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Abstract

Experiments were conducted to study the transition and flow development in a laminar separation bubble (LSB)
formed on an aerofoil. The effects of a wide range of freestream turbulence intensity (0.15% < Tu < 6.26%) and
streamwise integral length scale (4.6mm < Λu < 17.2mm) are considered. The coexistence of a modal instability
due to the LSB and a non-modal instability caused by streaks generated by freestream turbulence is observed.
The presence of streaks in the boundary layer modifies the mean flow topology of the bubble. These changes
in the mean flow field result in the modification of the convective disturbance growth, where an increase in
turbulence intensity is found to dampen the growth of the modal instability. For a relatively fixed level of Tu,
the variation of Λu has modest effects, however, a slight advancement of the non-linear growth of disturbances
and eventual breakdown with the decrease in Λu is observed. The data shows that the streamwise growth of
the disturbance energy is exponential for the lowest levels of freestream turbulence and gradually becomes
algebraic as the level of freestream turbulence increases. Once a critical turbulence intensity is reached, there
is enough energy in the boundary layer to suppress the LSB, which in turn, results in the non-modal instability
taking over the transition process. Linear stability analysis is conducted in the fore position of the LSB, and
accurately models unstable frequencies and eigenfunctions for configurations subjected to levels of turbulence
intensity levels up to 3%.
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Introduction
For boundary layer flows at low Reynolds numbers viscous effects are significant, such that the pres-
ence of a strong enough adverse pressure gradient can cause a laminar boundary layer to separate
from the wall. As a result of boundary layer separation, the detached laminar shear layer undergoes
the transition to turbulence. These types of flows are common in engineering applications such as
micro-aerial vehicles [Jaroslawski et al., 2022a,b]. The transition process in the separated shear
layer involves the amplification of the convective (Kevin Helmholtz) instability in the fore portion of the
bubble and is modeled well with Linear Stability Theory. The effects of freestream turbulence (FST)
and the integral length scale on boundary layer transition have not been addressed to the same
extent as for attached boundary layers (Fransson and Shahinfar [2020]), notably, there is a lack of
experimental results on the role of the integral length scales. Recently, Istvan and Yarusevych [2018]
experimentally investigated the effects of FST on an LSB over a NACA0018 aerofoil using Particle
Image Velocimetry (PIV). They found that increasing the level of FST decreases in the chordwise
length of the LSB due to a downstream shift of the separation point and an upstream shift of the
reattachment point. They concluded that the maximum spatial amplification of disturbances in the
separated shear layer decrease with increasing Tu, implying that the larger initial disturbances are
solely responsible for the earlier transition and reattachment. At levels of FST of 1.99%, streamwise
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streaks were found upstream and inside the bubble, similar to early experiments by Häggmark et al.
[2000], signifying the onset of turbulence induced or "bypass" transition, and suggesting that the dom-
inance of this transition mechanism could eliminate the bubble. Hosseinverdi and Fasel [2019] used
direct numerical simulations (DNS) to investigate the role of isotropic FST on an LSB and reported
Klebanoff modes upstream of the separation location. It was suggested that the boundary layer tran-
sition process consisted of two mechanisms. The first, low-frequency Klebanoff modes caused by
the FST, and the second, the FST amplifying frequencies of the order of the shedding the FST en-
hancing the initial levels of instability waves in the frequency range of the KH instability, albeit at a
lower amplitude than the Klebanoff modes. Depending on the level of FST either one or both of these
mechanisms would dominate the transition process.
The objectives of the current experimental investigation are to study the impact of freestream tur-
bulence and integral length scale on the convective growth of energy disturbances and transition
mechanisms in an LSB.

Experiments
The experiments were conducted at atmospheric conditions in the ONERA Toulouse TRIN 2 subsonic
wind tunnel. The maximum freestream turbulence level (measured near the leading edge of the
aerofoil, cf. Fig. 1a) in the test section with the aerofoil mounted was found to be below 0.15 %.
The freestream velocity was fixed at U∞

