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Abstract

The arrival management (AMAN) and departure management (DMAN) system solved by quantum annealer is
investigated to improve computation efficiency. The ising model for AMAN/DMAN is built by converting the air-
craft sequencing problem formulated by mixed integer programming. To reduce number of decision variables,
discretized time slots and slot blocking function to represent separation manner is introduced. Furthermore
some implementation technique is shown in this paper. These technique greatly reduce the computation time
to 0.01 times, and it helps iterative computation required in actual airport operations. As a result, more than
100 times faster solving and same quality optimality is confirmed by numerical experiment.
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1. Introduction
Aviation industry is in an unprecedented predicament under the influence of COVID-19 from 2020.
However the air traffic demand is expected to grow by 4.0(Boeing) [?]% per year until 2040. Ac-
cording to the air traffic increasing, the number of the flight is expected to increase. Capacities of
major airports are close to limit. Improving operational efficiency is required. Especially the runway
operation is known as the bottleneck of airport. All aircraft pair using same runway must keep mini-
mum separation depending on them wake turbulence categories. So the runway throughput is quite
limited.
Arrival management (AMAN) and depature management (DMAN) optimize aircraft order of runeay
assignment and improve the runway capacity. AMAN/DMAN can be expected not only improving the
capacity but also reducing delays. Reducing relay times leads improving passenger satisfactions and
reducing CO2 consumption. Many formula of ANAMN/DMAN system is proposed [2, 3]. Runway
capacity management is one of the aircraft sequencing problem (ASP) formulation described with
mixed integer programming (MIP), and it can find an ideal optimal solution. On the other hand solving
MIP requires large computation resource and long time. Estimated Landing Time (ELDT) or Expected
Take-Off Time (ETOT) can be canged depending on many causes, e.g. wind conditions, passenger
behavior, and ground handling. Therefore iterative computation is necessary. In this paper, the
ising model to solve the aircraft sequencing problem around an airport with multiple runways in the
arrival/depature mixed mode is investigated, and find the optimal runway assignment and the optimal
assignment time. The ising model is solved with a quantum annealer, and this method is mentiond as
quantum airctaft sequencing problem (QASP). Discrete time slot is introduced to reduce number of
decision variables in QASP. Numerous decision variables are required if the inequalities for separation
constraint of the ASP are simply converted into ising model. To avoid this, slot blocking function for
separation is introduced. These techniques reduce the number of variables and improve an efficiency
of computation, and solvability.

2. Preliminary
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2.1 Aircraft Sequencing Problem
In this paper an aircraft sequencing problem (ASP) around runways is considered to improve the
runway usage efficiency. The ASP is formulated in many stdies, and one is formulated as a mixed
integer programming called runway capacity management (RCM) [4] and described as followings:

Minimize ∑
f∈F

t f − t f (1a)

subject to

∑
f∈F

zr f = 1, ∀r ∈ R, (1b)

t f ≤ t f ≤ t f , ∀ f ∈ F, (1c)

t f2 ≥ t f1 + p f1 f2 −M (1− y f1 f2) , ∀ f1 ̸= f2 ∈ F, (1d)
y f1 f2 + y f2 f1 ≥ zr f1 + zr f2 −1, ∀r ∈ R, ∀ f1 < f2 ∈ F, (1e)
y f1 f2 , zr f ∈ B. (1f)

(1a) the objective is to minimize a total delay for all aircraft set F requesting to use the runway, (1b)
each flight f ∈ F should be assigned to exact one runway from available runway set r ∈ R, (1c) the
assign time t f ∈ N should be set between its time window, (1d) any flight pair assigned in the same
runway must keep minimum separation p f1 f2 depends on the wake turbulence category defined by
the separation manner such like RECAT-1, and (1e) has a precedence. y f1 f2 = 1 indicates that the
aircraft f1 precedes aircraft f2, and zr f = 1 indicates that the aircraft f assigned into the runway r.

