accidents. Some high gain tasks are common to military and civil 
aircraft like precision landing C, and some HQs criteria have been extended from military to civil 
applications in this context [74], for example the control anticipation parameter (CAP), briefly 
considered next. The CAP is defined (38) as the ratio of pitch acceleration to normal acceleration  

,






CAP

z
 (38)

where in the simplest approximation: (i) the pitch acceleration is related to the pitch angle by 
Equation (39a) the oscillation frequency of the pitch mode with fastest response, namely the short 
period with oscillation frequency Ωs appearing to the square; (ii) the normal acceleration relates to the 
lift and is thus specified Equation (39b) by the lift coefficient that is proportional to the lift slope 
multiplied CLθ to the pitch angle relative to the angle of zero lift assumed to be small: 

2 , .    s Lz C  (39a,b)

Substituting Equations (39a,b) in (38) the CAP is given by Equation (40b), and using the lift slope 
[75,76] for the Joukowsky airfoil (40a) leads to Equation (40b):  

2 2

2 , .
2






 
  s s

L
L

C CAP
C

 (40a–c)

There are more refined versions of the CAP HQs criterions [77], often used in modern literature on 
aircraft HQs [78–85]. The usual approaches CAP need not to be refined further here, because it is 
related [73,76] to the manouever margin, considered in more detailed in Section 3.3.  

The CAP criterion as usually applied assumes that the short-period is oscillatory, 
corresponding to subcritical damping 1 s  and complex conjugate eigenvalues Equations (18a,b; 
19a–d), and this is the case for flight conditions 1a, 1c, 1i, 1j and 2a–2h in Table 7. However, for flight 
conditions 1b and 1d–1h the short period is monotonic corresponding Equation (20a–c) to 
supercritical damping 1 s , with one stable 0  s

 and one unstable 0  s
 eigenvalue (41a) and it is 

the latter that dominates pitch response in time (41b): 

 2

20 : .s s          (41a,b)

Substituting (41b) and (39b) in the CAP (38) leads to (42a):  

   2 2

CAP ~ ,
2

 



 

 s s

LC
 (42a,b)

that simplifies to Equation (42b) using Equation (40a). Substituting Equation (20c) in Equation (42a) it 
follows that CAP is given: (i) by Equations (43a) ≡ (40b) for an oscillatory short period with subcritical 
damping Equation (43b); (ii) by Equation (44a) ≡ (42b, 20c) for a monotonic short period with 
supercritical damping or instability:  

        
 

 

2

2

0 11
CAP

0 or 1

s s

L s s s s s

if

C if



   

    
   

            
(43a,b)

.
(44a,b)  

The CAP in the last column of Table 9 was calculated using Equation (43a) for the oscillatory 
and Equation (44a) for the monotonic short period that apply to each flight condition. The HQ criteria 
for the CAP assume damped response and are illustrated in the case (i) in Figure 9 in agreement 
with Table 11. The CAP HQs for class III in category C are level 1 for flight configurations 1i, 1j, 2a, 
2c and 2e–2h, level 2 for 1a and 1c, and level 3 for 2b and 2d. 
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Figure 9. CAP boundaries for class III Cat C flight phase. 

Table 12. Longitudinal and lateral maneuver points. 

3.3. Manouever Points of Two Kinds 
For each of the two designs (“BWB 1” and “BWB 2”), the first eight cases (“a” to “h”) in the 

Table 4 correspond to the four flight conditions in the Table 12, each for a pair of positions of center-
of-gravity x, specified by two values x1 and x2 of mean aerodynamic chord. The stability matrix 
depends on the c.g. position, and thus also the damping ratio ζ of all modes. For small c.g. 
excursions this dependence may be taken to the linear: 

 1 1k x x     (45a)

 2 2k x x   , (45b)

where ζ1, ζ2 are the dampings at c.g. positions respectively x1, x2 and k is the slope: 

 
 

Design 

 
 

Case 

 
 

Flight 
Condition 

 