∼= 6m/s for all test configurations, corresponding to a chord-
based Reynolds number, Rec = U∞c/ν of 125000. The angle of attack, AoA, was fixed to a value of
2.3◦ throughout all the experiments. Velocity measurements are acquired using a Dantec Dynamics
Streamline Pro system with a 90C10 module and a 55P15 boundary layer probe mounted on a two-
dimensional traverse, at a sampling frequency of 25 kHz. Freestream turbulence measurements
were conducted using a 5 µm Dantec 55P51 X-Wire probe. Freestream turbulence is generated in a
controlled manner using a variety of regular and fractal grids (refer to Fig. 1 b,c) set up in a way such
that turbulence interacting with the bubble would be approximately isotropic and homogeneous. The
evolution of the grid-generated turbulence was characterised before the leading edge and above the
aerofoil. Infrared Thermography measurements were also conducted to validate the spanwise flow
homogeneity of the bubble (which are not presented in the present paper). The experimental setup
is presented in Fig. 1a. The uncertainty in hotwire measurements was estimated to be less than
3%, for U/U∞ > 0.2, and the uncertainty in the hotwire positioning is estimated to be less than 0.05
mm. The use of HWA in the study of LSBs is fraught with difficulty. In particular, the mean velocity
measurement cannot detect the reverse flow region in the LSB. Nevertheless, as demonstrated by
Boutilier and Yarusevych [2012], HWA can be used to study the transition mechanisms in an LSB.

Results
Mean Flow Field
The mean streamwise velocity and urms contours (which are composed of 21 streamwise velocity pro-
files separated by 0.025c in the chordwise direction) are presented in Fig. 2a and show the presence
of an LSB that extends from xS/c = 0.375 ± 0.05 to xS/c = 0.700 ± 0.025 for the natural case. In the
presence of freestream turbulence forcing the mean flow topology of the LSB changes, in particular,
a slight delay of boundary layer separation is observed, the height decreases significantly and the
mean transition position advances upstream as can be observed in Fig. 2b. At the highest level of
Tu (Fig. 2c), no LSB is observed as there is enough energy injected from the freestream turbulence
into the boundary layer to suppress the laminar separation. The measurements, in accordance with
previous studies [Istvan and Yarusevych, 2018, Simoni et al., 2017, Hosseinverdi and Fasel, 2019],
show that with the increase of Tu, the streamwise extent of the separation bubble is reduced. This
is a result of an earlier onset of pressure recovery, caused by the shear layer transitioning in the aft
position of the LSB.

Power spectral density
The power spectral density (PSD) of the streamwise velocity fluctuations was calculated for each
configuration, with the chordwise evolution presented in Fig. 3. In the cases where an LSB was
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Figure 2. Scaled drawings of the turbulence generating grids. Note that the origin of the
coordinate system is the centre of the grid.

two grids would produce the strongest possible turbulence by comparison to smaller
grids with similar geometrical features. We further conjectured that, for a meaningful
comparison of the performances of grids of different sizes, and even different designs, one
must also match their solidities, as this would ensure that the pressure drop behind all
grids would be roughly the same; we note that this is true not only for regular grids, but
also for fractal square grids (Laizet & Vassilicos 2015). The solidity of all our grids was
set to 0.25 ± 0.02, inline with values used in previous studies of fractal grids. Finally, to
minimise element thickness effects, we machined all grids from metallic sheets of the same
standard thickness, which was actually chosen to be the smallest one that would ensure
their structural integrity. One of the grids (“fractal square grid” – FSG) was multiscale,
which is a geometry known to produce extended downstream regions of C

"

≠ constant.
This grid, which had N = 4 levels of partially overlapping elements, was made of titanium
to ensure sufficient stiffness of the smallest elements and was sanded following machining
to remove edge roughness. The length and the frontal thickness of the largest elements in
FSG were, respectively, indicated as L0 and t0, and those of subsequent levels as L1, t1

etc. FSG was designed such that the thickness ratio, t
r

, between the largest and smallest
bars was t

r

= t0�t3 = 22.3. Consequently, the ratio between subsequent elements were
determined as R

t

= t

1�(1−N)
r

= 0.355. As with previous fractal grid designs (Valente &
Vassilicos 2011, 2012; Gomes-Fernandes et al. 2012; Valente & Vassilicos 2014; Hearst
& Lavoie 2014; Valente & Vassilicos 2015), the ratio between the length of subsequent
elements was set to 0.5; as an example, L1 = 0.5L0. The three other grids (RG160, RG80
and RG18) were “regular” square grids, each with elements closely matching the first-,
second- and fourth-level elements of FSG. RG18 also matched the effective mesh size
(Hurst & Vassilicos 2007) of FSG.
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Figure 1 – a )Experimental Setup. (b) Schematic of regular grid (configs. C0-C6) and (b) fractal grid
(config. C7)