2.2 Quantum Annealing
The quantum annealing (QA) has much attention as the nouvel computation tool to solve large com-
binatorial problem quickly [5]. In the quantum annealing the optimization problem is required to be
described as a the quadratic unconstrained binary optimization (QUBO) form as the following:

fq(x) = xT Qx, (2)

where fq(·) : Bn → R is the objective function to be minimzed, x ∈ Bn is a binary decision variables,
and Q ∈ Rn×n is a coefficient matrix to represent the problem. This coefficient matrix is mentioned as
QUBO matrix.
To solve optimization problems with quantum computing, original problems is required to convert to
QUBO form. Therefore linear programming is not suit to treat with QA method. Because difficulty
of represent continuous decision variables with binary variables. In other hand optimization problem
which can be described as integer programming or mixed integer programming form is suitable for
converting into QUBO form.

3. Quantum ASP
In this paper, an ising model is formulated to solve ASP with quantum annealing machine.

3.1 Time slot
Time slots are introduced to reduce the size of solution space to be considered in ASP. The time slot
is a time section divided by the discretized time width ∆t. The set of time slots is described as bellow:

S = {s0, · · · , sk, · · · , smax} (3)

where index k belonging to the set of slot indices is defined as:

K =

{
k | ∀k ∈ N0, k∆t ≤ max

f∈F
t f

}
. (4)
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The ready time slot and the due time slot are also represented as sk f
and sk f

with following slot
indices, respectively.

k f =

⌊
t f

∆t

⌋
, (5a)

k f =

⌊
t f

∆t

⌋
. (5b)

3.2 QASP formulation
3.2.1 Decision variables
Decision variable x f rk ∈ B represents that the aircraft f is assigned into the runway r at the time slot
k ∈ K f ⊂ K. K f is an available index subset for aircraft f , which containing indices between the ready
slot and due slot of the aircraft as the following:

K f =
{

k− k f
}
| ∀k ∈ K, k f ≤ k ≤ k f . (6)

Here these indices indicate numbers of delayed slot from the ready slot for the aircraft f .

3.2.2 Total delay
The ASP aims to minimize a sum of delays or total fuel consumption. Here the total delay is adopted
as the criteria in the QASP. In the QASP, the decision variable directory means the number of delayed
slot from fastest assignment of each aircraft. The delay time of aircraft f can describe with the delayed
slot and the time width as k f ∆t. Then the total delay is written as the following:

∑
f∈F

k f ∆t = ∑
f∈F

∑
r∈R

∑
k∈K f

(k∆t)x f rk. (7)

Here the ising model shall be composed of a quadratic form. Therefore the cost function to be
minimized is described as below:

Hd(x) = ∑
f∈F

∑
r∈R

∑
k∈K f

(k∆t)x f rkx f rk (8)

3.2.3 Constraints and Penalties
Any aircraft pairs are required to keep separation minima. So some slots after assigned are blocked to
avoid to assign aircraft according to the separation manner. The number of blocked slot is determined
depending on the wake turbulence categories of aircraft pair as the following:

PD f1 f2 =
⌈ p f1 f2

∆t

⌉
. (9)

Then the separation table is represented as the function as the following:

P( f1, f2,k1,k2) =

{
1 if k1 +PD f1 f2 ≥ k2

0 otherwise
. (10)

Therefore the separation constraints is given as the following penalty function:

Hs(x) = ∑
r∈R

∑
f1∈F

∑
f2∈F/{ f1}

∑
k1∈K f1

∑
k2∈K f2

P( f1, f2,k1,k2)x f1rk1x f2rk2 . (11)

And aircraft shall be assigned only once. It leads the constraint and penalty function as followings:

∑
r∈R

∑
k∈K f

x f rk = 1, ∀ f ∈ F (12)

