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Abstract 

In the aeronautic industry, in addition to the aging of the current fleet of aircraft in operation, increasing 

cargo capacity and the use of composite materials have increased interest in developing Structural 

Health Monitoring systems (SHM) by aircraft manufacturers and airlines. On the other hand, the 

increase in the processing capacity of computers enabled the development of Artificial Intelligence 

systems. These systems can make decisions based on an incomplete data set and are particularly 

attractive in applications where human intelligence and critical thinking are needed. However, the 

performance of SHM based on Machine Learning is limited to only the knowledge used in the learning 

phase, not able to describe the structural behavior under conditions different from those used in the 

model training. This work proposes a hybrid learning methodology as an alternative to augment the 

amount of data available during the training phase. A finite element model is adjusted with limited 

experimental data and used to simulate new damage scenarios. Then, a multilayer neural network is 

trained with different experimental and numerical data combinations. The system’s performance is 

evaluated with experimental data that is not used during model training, and the model’s accuracy is 

compared using scenarios with and without  

Keywords: SHM, neural networks, Lamb wave simulations, hybrid learning  

 

1. Introduction 
 

The main objective of Structural Health Monitoring (SHM) systems is to identify changes at the 

earliest possible opportunity so that corrective action can be scheduled and minimize downtime, 

operating and maintenance costs, and reduce the risk of catastrophic failures during operation. 

Massive adoption of SHM systems in aerospace structures can improve safety and reliability while 

reducing downtime and associated costs. With the aging of the fleet of aircraft in operation, 

maintenance costs increase and can reach up to a quarter of the fleet's operating cost [1]. 

 

According to Mitra and Gopalakrishnan [2], one of the main techniques for use in SHM is those based 

on guided waves. Among the various forms of guided waves, Lamb waves are the most applied to 

thin structures [3]. For use in SHM, Lamb waves can be generated and captured in the system 

through piezoelectric sensors of the PZT type. These sensors deform when subjected to electrical 

voltage and induce an acoustic vibration in the structure. This vibration propagates and can be 

measured by other sensors scattered in it. By measuring the behavior of Lamb waves in an 

undamaged structure, a Baseline signal can be obtained. Subsequent measurements are compared 

to the baseline, and detection techniques can be used to locate and quantify the damage. 
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Damage detection from the measured signals can be performed in different ways. Among the 

detection techniques presented in the literature, we can highlight those based on the transformation 

between time and frequency domains, such as the Wavelet transform used by Chen et al. [4], the 

Short Term Fourier Transform (STFT) used by Liu et al. [5], and the Hilbert and Hilbert-Huang 

transform, used by Wang et al. [6]. 

 

There are also machine learning (ML) techniques, which are particularly efficient in cases in which 

the phenomena studied have complex characteristics and non-linear behavior. These techniques 

use data collected from previous cases, which are used to generate a classification model based on 

the input data. Among the methods based on ML, Mitra and Gopalakrishnan [2] highlight the Artificial 

Neural Networks (ANN), which are algorithms inspired by biological structures that mimic the 

behavior of the nervous system of living beings. These algorithms are organized into different 

architectures, from the simplest to the most complex, such as multilayer networks (MLP), 

Convolutional Neural Networks (CNN), Evolutionary Neural Networks, Adaptive Neural Networks, 

etc. 

 

Models based on machine learning have gained increasing relevance and application in the field of 

structural monitoring due, among other factors, to the ability of algorithms to adapt to different 

applications and flexibility regarding the architectures available for use. Therefore, the use of neural 

networks for detecting damage in aerospace structures is a promising field of research, both for the 

adaptability of artificial intelligence models and the increasing amount of data available for analysis.  

 

One of the main limitations of Machine Learning based systems is the amount of data needed to 

train the classification models. The production of part of this data using numerical simulations have 

the potential to reduce the number of tests needed to obtain training data. The system can also be 

simulated in damage scenarios that cannot or are too expensive to test. It can also accelerate the 

development of damage detection systems. This work aims to develop a damage classifications 

model based on neural networks that can be trained with a dataset of numerical and experimental 

data and compare its results with different data combinations. 