present, the PSD exhibits a characteristic frequency band which amplified downstream (cf. Fig. 3a-
g). When the LSB was subjected to FST the chordwise development and distribution of the spectra
is significantly modified. First, the unstable frequency band is broadened, which is a consequence
of significant energy content within a broader range of frequencies in the FST, resulting in measur-
able velocity fluctuations over a broader frequency range earlier upstream. Second, increasing the
freestream turbulence level results in the unstable frequency band being slightly shifted to a higher
frequency range compared to the natural case. For example, increasing the freestream turbulence
level from the baseline to a value of Tu = 1.23%, results in the frequency band being shifted from
110−150Hz to 180−220Hz (cf. Fig. 3a and d). Referring to Fig. 3a-g, the unstable frequency band
is propagated upstream of the separation point and is due to the streamwise oscillation of the sep-
aration bubble. The highest frequency wave packet is found to occur in the highest Tu case which
was 255−295Hz, wherein the highest cases (Tu > 4%, Fig. 3h,i) no clear frequency band is observed
and is thought to be due to the LSB not being present anymore, inferring a change in the instability
mechanism. The frequency shift of the wave packet is attributed to the decreased streamwise length
and height of the LSB and has been observed in Hosseinverdi and Fasel [2019]. Current results sug-
gest that in the configurations that are subjected to a turbulence intensity of Tu < 3% the harmonic
of the frequency band is still observed, which could suggest that in the presence of moderate levels
of FST the secondary instability of the primary modal instability could still be present. The current
results also indicate that if the Tu is increased to a certain level, the harmonic of the wave packet is
barely noticeable (cf. Fig.3g), suggesting that there is a certain threshold of FST forcing which will
"bypass" the secondary instability, which will still exist in moderate cases, and in accordance with
the numerical simulations of Li and Yang [2019]. Additionally, as in Balzer and Fasel [2016], possible
harmonics are observed in the spectra for the LSB subjected to FST. The impact of the integral length
scale has a negligible effect on the unstable frequency range of the wave packet.
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(a) (b) (c)Tu = 1.21%, !u = 8.71 mmTu = 0.15 %, !u = 210 mm Tu = 6.26 %, !u = 17.18 mm

Figure 2 – Contours of the mean streamwise velocity (U) and the r.m.s of the fluctuating streamwise
velocity (urms) (a) 0.15% (b) 1.21% and (c) 6.28%.

Pauley et al. [1990] proposed a scaling of the most unstable frequency in an LSB, in the form of a
Strouhal number defined as:

Stδ2 =
Fδ2,s

Ue,s
(1)

where F is the most amplified frequency observed in the experiment, δ2,s and Ue,s are the momentum
thickness and boundary layer edge velocity at separation, respectively. Inspired by the analysis of
Rodríguez and Gennaro [2019] and Rodríguez et al. [2021], who compared the value of the Stδ2 for
past experiments on LSBs, Fig. 1 compares the value of Stδ2 as a function of Tu (for the cases where
an LSB was observed). In the configuration where the laminar separation bubble is subjected to no
additional freestream turbulence, Stδ2 = 0.0062, compared to the ’universal’ Stδ2 = 0.0069 proposed by
Pauley et al. [1990] for 2D numerical simulations of a laminar separation bubble. However, increasing
the Tu causes Stδ2 to increase, when compared to the baseline case, approaching values closer to
what was proposed by Rodríguez et al. [2021] of Stδ2 = 0.01− 0.012 for a bubble acting as a global
oscillator. Data from Istvan and Yarusevych [2018] also suggest this effect and Pauley et al. [1990]
found that Stδ2 = 0.0124− 0.0136 in 3D unforced numerical simulations twice as large of what was
observed for 2D simulations. Therefore, the increased values of Stδ2 suggest that the presence of
freestream turbulence (or increased levels of forcing) could favour the inherent three-dimensional
nature of the transition process in the LSB. Furthermore, Rodríguez and Gennaro [2019] found that
increasing the recirculating velocity in the bubble, increased the values of Stδ2 which could manifest
here as well as the LSBs subjected to FST are smaller in size for the same convective velocity, which
could result in larger levels of re-circulation inside the bubble. Finally, discrepancies in the values can
be associated with the fact that the experiments were conducted on both flat plates (with imposed
pressure gradients) and aerofoils, different Reynolds numbers, the surface finish of the model, and
the inherent uncertainty in the various measurement techniques.