 Manouver Point 
Speed/ 
Mach 

Altitude weight Longitudinal Lateral 

kt x103 ft 
x103 

kg 
range 

of values 
estimated 

value 

range 
of 

values 

estimated 
value 

 
BWB 1 

1a/b 
Minimum 

speed 
176 0 550 

0.25 < xs 

< 0.35 
xs = 0.320 

xr > 
0.35 

xr = 0.743 

1c/d approach 200 0 550 
0.25 < xs 

< 0.35 
xs = 0.320 

xr > 
0.35 

xr = 0.779 

1e/f Initial cruise 
M = 
0.85 

39 670 xs < 0.35 xs = 0.345 
xr > 
0.39 

xr = 0.992 

1g/h Final cruise 
M = 
0.85 

35 760 xs < 0.35 xs = 0.342 
xr > 
0.39 

xr = 0.826 

 
BWB 2 

2a/b 
Minimum 

speed 
176 0 550 xs > 0.39 xs = 0.402 

xr > 
0.39 

xr = 0.671 

2c/d approach 200 0 550 
0.35 < xs 

< 0.39 
xs = 0.390 

xr > 
0.39 

xr = 0.772 

2e/f Initial cruise 
M = 
0.85 

39 670 xs > 0.39 xs = 0.553 
xr < 
0.35 

xr = 0.330 

2g/h Final cruise 
M = 
0.85 

35 760 xs > 0.39 xs = 0.419 
xr < 
0.35 

xr = 0.151 
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2 1

2 1

k
x x

 



.  (45c)

The maneuver point where the damping would vanish thus corresponds to the critical c.g. 
position: 

   * 1 1 2 2 1 2 2 1 2 10 : / / / ,x x k x k x x               (46a–
c)

and can thus be calculated by linear interpolation of data at two c.g. positions. The manoeuver points 
of the first kind for oscillatory modes are calculated by Equation (46c) from the damping ratio ζ. In the 
case of the manouever points of the second kind for monotonic modes the larger eigenvalue λ+ is 
used in (47):  

   * 1 2 2 1 2 1/ .x x x          (47)

The process of linear interpolation is: (i) more accurate for small c.g. deviations, that is, for 
c.g. position between the positions for which the data is supplied, viz. 1 * 2x x x  ; (ii) potentially less 

accurate for large c.g. deviations out-of-range, e.g., 1 2 *x x x   with * 1 2 1x x x x   . The estimate of 

the manouever point by linear interpolation can be checked by considering a third stability matrix at 
the estimated manouever point; this will be more relevant in the case (ii) of extrapolation out-of-the-
range of starting values. The manouever point can be calculated for each mode, and two kinds exist, 
as explained next.  

The stability matrix (34) and hence the characteristic polynomial Equations (6a,b), its 
eigenvalues λ, the frequencies and dampings of the natural modes depend on the c.g. position. Since 
the stability matrix is real, the characteristic polynomial is also real, and its roots or eigenvalues can 
be: (i) real or (ii) complex conjugate pairs. A complex conjugate pair represents an oscillatory mode, 
and if it is damped the roots lie on the l.h.s. λ-plane in Figure 10. As the c.g. position moves aft, 
usually the damping reduces, and where it vanishes, a manouever point of first kind results. As 
shown in the Figure 10, at a manouever point of first kind the mode is oscillatory with zero damping, 
and the roots are conjugate imaginary. It may happen that as the c.g. moves the complex conjugate 
roots coalesce to a real double root, and then evolve to two distinct roots, as shown in Figure 11; it 
may happen instead that the mode consists of two real negative roots at the c.g. position 1x , 
meaning that it is damped. As the c.g. moves the first root which ceases to be negative, specifies a 
manouever point of the second kind. Thus, at a manouever point of the second kind one eigenvalue 
is zero and the other zero or negative. The comparison of manouever points of the first and the 
second kind is made in the Table 12. The manouever points in Table 13 were calculated using 
Equation (46c) from the damping in the Table 9 and are discussed next, as part of the stability 
assessment of BWB 1 and BWB 2 designs. 

 

 

 

 

 

 

 

 

 

 

Figure 10. Manouever points of first kind for oscillatory modes at zero damping. 
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Figure 11. Manouever points of the second kind for oscillatory modes becoming monotonic modes (convergent 
or divergent) before zero damping. 