 

2. Literature review 

2.1 Structural Health Monitoring 
 

Structural Health Monitoring (SHM) is an area that combines an instrumented structure and a system 

with algorithms that ask the structure for its “health” or condition in real-time or as needed 

[7].Giurgiutiu [8] states that an SHM system can be passive or active. A passive approach is based 

on measuring operational factors and obtaining the state of the structure based on them. For 

example, in an aircraft, one can monitor parameters such as speed, vibration levels, turbulence 

levels, etc., and use algorithms to determine the state of the structure. On the other hand, active 

systems use sensors scattered throughout the structure to detect the damage's presence and extent. 

An active SHM system has similar premises to non-destructive testing (NDE) systems. Still, with an 

extra level: SHM systems aim to install permanent sensors in the structure for analysis whenever 

necessary. 

 

The development of piezoelectric sensors based on Lead Zirconate Titanate (PZT) made it possible 

to reduce the cost of instrumentation needed for SHM systems compared to traditional NDE sensors 

[8]. These versatile sensors are manufactured in different formats and affixed to the structures or 

included during manufacturing. Damage detection with piezoelectric sensors can be performed in a 

few ways: guided wave propagation, frequency response function, or electromechanical impedance. 

 

According to Giurgiutiu [8], guided waves are ultrasonic mechanical waves propagating through 

structures, remaining within the walls of thin-walled structures, and traveling great distances. These 

properties allow its application in the ultrasonic inspection of aircraft, missiles, pressure vessels, 
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storage tanks, etc. Lamb waves, also known as guided plate waves, are a type of guided wave that 

propagates between two free parallel surfaces of a thin-walled structure. 

 

For use in SHM, Lamb waves can be generated and captured in the structure through piezoelectric 

sensors of the PZT type. These sensors deform when subjected to electrical tension and induce an 

acoustic vibration in the system. This vibration propagates and can be measured by other sensors 

scattered in it. By measuring the behavior of Lamb waves in an undamaged structure, a “signature” 

(also called Baseline) can be obtained. Subsequent measurements are compared to the signature, 

and detection techniques can be used to locate and quantify the damage. Among these techniques, 

we have those based on neural networks. 

 

2.2 Neural Networks 
 

Artificial intelligence emerged as a branch of computer science in the 1950s. Since then, it has 

produced tools that can be applied in engineering to solve problems where human intelligence is 

needed [9]. Among the available algorithms, artificial neural networks (ANN) have stood out due to 

their non-linearly capability and ability to generalize and extrapolate knowledge based on an 

incomplete data set. A neural network is a computational model of the brain. Models based on neural 

networks are built from basic units called neurons, which are interconnected and perform 

calculations in parallel. 

 

A neural network learns based on a process called training, which can be supervised or 

unsupervised. In supervised training, the neural network is presented with input data and the 

expected response. Based on the data provided, the network adapts and adjusts its parameters, 

storing the learning in the weights of connections between neurons. In unsupervised training, the 

neural network is presented with input data only and learns by grouping the data into classes with 

common characteristics. After training, the neural network is submitted to a set of data it has never 

had contact with, and its efficiency is measured based on the success rate with this data. 

 

Neural networks can also be classified by type. Among the most common types, there are the 

Multilayer Perceptron (MLP) neural networks. According to Pham [9], this type of neural network is 

more common due to its ease of implementation and robustness. It consists of a series of 

interconnected neurons, creating layers. The inputs of each neuron are weighted and summed to a 

constant value, called bias. The neuron then applies the sum value to a transfer function and outputs 

the result, as shown in Eq. 1 [10]. 

 

𝑥(𝑘) = 𝑇 (∑ 𝑤𝑖(𝑘)𝑦𝑖(𝑘)

𝑚

𝑖=0

+ 𝑏) (1) 

 
In which: 

𝑦𝑖(𝑘) is the value of the discrete-time input k, 

𝑤𝑖(𝑘) is the value of the weight in discrete time k 

b is the bias 

T is the transfer function (also called activation function) 

𝑥(𝑘) is the value of the neuron output   
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2.3 Damage indices 

 

The input data to a neural network is essential for the quality of the analysis. In SHM applications, 

this data is treated in the form of indices indicating the structure’s state, commonly called damage 

indices (DIs). For each data set, damage indices can be calculated in several ways, including those 

proposed by Dworakowski et al. [11]. Among the indices presented by the author, there is the RMS 

error of the signal, the cross-correlation, and the difference between the Hilbert transform and the 

Fourier transform. Combined, these damage indices can assess attenuations and delays in the 

responses of Lamb waves both in the time domain and frequency domain. The damage indices can 

then be used as input information for a model based on neural networks. Four damage indices 

proposed by Dworakowski et al. [11] and shown in Tab. 1 were used in the present work. 