Disturbance energy growth
The effect of increasing the level of Tu on the chordwise evolution of the disturbance energy growth
(E = u2

rms/U2
e ) is presented in Fig. 4a, where the trend of disturbance growth gradually changes from

exponential, at lower levels of Tu, to algebraic for the more extreme Tu levels, where energy saturation
is observed earlier. Algebraic or transient growth is associated with a non-modal instability, commonly
due to streaks in boundary layer flows subjected to elevated levels of freestream turbulence (Tu > 1%
) and has been well documented for zero-pressure gradient attached boundary layers [Matsubara
and Alfredsson, 2001]. These different energy growth behaviours suggest that different instability
mechanisms are present in the flow, and their contribution to the transition process depends on the
level of the freestream forcing.
The gradual reduction in the slope of the chordwise energy growth with increasing Tu would suggest
that the non-modal instabilities become more dominant, which can be thought of as competing with
the modal instabilities which grow exponentially. Once the turbulence forcing reaches a critical level,
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Figure 3 – a-g) Chordwise evolution of the Power Spectral Density (PSD) at the maximum location
of umax inside the boundary layer for each configuration. Where the frequency bands correspond to

the vertical dashed lines which indicate the most amplified frequency band used in the stability
analysis in the following section. Red and blue curves denote xS and xR, respectively. NB: Spectra
are separated by an order of magnitude for clarity. h) The dimensionless frequency, Stδ2 , plotted

against the turbulence intensity, Tu, for the present results and experimental data from the literature.

the excited streaks in the boundary layer are too energetic to allow the flow to separate, resulting in
the elimination of the modal via the non-modal instability. Damping of the modal disturbance growth is
attributed to the mean flow deformation due to the influence of freestream turbulence. In other words,
external freestream turbulence forcing reduces the size of the separation bubble, such that the region
of instability growth is brought closer to the wall, resulting in damping effects of the disturbances in
the shear layer.
The impact of the integral length scale for a relatively constant Tu level on the disturbance growth is
presented in Fig. 4c, suggesting that the effect of the integral length scale on the growth of distur-
bances in the LSB is very modest. Achieving constant levels of Tu with a varying Λu is an experimental
challenge, as shown by Fransson and Shahinfar [2020]. In the present work, three cases that have a
very small variation in Tu and a larger variation in Λu are investigated. It is observed that an increase
in Λu at the leading edge of the aerofoil for an almost constant Tu appears to delay the growth and
eventual saturation and breakdown of the disturbances. This is in agreement Breuer [2018], who
suggested that the smaller scales were closer to that of the shear layer, resulting in the receptivity
of the boundary layer to increase. Hosseinverdi and Fasel [2019] briefly suggested that the integral
length scales ranging from 0.9δ1 to 3δ1 had little effect on the energy growth relative to the Tu, which
is observed in the experimental results here. Furthermore, a smaller integral length scale resulted
in a higher initial level of disturbance energy in the boundary layer and has been also observed by
Hosseinverdi [2014], however in their work, the saturation of the energy growth was found to be in-
dependent of Λu. Breuer [2018] conducted an LES on an aerofoil and found that a reduction of the
integral length scale advanced the transition position, suggesting that smaller scales closer to that of
the shear layer resulted in the receptivity of the boundary layer increase. Based on the experimen-
tal observations here and past numerical simulations, an effect of the integral length scale could be
present and further investigation is warranted. However, the effect will likely be small compared to
the Tu, in light of the results here and Hosseinverdi and Fasel [2019].
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Linear Stability Analysis
Linear Stability Theory (LST) models the amplification of small amplitude disturbances [Schmid and
Henningson, 2000] and has been employed to study the convective streamwise amplification of distur-
bances in the LSB. The Orr-Sommerfeld given by Eq. 2, can reliably predict the primary amplification
of instability waves for parallel flows and in the fore position of an LSB [Kurelek et al., 2018].(

U − Ω

α

)(
d2ṽ
dy2 −α

2ṽ
)
− d2U

dy2 ṽ =− iUeδ1

αReδ1

(
d4ṽ
dy4 −2α

2 d2ṽ
dy2 +α

4ṽ
)