 

Table 13. Two kinds of manouever points. 

Manoeuver point First kind Second kind 
Illustration Figure 10 Figure 11 
Eigenvalue    i  1 2 0    

At manouever point    i  1 2 0    

Condition  Re 0   0  
Mode oscillatory non-oscillatory 

 

4. Assessment of BWB 1 and BWB 2 Designs  
The stability assessment of the BWB 1 and BWB 2 designs concerns lateral (Section 4.1) and 
longitudinal (Section 4.2) handling qualities and manouever points and have implications for (Section 
4.3) control system design. 

4.1. The Dutch Roll, Spiral and Roll Modes  
It can be seen from the Table 7 that the “helical mode” always has two real roots, and thus 

splits into “spiral” and “roll” modes. As seen in the Table 9 the roll mode has positive damping, that is 
stable in all cases; the Table 10 shows that level 1 HQs would allow moderate instability with rise 
time not exceeding 1.4s. Thus, the roll mode has level 1 HQs in all cases as shown in the Table 11 
and Figure 4. The same Table 11 and Figure 4 show that the spiral mode also has level 1 HQs in all 
cases in Figure 4 because: (i) it is stable in all cases, except 1e, 2b and 2d to 2h, as seen in the 
Table 9; (ii) in these seven unstable cases the rise time is above the 20s in the Table 10 for level 1 
HQs. 

The other lateral mode in the Table 7, the dutch roll is oscillatory in all cases, and 
corresponds to complex conjugate roots. The dutch roll damping is always low, meeting level 2 HQs 
in the Table 11 (cases 1a–1d and 1g–1j), and other cases (1f, 1g, 2a–2d and 2g) having level 3 HQs; 
the exception is BWB 2 in cruise conditions (cases 2e, 2f and 2h), for which the damping is so low it 
fails to meet even level 3 dutch roll handling characteristics. These conclusions from Table 11 are 
illustrated in Figures 5–7. Since the dutch roll is always oscillatory, it can only have a manouever 
point of first kind (Figure 10). The stability matrices were supplied for two c.g. positions, for BWB 1 
and BWB 2, each at four flight conditions. Since the dutch roll mode is damped in all cases, the 
manouever point lies outside the c.g. range. For the BWB 1, the damping decreases as the c.g. 
moves aft all flight conditions, and thus the manouever point is aft of the two c.g. values considered. 
The same applies to BWB 2 in low-speed flight conditions. For BWB 2 in cruise conditions, the 
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damping increases as the c.g. moves forward, and the manouever point is forward of both c.g. 
positions.  

4.2. The Phugoid and Short-Period Modes 
From the Table 7 it follows that the phugoid is an oscillatory mode for BWB 1 flight conditions 

1a–1j and BWB2 flight conditions 2b, 2d and 2h. The damping is large enough for level 1 HQs in 
cases 1a, 1c, 1e, 1g, 1i, 1j, 2c, and 2e–2g, with level 2 HQs for cases 1b, 1d, 1f and 2a, as illustrated 
in Figure 1. The level 3 HQs correspond (Table 11) to an unstable oscillatory mode in flight condition 
1h, and to flight conditions 2b, 2d, and 2h with monotonic modes one of which is instable.  

The short period mode is oscillatory for BWB 1 only in cases 1a, 1c, 1i and 1j, i.e., low-speed 
flight conditions at forward c.g. as seen in the Table 7. The short-period mode degenerates to two 
real roots for: (i) low-speed flight at the aft c.g. position; (ii) cruise at any (forward or aft) c.g. position. 
It follows that the manouever point lies between the two c.g. positions at low-speed and forward of 
the forward c.g. position in cruise, as seen in the Table 13. The short period mode is well damped in 
all modes, except 1b and 1d-h which have an unstable mode. Thus, HQs are level 1 for the short-
period mode, except for those six cases in which it does not even meet level 3 as shown in Figure 2.  