 

Table 1 – Damage indices used as ANN’s input  

 Index 

name 
Equation Comments 

1 𝐷𝐼𝑇𝐷𝑅𝑀𝑆 𝐷𝐼𝑇𝐷𝑅𝑀𝑆 = 1 −
∫ [𝑦(𝑡) − 𝑥(𝑡)]2𝑑𝑡

𝑡2

𝑡1

∫ 𝑥(𝑡)2𝑑𝑡
𝑡2

𝑡1

 Identify attenuation in damaged signal. 

2 𝐷𝐼𝑋𝐶𝑂𝑅  𝐷𝐼𝑋𝐶𝑂𝑅 = 1 − 𝑟𝑥𝑦(𝜏 = 0) 
Identify differences of phase and shape 

between signals 

3 𝐷𝐼𝑚𝑎𝑥𝑋𝐶𝑂𝑅  𝐷𝐼𝑚𝑎𝑥𝑋𝐶𝑂𝑅 = 1 − 𝑚𝑎𝑥 (𝑟𝑥𝑦(𝜏)) 
Identify differences of phase and shape 

between signals 

4 𝐷𝐼𝐸𝑁𝑉 𝐷𝐼𝐸𝑁𝑉 = 1 −
∫ [𝑌(𝑡) − 𝑋(𝑡)]2𝑑𝑡

𝑡2

𝑡1

∫ 𝑋(𝑡)2𝑑𝑡
𝑡2

𝑡1

 
Identify changes in amplitude and 

frequency between signals. 

 

In Tab. 1, 𝑦(𝑡) e 𝑥(𝑡) are the signs of the structure with and without damage, respectively, and 𝑡1 

and 𝑡2 are the integration intervals. 𝑋(𝑡) and 𝑌(𝑡) represent the signature envelopes, for instance 

the Fourier Envelope and 𝑟𝑥𝑦(𝜏) represents the cross-correlation operation. According to [11], the 

advantage of correlation indices is that if the signal with damage and without damage are identical, 

the cross-correlation becomes the autocorrelation and has a maximum value of 1 at 𝜏 = 0. This 

means that this indicator is only sensitive to changes in signal shape and phase, not changes in 

amplitude. 

 

3. Methodology 

3.1 Experimental setup 

 

A CFRP plate with dimensions of 500 x 500 x 2 mm3 is used in this article. It comprises 10 layers of 

carbon fibers unidirectionally aligned along a 90° direction and stacked in an epoxy resin matrix. The 

composite plate is instrumented with four PZT transducers SMART Layer manufactured by Acellent 

Technologies Inc. The structure is excited by a five-cycle sinusoidal tone burst, and center frequency 

of 250 kHz applied on PZT 1. Then PZT 2 is used as a sensor to acquire the output signal. Fig. 1 

presents a schematic overview of the experimental setup used. 
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Figure 1 - Composite plate and schematic view of the experimental setup (measurements in mm). Adapted from [12] 

 

Damage is simulated by inserting an adhesive putty on the surface’s plate. This additional localized 

mass simulates local changes in the damping of the plate, which has some similarities to 

delamination in composites structures, as reported by Lee et al. [13]. This is a common practice in 

the literature to simulate damage reversibly, i.e., without damaging the structure. Tab. 2 shows the 

damage nomenclature and the amount of mass added to each, and Fig. 2 compares baseline and 

damaged signals. 

 

Table 2 – Damage conditions used in the experimental setup 

 𝑯{𝒕}
 𝑫𝟏

{𝒕}
 𝑫𝟐

{𝒕}
 𝑫𝟑

{𝒕}
 𝑫𝟒

{𝒕}
 𝑫𝟓

{𝒕}
 𝑫𝟔

{𝒕}
 𝑫𝟕

{𝒕}
 𝑫𝟖

{𝒕}
 𝑫𝟗

{𝒕}
 𝑫𝟏𝟎

{𝒕}
 𝑫𝟏𝟏

{𝒕}
 

Covered 

area [%] 
0 0.196 0.282 0.384 0.502 0.785 0.950 1.13 1.53 2.01 2.27 2.54 

 

 

Figure 2 – Comparison between the signal from healthy and damaged conditions  
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3.2 Numerical model 

 

To replicate the experimental setup, a finite element model has been implemented in Abaqus 6-14. 