(2)

where Reδ1 is the Reynolds number based on displacement thickness, ṽ is the wall-normal perturba-
tion, Ω is the angular frequency and the complex wavenumber is defined as α = αr + iαi , where i is
the imaginary unit. When αi > 0 the disturbance is attenuated and amplified when αi < 0.
Calculations were conducted using ONERA’s in-house stability code, where a spatial formulation of
the problem is employed [Schmid and Henningson, 2000], such that Ω is defined and the eigen-
value problem is solved for α, therefore modeling the convective amplification of single frequency
disturbances. Equation 2 is solved numerically using Chebyshev polynomial base functions and the
companion matrix technique to treat eigenvalue non-linearity [Bridges and Morris, 1984].
The mean streamwise velocity profiles at discrete streamwise locations are used as input for the LST
calculations, making the analysis local, with the same methodology employed by Yarusevych and
Kotsonis [2017] and Kurelek et al. [2018]. In the stability analysis, the higher-order spatial gradients
are highly sensitive to noise, therefore hyperbolic tangent fits are used for the calculations. This
method has been shown to provide accurate linear stability predictions on HWA velocity profiles of
separated shear layers [Boutilier and Yarusevych, 2012]
A measure of the amplitude growth is quantified from LST through the computation of amplification
factors and will be referred to as the N−factor hereinafter. The N−factor as a function of streamwise
position (x) and frequency (F) from LST calculations and is quantified by integrating αi for the most
amplified frequency in the positive x−direction:
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N(x,F) =
∫ x

xcr

−αi dx (3)

where xcr is the critical abscissa and corresponds to the location at which a perturbation at a fre-
quency of Ω is first amplified. The location of xcr is upstream of the hot wire measurement region and
therefore cannot be determined directly. However, as demonstrated by Jones et al. [2010], Kurelek
et al. [2018], Yarusevych and Kotsonis [2017] and Kurelek [2021], in the fore portion of the LSB the
streamwise evolution of αi can be approximated by a second-order polynomial. For example, Kurelek
[2021] (HWA, Ch. 6) and Kurelek et al. [2018] (PIV) demonstrated that the (−αi) obtained from LST
calculations, for four velocity profiles before and after the separation position could be used in the
interpolation. Considering this, xcr can be determined by extrapolating the fit to αi = 0. Experimen-
tally, the N−factor is calculated as N(x) = ln(A(x)/Acr), where A(x) denotes the maximum disturbance
amplitude in the boundary layer for a given frequency band (band-pass filtered urms) and Acr denotes
the initial disturbance amplitude that becomes unstable. A direct comparison of N−factor obtained
from LST and experiment is not possible since, experimentally, the initial disturbance amplitude is not
known and likely to be too small to be measured, only being detected well downstream of xcr. Nev-
ertheless, following Schmid and Henningson [2000], N−factors are matched at a reference location
where the disturbance amplitude reaches 0.005U∞, consequently allowing for an estimate of Acr for a
given frequency band.
In the baseline configuration (cf. Fig. 5a, NB. the figures show both the energy in the spectra
and αi and direct comparisons between their magnitudes are not to be made, only the frequencies
at which the largest magnitudes occur), the overlaid plot between PSD and αi show that LST is
capable of predicting the most amplified frequencies from experiment, with acceptable accuracy (10%
difference). For example, Kurelek et al. [2018] and Yarusevych and Kotsonis [2017] found a difference
of 17%, while stating this to be an acceptable range. The validity of the LST predictions is further
supported by a comparison with experimental N−factors (cf. Fig. 7a), which reveals that the linear
growth of disturbances is captured between 0.475 < x/c < 0.525, comparable to the same analysis
by Kurelek et al. [2018] who found LST to accurately capture the growth of disturbances between
0.42 < x/c < 0.46 in the experiment. Furthermore, the downstream saturation of the experimental
N−factors, begins to deteriorate the agreement between LST due to non-linear effects becoming
significant. The eigenfunction of the most amplified frequency predicted by LST is presented in Fig
6a, and is in acceptable agreement with the experiment for filtered fluctuating streamwise velocity
profile in the wall-normal direction, for the most amplified frequency band. The eigenfuction exhibits
two distinct peaks at approximately y/δ1 = 1, corresponding roughly to the inflection point and y/δ1 =
0.3, which is indicative of a viscous modal instability [Veerasamy et al., 2021]. Rist and Maucher
[2002] showed that LSBs with smaller wall-normal distances could exhibit a viscous modal instability.
Therefore, based on the agreement seen in unstable frequencies, eigenfunctions, and amplification
rates (Figs. 5a, 6 and 7a), it is established that the employed LST analysis is justified for determining
stability characteristics in the fore portion of the LSB.