The longitudinal manouever points for BWB 1 are of the second kind (Figure 11), because 
they arise from two real roots in the short-period mode. For BWB 2 the short period mode is always 
oscillatory (Table 7), and well-damped (Table 9) leading to HQs (Table 10) which are level 1 in all 
cases (Table 11). In the case of BWB 2 it is the phugoid which ceases to be oscillatory, and 
degenerates to two real roots, in cases 2b, 2d and 2h. The phugoid damping implies that the HQs are 
level 1 or 2 in all cases (Table 11), except the unstable case 2d, when the rise time is long, so that 
HQs meet the level 3 criterion. For BWB 2 the longitudinal manouever points at low-speed are due to 
the phugoid and are due to the short-period in cruise and lie beyond the aft c.g. position except in the 
case 2c, d, when it lies on the aft c.g. position.  

 

4.3. Implications for Control System Design  
It is seen in Table 11 that the HQs are worst for the slow modes, viz. level 2 or 3 for the 

phugoid and level 2 or 3 or worse (unstable) for the dutch roll, due to poor damping or weak 
instability. This is of little concern, since a fly-by-wire control system is quite effective at damping 
these modes. The fast modes, viz. the roll and spiral modes always have level 1 HQs, and the same 
is true for the short-period mode, except for BWB 1 in cruise when it is unstable. The latter situation 
may require attention in control system design. 

The lateral manouever point is aft of the rear c.g. position in all cases, except BWB 2 in 
cruise, when it is forward of the forward c.g. position. The longitudinal manouever point for BWB 1 is 
forward of the forward c.g. position in cruise, and between the c.g. positions at low speed. For BWB 2 
the longitudinal manouever point lies aft of the aft c.g. position, except on take-off. Thus, the cost and 
complexity of a trim fuel tank could be avoided by small modifications. 

Table 14. Comparison of flying wing designs. 

Example BWB 1 BWB 2 
Fuselage Length 

Width 
Long 

Narrow 
Short 
Wide 

Equal Fineless 
Thickness 

Volume 
Thick 
High 

Thin 
Low 

Tail 

Moment 
arm 

Elevator 
area 

Long 
Small 

Short 
Large 

Passenger motion 
 

Pitch 
Roll 

Large 
Small 

Small 
Large 

Evacuation Easy Difficult 
Conclusion Conservative Radical 

Risk Lower Higher 
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5. Discussion 
 

The two flying wing designs represent different approaches (Table 14) in the sense that: (a) the 
long, narrow fuselage of BWB 1 is closer to a conventional design; (b) the wide, short fuselage of 
BWB 2 is a more radical departure from conventional design. The main qualitative differences are: 
(i) for the same fineness ratio and surface area, that is equal drag, BWB 1 has a thicker fuselage 
with higher volume; (ii) BWB 1 also has a longer tail moment arm, allowing longitudinal trim with 
smaller elevator area, assuming the same elevator deflection and c.g. range; (iii) pitching motion is 
more noticeable to the passengers at the ends of the longer BWB 1 fuselage but it is the rolling 
motion which may affect most passengers at the sides of the wide BWB 2 fuselage; (iv) the longer 
BWB 1 fuselage has greater side area for speedy passenger evacuation. In conclusion, the 
conservative BWB 1 design appears qualitatively to be less risky. 

The purpose of the present paper is to assess quantitatively the stability of the two designs. The 
assessment concerns the basic flight conditions of minimum speed, take-off, initial and final cruise; 
the extreme conditions, like the low-speed, high-altitude or high-speed, low-altitude would be a next 
step. The stability assessments made before have in all cases been limited to steady, straight flight; 
stability during flight manouevers would be another aspect. It has been found that the damping of the 
slow modes (phugoid and dutch roll) is small, but this is of no concern for a fly-by-wire control 
system. The fast lateral modes (roll and spiral) always have level 1 HQs. The fast longitudinal mode 
also has level 1 HQs, except for BWB 1 on approach to land and in cruise when it degenerates into 
two real modes, one of which is unstable. This requires attention, because it could lead to a PIO (pilot 
induced oscillation or “probably inevitable oscillation”). 