The plate has been modeled as a solid structure and meshed with continuum shell elements (SC8R). 

The piezoelectric actuator and sensor were implemented as circular cells. As a strategy to allow the 

creation of a mapped mesh, the PZTs were bounded with a square region, as shown in Fig. 3 (a)(c). 

The same amplitude used in the experiment was applied as a planar radial force at the PZT borders, 

as shown in Fig. 3 (b). As boundary conditions, plate borders were maintained free. 

  

  

(a) (b) 

 

(c) 

Figure 3 – FE model showing (a) axis orientation, actuator, sensor, and damaged region, (b) applied loads, and (c) mesh 
around the PZT 

 

The stacking sequence of the laminate is unidirectional with [9010] layup orientation with respect to 

the X axis in Fig. 3. Each layer is composed of an elastic material with engineering constants shown 

in Tab. 3, implemented as a laminate property. 

 

Table 3 - CFRP properties 

 

E1 
[MPa] 

E2 
[MPa] 

E3 
[MPa] 

𝝂𝟏𝟐 
[ ] 

𝝂𝟏𝟑 
[ ] 

𝝂𝟏𝟐 
[ ] 

G12 
[MPa] 

G13 
[MPa] 

G23 
[MPa] 

𝝆 [
𝒌𝒈

𝒎𝟑
] 

147 10.3 10.3 0.27 0.27 0.54 7.0 7.0 3.7 1600 

 

  

x 

y 
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An Explicit analysis has been developed. Lamb wave propagation is a dynamic non-linear problem, 

and convergence and stability results depend on the correct mesh sizing and time step. According 

to Gresil et al. [14], 20 elements per wavelength are needed for a good spatial resolution. This 

condition resulted in an average element size of 2 mm. Also, according to Gresil et al. [14], the 

maximum stable time step can be estimated as shown in Eq. (2), resulting in 0.2 μs. Further testing 

showed that a time step of 0.1 μs produced stable results with a reasonable simulation time. 

Abaqus2Matlab routine [15] was used to integrate MATLAB with Abaqus and simulate several 

conditions in sequence. 

 

Δ𝑡 =
1

20𝑓𝑚𝑎𝑥

(2) 

3.3 Neural Network architecture 

 

The neural network models were implemented using the MATLAB Deep Learning toolbox. A 

multilayer neural network with one hidden layer was used. In the input layer, four neurons were used, 

one for each damage index shown in Tab. 1. Damage indices were calculated as presented in 

section 2.4, using the damaged signal and the baseline. Twenty neurons were used in the hidden 

layer and one neuron in the output layer, responsible for indicating the severity of the damage. As 

an activation function, the ReLU function was used. The model was trained using the Root Mean 

Square Propagation (RMSprop) optimization algorithm. The learning rate started at 0.001 and 

decreased every certain number of epochs to minimize overfitting. 

 

The model was trained in three different scenarios, as shown in Fig. 4. These conditions portray real 

procedures in which training can be performed: (1) with only limited experimental data, (2) using only 

numerical data generated by a model, and (3) using limited experimental data together with 

numerical data to extend the training spectrum. All scenarios were evaluated using the same test 

data. The test data aims to assess the model's ability to generalize under conditions with which it 

had no contact during the training stage. 

 

 

Figure 4 – Training and testing layout 

  

Experimental Setup

Finite element model

Training Algorithm Trained ANN#1

Scenario #1

Experimental  
training data

Experimental  
testing data

Numerical
training data

Scenario #2

Scenario #3

Trained ANN#2

Trained ANN#3

Training Algorithm

Training Algorithm

Testing data



8 

 

 

Tab. 4 presents the damage conditions used in each scenario. Labels D1 to D11 refer to damaged 

areas in Tab. 2. 

 

Table 4 – Datasets used in training and learning phase 

Scenario Data used in training phase 
Data used in the testing 

phase 

(1) Experimental data only 
EXP: [D1, D3, D4, D6, D9, D11] 

FEM: [ ] 

[D2, D5, D7, D8, D10] (2) Numerical data only 
EXP: [ ] 

FEM: 12 conditions 

(3) Hybrid training - Experimental 

and numerical data 

EXP: [D1, D3, D4, D6, D9, D11] 

FEM: 12 conditions 

 

Model’s performances were evaluated by comparing the root mean square error (RMSE) between 

the neural network prediction for a given condition and the experimental results. In addition, the 

training process of each condition and possible convergence problems in the optimization algorithm 

for training were evaluated. 