Co-existence of a modal and a non-modal instability
The disturbance profiles in the aft position of the bubble presented in Fig. 8b,c, strongly suggest
the existence of the non-modal growth or streaks as the profiles exhibit self-similar behaviour with
the optimal disturbance profiles from the theoretical work of Luchini [2000], with the maximum value
of urms occurring near y/δ1 = 1.3 for all configurations with Tu > 1%. The current results demon-
strate self-similarity of the disturbance profiles over most of the boundary layer. These observations
made in Figs.6 and 8 imply the co-existence of both modal and non-modal instability mechanisms,
experimentally confirming the observations made by Hosseinverdi and Fasel [2019]. In contrast, in
configurations where the Tu < 1% (refer to Fig. 8a), wall-normal disturbance profiles do not agree
with theoretical predictions and do not exhibit the same behaviour as for configurations with Tu > 1%,
with the maxima of the peaks being between y/δ1 = 0.3− 0.5, inferring that there is no formation of
streaks and that only a viscous modal transition mechanism is present. The observation of damp-
ing behaviour on the disturbance growth presented in the previous section (Fig. 4) being due to the
non-modal amplification of streaks is supported by the results in Fig. 8. Finally, when the bubble is
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Figure 5 – Comparison between the amplified frequencies predicted by LST to the experimental
spectra. NB: Two different y−axes for αi and the power from the PSD, therefore direct comparisons

between the two are not be made.
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Figure 6 – Experimental filtered disturbance profiles in the wall-normal direction compared to the
eigenfunction for the most amplified frequency from LST. Experimental streamwise disturbance

profiles are computed by applying a bandpass filter corresponding to the lost amplified frequency
band from the PSD.

subjected to a sufficient level of freestream turbulence forcing (Tu > 3%, in the present configuration)
the formation of an LSB is not observed in the experimental data, suggesting that there is a critical
initial forcing amplitude which will generate streaks containing enough energy to suppress boundary
layer separation by promoting earlier transition. Disturbance profiles (cf. Fig. 8c) are in very good
agreement with the theory.

Conclusions
The present investigation examined the effects of varying the freestream turbulence intensity and
integral length scale on the flow development and transition in a laminar separation bubble. The
current work provides experimental evidence on the coexistence of modal and non-modal instabilities
in a laminar separation bubble. It is shown, through experiment and theory, that even at relatively
high/moderate turbulence intensity levels the modal instability is still operational in an LSB and the
primary growth can be satisfactorily predicted with the Orr-Sommerfeld formulation. The damping of
the streamwise growth of disturbances is due to the presence of streaks caused by the elevated levels

8



STABILITY AND TRANSITION OF AN LSB SUBJECTED TO FST

(d)

0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6
LST
Exp.

0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

(a) (c)(b)

(e) (f) (g)

Tu = 0.15% Tu = 0.64% Tu = 1.21% Tu = 1.23%

Tu = 1.31% Tu = 1.63% Tu = 2.97%

Figure 7 – Comparison of experimental (markers) LST (dashed line) predicted N−factors for
frequencies within the excitation bands from Fig. 3 for configurations where a laminar separation

bubble is present. Initial disturbance amplitudes are estimated through matching LST and
experimental N−factors

0 0.5 1
0

1

2

3

4

5
4.16%
6.26%

0 0.5 1
0

1

2

3

4

5

0 0.5 1
0

1

2

3

4

5

LSB present No LSB present

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.01

0.02

0.03

0.04

0.05
0.15%
0.64%, 6.72 mm
1.21%, 8.71 mm
1.23%, 10.31 mm
1.31%, 8.31 mm
1.63%, 12.33 mm
2.97%, 15.42 mm
4.16%, 16.81 mm
6.26%, 17.18 mm

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.01

0.02

0.03

0.04

0.05
0.15%
0.64%, 6.72 mm
1.21%, 8.71 mm
1.23%, 10.31 mm
1.31%, 8.31 mm
1.63%, 12.33 mm
2.97%, 15.42 mm
4.16%, 16.81 mm
6.26%, 17.18 mm

0 0.5 1
0

1

2

3

4

5
4.16%
6.26%

0 0.5 1
0

1

2

3

4

5
4.16%
6.26%

(a) (b) (c)

Figure 8 – Disturbance profiles for a) configurations with Tu < 1% (with LSB) b) 1% < Tu < 3% (with
LSB) and c) Tu > 3% (no LSB)

of freestream turbulence, which modify the mean flow topology of the bubble through the introduction
of non-modal disturbances (streaks) into the boundary layer.
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