The availability, for each of the four flight conditions of BWB 1 and 2, of the stability matrix at a 
forward and an aft c.g. position, allows a rough estimate of manouever points. The method of linear 
extrapolation applies best for small c.g. changes, and the conclusions could be checked by 
reconsidering the stability matrix at the estimated manouever point. The lateral manouever point, due 
to the vanishing of dutch roll damping, is always out of the c.g. range, viz. rearwards (except for BWB 
2 in cruise where is forward). The longitudinal manouever point for BWB 1 is due to the vanishing of 
damping of the short-period for BWB 1 and lies forward of the c.g. range in cruise and within the c.g. 
range at low-speed. For BWB 2 the longitudinal manouever point is aft of the c.g. range and is due to 
the short-period in cruise and phugoid at low-speed. It may be possible to avoid the cost and 
complexity of fuel trim tanks by small design adaptations. 

The CAP appears in the Table 9 both for: (i) the oscillatory case with sub-critical damping 
(43a,b); (ii) the monotonic case when one mode is damped and the other is amplified, with the latter 
appearing in (44a,b). Since the HQs for the CAP assume positive damping (Figure 9), only the 
oscillatory short-period modes are considered and for: (i) the BWB 1 configuration leads to level 1 
HQs in flight conditions 1i and 1j, and level 2 in flight conditions 1a and 1c; (ii) the BWB 2 
configuration leads to level 1 HQs for flight conditions 2a, 2c, and 2d–2h, and level 3 HQs, for flight 
condition 2b and 2d. The short period is oscillatory for all flight conditions of BWB 2 and for flight 
conditions 1a, 1c, 1i, and 1j for BWB 1 which CAP HQs are always better than level 3. For BWB 1, 
the flight conditions 1b and 1d-1h have an unstable monotonic mode and the negative damping may 
be understood as not meeting even level 3 HQs for CAP.  

Nomenclature 

ad  coefficients of polynomials (28)  

gbd  coefficients of polynomials (29)  
k slope of manouever point linear approximation (45c) 
p x-component of angular velocity (4a) 
q  y-component of angular velocity (1) 
r z-component of angular velocity (4a) 
u x-component of linear velocity (1) 
x  position of c.g. as percentage of m.a.c. (45a) 

*x  critical c.g. position for manouever point (46a–c)  

v  y-component of linear velocity (4a)  
w  z-component of linear velocity (1) 
z vertical acceleration (38)  
A characteristic polynomial of longitudinal stability sub-matrix (3b) 
B characteristic polynomial of lateral stability sub-matrix (4b) 
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C characteristic polynomial of complete stability matrix (6a,b) 

C  
characteristic polynomial of decoupled complete stability matrix 
(13b) 

gC  modal factor (10) 

gC  modal factor for decoupled stability matrix (13a) 

LC   lift coefficient slope (39b)  

gE  weak coupling coefficient (14c) 

T time to double amplitude (21c,d) 
X aircraft state variables (1, 4a) 

iX  coupled flight variables (5) 

gX  decoupled flight variables (15) 

ijZ  stability matrix (2b) 

 small quantity (8) 
  Euler angle of pitch (1) 

ab  identity matrix (3a)  
  Euler angle of bank (4a) 
  Euler angle of sideslip (Table 5) 
   eigenvalues (3a) for modes (18a,b; 20a–c) 
  damping ratio (3b) 
  decoupled damping ratio (9b) 
  natural exact coupled frequency (3b) 
  natural decoupled frequency (9a) 
  oscillation frequency (19d)  
  time constant (21b) 
  amplification ratio (  ) 

C  
difference between the exact coupled C  and decoupled C  
complete characteristic polynomial (27)  

gC  
difference between the exact coupled gC  and decoupled gC  

modal factor (14a-c) 

  difference between the exact coupled   and decoupled   
natural frequency (9a) 

  
difference between the exact coupled   and decoupled   
damping ratio (9b) 

Subscripts  
p or 1 phugoid mode 
s or 2 short period mode 
d or 3 dutch roll mode 
h or 4 helical mode 
r or 4- roll mode 
l or 4+ spiral mode 
Superscripts  
X  decoupled value of X  
Abbreviations  
c.g. center of gravity 
m.a.c. mean aerodynamic chord  
CAP Control Anticipation Parameter (38) 
BWB Blended Wing Body  
HQs handling qualities 
Symbols  
X  time derivative of X  
X  variation of X  
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