4. Results and discussions 

4.1 Finite element model adjustment 

 

Fine-tuning of the model was performed to approximate the numerical results obtained through the 

finite element model from the experimental ones. The adjustment was made by modifying the 

mechanical properties of the composite material to get similar response curves. The model was 

initially adjusted for the healthy condition. At this stage, the mechanical properties were modified to 

adjust the Lamb wave’s propagation time and shape. Fig. 5 compares the experimental data for the 

healthy plate and the simulated model results. 

 

 

Figure 5 – Comparison between experimental and numerical data in healthy conditions  

 

The addition of damage in the numerical model was done by modifying the properties of the last 

layers of the laminate to simulate the change in the local impedance of the structure caused by 
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delamination. Numerically, the damage severity can be simulated by modifying the number of layers 

with altered properties, the stiffness and mass properties of the composite material, and the extent 

of the damaged area, all of which modify the plate impedance and alter the propagation of Lamb 

waves. The model was created to iteratively simulate multiple damage conditions, and enable the 

automation of tests in various scenarios. Modifications to the size of the damaged region require 

adjustments in size and shape control of local mesh, and these modifications are specific to each 

damage size. This is because explicit wave propagation simulations are very sensitive to the number 

of elements per wavelength [14] and elements distortion. This way , the damaged area was kept at 

a constant size to avoid the need for mesh adaptations for each simulated damage condition. 

 

The real damage, experimentally simulated as a local mass increment, had to be correlated with the 

numerical results. Fig. 6 presents the experimental results for the conditions tested. The ratio 

between damaged and baseline peak amplitudes is shown as function area covered. There is a 

direct correlation between damaged area and peak amplitude reduction. 

 

Modifying mechanical properties at the numerical model also causes changes in peak amplitude. 

Therefore, the peak amplitude in both cases was used as a comparison parameter between the 

experimental and simulated data. The same experimental training conditions shown in Table 4 were 

used during the adjustment of the finite element model. The finite element model was not adjusted 

to the conditions used for testing the neural networks, only for the training ones. Fig. 6 shows the 

training conditions as red dots and the testing conditions as blue dots. 

 

  

(a) (b) 

Figure 6 – Experimental data (a) Dispersion curves, (b) damage impact on peak amplitude. Baseline ( ),  

Training data ( ) and Test data ( ) 

 

Fig.7 shows the dispersion curves for experimental and numerical datasets. 
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(a) (b) 

Figure 7 – Dispersion curves (a) Experimental dataset, (b) Numerical dataset 

 

The similarity between the numerical model and the actual structure can also be evaluated by 

comparing the damage indices in Fig. 8. This figure shows the damage indices of difference between 

the root mean square value of the signal in the time domain (TDRMS), the difference between the 

signals in the frequency domain (FOURIER), the correlation between the signals with zero delay 

(XCOR) and maximum correlation between the signals (XCORmax). The behavior of the numerical 

model is similar to the experimental data when comparing the TDRMS and FOURIER indicators. 

This is because the model adjustment was performed based on the peak value of the output signal. 

Also, as there are no frequency modifications with damage insertion, DITDRMS and DIFOURIER present 

similar trends. Despite this, the correlation-based DIs still manages to capture the trend of the 

damage index, as can be seen from the shape of the XCOR and XCORMAX curves in Fig. 8. The 

correlation differences observed between the model and experimental data can be attributed mainly 

to the region after  5x10-5 s in Fig. 7. In the future, the model adjustment strategy can be modified to 

quantify not only differences between the peak value but also multiple wave peaks and delays in the 

signal. 

 

 

Figure 8 – Comparison between Dis obtained from experimental (o- blue) and numerical (*- red) data.  

4.2 Damage quantification 

 

One hundred neural networks were trained for each condition presented in Tab. 3. The performance 

of the networks was evaluated by comparing the predictions for damage severity in the five 

conditions not used during the training process. Fig. 9 presents the dispersion of predictions from 
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neural networks for the three proposed training scenarios. The RMSE between the predicted and 

actual damage severity was calculated and used as a performance measure. 