−→ Hu(x) = ∑
f∈F

(
∑
r∈R

∑
k∈K f

x f rk −1

)2

. (13)
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3.2.4 Objective function
A Hamiltonian as the objective function consist of the total delay Equation 8, and 2 penalties Equation
11 and Equation 13:

H(x) = Hd(x)+λsHs(x)+λuHu(x) (14)

= ∑
f∈F

∑
r∈R

∑
k∈K f

(k∆t)x f rk
2 +λu ∑

f∈F

(
∑
r∈R

∑
k∈K f

x f rk −1

)2

+λs ∑
r∈R

∑
f1∈F

∑
f2∈F/{ f1}

∑
k1∈K f1

∑
k2∈K f2

P( f1, f2,k1,k2)x f1rk1x f2rk2 . (15)

where H is a Hamiltonian of the ising model for QASP, λs and λu are coefficients for penalty terms,
respectively.

3.3 QUBO matrix
To apply the ising model to the quantum annealer, building the QUBO matrix representing the Hamil-
tonian Equation 14 is required. Thanks to the quantum computer, the computation time of ASP is
significantly reduced. However, composing the QUBO matrix takes enormous time if it is simply
implemented with for-loop statement for all sum function in Equation 14. This long time compos-
ing impairs the benefit of using the quantum annealer which can solve combinatorial optimizations
rapidly. Some implementation techniques are shown in this section for high-level programming lan-
guage, especially for Python which is commonly utilized in machine learning and quantum annealing
studies.
The Hamiltonian is transformed with the QUBO matrix and decision variable vector as the following:

H(x) = xT Qx, (16)

the Q ∈ RN×N is the QUBO matirx, and N ∈ Z is the number of decision variables. As a first step, let
us consider a QASP with single runway. The the decision variable vector is formulated as:

x =
[
x10, x11, · · · , x1k1

, x20, · · · , x f k, · · · , xN f kNf

]
∈ BN , (17)

where N f is a number of flights to be assigned. And the indices r to represent assigned runway
is omitted. And the vertical axis of QUBO matrix indicates preceding aircraft and horizontal axis
indicates following aircraft. Then the (i, j) component of matrix Q(i, j)=Q(∑

f1−1
f=1 N f +k1, ∑

f2−1
f=0 N f +k2)

means the cost value when the leader aircraft f1 is assigned at the time slot k1 and the following
aircraft f2 is assigned at the time slot k2.
According to the first term of Equation 14 doesn’t contain any cross term, then this term affects only
diagonal component of the matrix.

Q(i, i) = k∆t, ∀ f ∈ F, ∀k ∈ K f , (18a)

i = I( f , k) =
f−1

∑
g=1

Ng + k. (18b)

The second term of Equation 14 can be transformed as:

∑
f∈F

(
∑
r∈R

∑
k∈K f

x f rk −1

)2

= ∑
f∈F

(
∑

k1∈K f

∑
k2∈K f

x f k1x f k2

)
−2 ∑

f∈F
∑

k∈K f

x jk
2 +N (19)

The first term of Equation 19 gives penalties for diagonal blocks excluding diagonal components (the
orange area of Figure 1). The second term of Equation 19 is for diagonal component. From Equation
18 and 19, the diagonal components are written as:

Q(I( f , k), I( f , k)) = k∆t −2λu, ∀ f ∈ F, ∀k ∈ K f . (20)
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The first term of Equation 19 represents that non-diagonal components of diagonal block correspond-
ing to the intra-flight variables indicated with red area in Figure 1 are filled by penalty λu.