   

(a) (b) (c) 

Figure 9 - Comparison between predicted and real damage from: (a) condition 1 – Experimental data only, (b) condition 2 – 
Numerical data only, and (c) condition 3 – Experimental and numerical data 

 

The model trained with only experimental data presented more dispersion in the predictions 

compared to the other two scenarios. In addition, this model presented difficulty in converging in the 

training stage. This is due to the limited amount of information the neural network has in these cases. 

Training with only six damage conditions can cause the optimization algorithm to get stuck in a local 

minimum and be unable to obtain a satisfactory fit to the data. Fig. 10 shows examples of 

convergence problems during the training phase. 

  

(a) (b) 

Figure 10 – Convergence analysis (a) Case with convergence problems, (b)Case with convergence 

 

Fig. 7 presents the probability dispersion for the RSME of neural network predictions. For training 

cases exclusively with experimental or numerical data, it is possible to observe situations in which 

the RMSE was greater than 0.7. These points correspond to cases where the model failed to 

converge to a satisfactory solution. The model based on only experimental data could not converge 

50% of the time, compared to 34% of the time for the purely numerical model. The model trained 

with mixed data converged in all training rounds. As the strictly experimental model has little 

information to construct an approximation function, it has often been found in situations where the 

training algorithm does not converge. Even if numerically simulated, the increased amount of data 

fills information gaps that the model cannot perform. 
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Eliminating non-convergence cases, it is possible to compare the performance of networks that were 

able to fit the data. Tab. 5 presents the RMSE data for all cases and for only the cases that 

converged, in addition to the number of cases that did not. The case with hybrid training presented 

the best performance, with RMSE 46.7% lower than the model trained only with experimental data. 

 

Table 5 – RMSE and convergence information 

Condition 
RMSE 

All data 

# non-

convergences 

RMSE 

Converged cases only 

#1 – Experimental only 0,3974 50 0,0473 

#2 – Numerical only 0,2831 34 0,0303 

#3 – Experimental and numerical 0,0251 0 0,0251 

 

Fig. 11 shows the probability distribution of the RMSE, excluding cases of non-convergence in 

training. The model trained with hybrid data showed the lowest dispersion in the predictions and the 

lowest average in the RMSE. On the other hand, the models trained with only experimental data 

presented greater dispersion of results, performing worse than the other two scenarios. 

 

 

Figure 11 – RMSE probability distribution excluding non-convergence cases 

 

Thus, the training strategy that uses mixed data presented the best performance among the three 

approaches. Neural networks need a large amount of data under different conditions to make 

predictions. Therefore, training with a limited number of conditions, as tested in the scenario of only 

experimental data, performs worse than the others. In a real structure, obtaining more data for 

training would require more tests with different damage conditions. This means more lab hours and 

costs involved in system development. For the plate used in this work, a well-fitted numerical model 

based on a limited amount of experimental data was able to simulate untested conditions and feed 

the neural network used as a classifier. 

 

The predictions of the neural networks can be improved by increasing the quality of the model and 

adjusting the architecture of the networks as a function of the amount of data used for training. The 

numerical model can be improved by modifying the tuning parameters to include multi-peak 

amplitude effects and delays in the signal. And the network architecture can be fine-tuned based on 

the amount of training data, modifying the quantity of neurons and number of layers, for instance. In 

the present work those parameters were maintained fixed as a simplification to minimize the number 

of variables involved in the study.   
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5. Conclusions 

 

The work presented an analysis of damage quantification in a composite material plate using 

multilayer neural networks and hybrid training. The analyzes were performed in three scenarios: (1) 

using only experimental data, (2) only simulated data, and (3) combined experimental and numerical 

data for training the networks. The simulated data were obtained from a finite element model fitted 

using healthy and damaged data. This model was then used to simulate other conditions and train 

the neural networks. 

 

Neural networks were compared based on performance during the training stage and their ability to 

predict unknown scenarios. Models trained with hybrid data showed the best results compared to 

models trained only with experimental or numerical data. The mean squared error of models trained 

with hybrid data was 46.7% lower than models trained with experimental data only. In addition, these 

models showed less dispersion in damage prediction and did not have convergence problems. This 

approach could be used in the future with more complex structures to reduce the number of 

experimental scenarios needed to train a classifier in an SHM system. 
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