Q(I( f , k1), I( f , k2)) = λu, ∀ f ∈ F, ∀k1 ∈ K f , ∀k2 ∈ K f /{k1} . (21)

The third term of Equation 14 defines the penalty of inter-aircraft separation. Then the penalty is
applied to the components of non-diagonal block. The blocked components of the aircraft are decided
by the wake turbulence categories of leading and following aircraft, the assigned time of pair aircraft
and the available time window of aircraft itself. This block pattern table can be prepared before
composing the matrix Figure 1 right. The table should be defined for all assumed time slot from the
earliest s0 to the latest smax. Therefore the non-diagonal block is written as:

Q(I( f1,k1), I( f2,k2)) = P( f1, f2,k1,k2), ∀ f1 ∈ F, ∀ f2 ∈ F/{ f1}, k1 ∈ K f1 , ∀k2 ∈ K f2 . (22)

However with the modern programming language, this can be implemented as a matrix range spec-
ified copy. Then computation time is expected greatly shorten. Figure 1 shows an example of the
matrix composing for 3 aircraft scenario, each aircraft has 4 assignable slots, and any pair of aircraft
has 3 slots as the minimum separation. The area where the index indicating the slot matches can be
copied from the pattern table on the right to the QUBO matrix, in Figure 1 the area shown with green
and light blue rectangle for separation between aircraft 1 and 2. The light blue rectangle indicates
blocked slot for following aircraft 2 blocked by the leading aircraft 1, and vise versa for the light green
rectangle.

Figure 1 – QUBO matrix composing diagram.

The QUBO matrix described above is for the single runway condition, here it is mentioned as SR-
matrix. To adopt the multiple runway airport, a simple extension is needed. The SR-matrix is placed
as the diagonal block. This diagonal block indicates that restriction in the same runway. On the other
hand, non-diagonal block restricts inter-runway relation-ship. In this paper, only independent runways
are considered. Therefore the slot for same aircraft is blocked. This area is a diagonal block of sub
block, which size is same to SR-matrix, see Figure 2.

4. Numerical Experiment
The aircraft sequencing problem with multiple runway is assumed in this experiments. The matrix
building and MIP solving is performed on the Intel core i9 2.3GHz 8 cores cpu, 16BG memory.

4.1 QUBO matrix calculation time
The computation time reduction of the QUBO matrix by composing techniques are measured. Figure
3 shows computation times of the QUBO matrix for scenario including various number of aircraft,
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Figure 2 – Example of QUBO matrix for multiple runway with 3 flight.

from 3 to 25 aircraft. Blue line shows the calculation time of ordinal implementations with for-loop
statements corresponding to sums in Equation 14, and red line indicates the calculation time for im-
plementations with proposed techniques. For each plots, 5 different random scenario are generated
and the QUBO matrices building time is measured.

Figure 3 – Affect of the QUBO matrix composing techniques.

4.2 Calculation time with quantum annealer
Aircraft sequencing performance is shown in this section. Figure 4 shows the result of calculation time
of ASP with MIP and QA. The blue line indicated the result of MIP, and red line is QA. MIP calculation
time exponentially increased depend on the number of flight. Each condition is an average result of 5
random scenario. And more than 15 flight, MIP can not finish calculations untill 103 second, therefore
optimization is terminated before reach optimal solution. In other hand QA can finish calculation
by less than 10 seconds for all conditions in this paper. The calculation time of QA also increased
depend on increasing of number of flight. The increase is almost linear. Therefore QASP can be said
that it has possibility to treat larger number of flight such like 100.
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Figure 4 – Affect of the QUBO matrix composing techniques.

Figure 5 shows the total delay as objective function. There is no significant deference between MIP
and QA solution. This fact imply that QA solution mostly reach or close to optimal solution.

Figure 5 – Affect of the QUBO matrix composing techniques.

5. Conclusion
The quantum aircraft sequencing problem (QASP) to determine the assigned time to assign the
runway. In this paper, the Hamiltonian as objective function for QA is defined based on MIP ASP
problem. Furthermore some implementation techniques to reduce computation time of QUBO matrix
is shown. These technique reduce calculation time less than 1/100 time than ordinal implementation.
And QASP solve the APS greatly short time that is enough to utilize in the actual airport operation.
Solution optimal is also confirmed.
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