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Abstract

Most engineering design optimization problems are complex and expensive multi-objective optimization prob-
lems with multiple constraints. This paper proposes an improved surrogate-based multi-objective optimization
algorithm (SBMO) using an adaptive weight vector generation method to address them. The main idea of
the improved SBMO is to update the weight vectors of sub-problems adaptively according to the shape of the
current Pareto front (PF) at each iteration while using SBMO to obtain Pareto optimal solutions. First, the
improved SBMO decomposes a multi-objective optimization problem into a set of single-objective optimization
sub-problems and builds surrogate models for each objective. Second, solutions are obtained by solving the
acquisition problems for the sub-problems under the infill-sampling criteria. Third, all the solutions obtained
will be evaluated and used to update the surrogate models to share the search information. At each iteration,
the improved SBMO will divide the topology of the current PF evenly and select random points between the
segment points. Well-distributed weight vectors will be generated based on the random points. This weight
vector generation method can significantly improve the distribution of Pareto optimal solutions. The studies on
benchmark test instances and aerodynamic design optimization of an airfoil indicate that the improved SBMO
can obtain Pareto optimal solutions with better distribution than SBMO in a small number of sample points, and
offers great potential to solve an expensive multi-objective optimization problem.
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1. Introduction
Engineering design optimization in the real world, like aerodynamic design optimization, is often
formulated as a complex and expensive optimization problem with multiple objectives and constraints.
Applying the existing multi-objective evolutionary algorithm to solve this problem is often suffered from
the difficulty associated with high-fidelity numerical simulation such as computational fluid dynamics
(CFD) or computational solid dynamics (CSD). Therefore, developing an optimization algorithm that
can obtain good optimal solutions within a limited computational cost has great practical value for
real-world engineering design optimization.
In the area of expensive optimization, it has been proved that using the surrogate model to replace
the expensive numerical simulation is an effective way [1]. Besides the studies on single-objective
problems, there have been some studies on extending the surrogate model to solve the expensive
multi-objective problems [2]. In 2006, Knowles [3] proposed ParEGO, which extends the efficient
global optimization method (EGO) [4] to the multi-objective problem by using the Tchebycheff ap-
proach to convert a multi-objective problem to several single-objective problems. Kanazaki [5] and
Obayashi [6] et al. also proposed an extension of EGO, called multi-EGO, which obtains the Pareto
optimal solutions and updates the surrogate models by applying the multi-objective genetic algorithm
(MOGA) to optimize the expected improvement (EI) functions of objectives. Keane [7] and Emmerich
[8] proposed multi-EI and expected hypervolume improvement (EHVI) infill-sampling criteria for multi-
objective problems. With the assistance of surrogate models, those works significantly improved the
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efficiency of optimization compared to traditional multi-objective evolutionary algorithms. Those al-
gorithms, however, can only obtain one candidate sample point at each iteration. In 2010, Zhang
[9] proposed MOEA/D-EGO by introducing Kriging model (Gaussian stochastic process model) into
MOEA/D to deal with the expensive multi-objective optimization, which can obtain a number of candi-
date sample points at one iteration. Lin [10] and Silva [11] further proposed MOBO/D and s-MOEA/D,
respectively. These works further improved the efficiency and convergence of multi-objective opti-
mization algorithms.
In 2019, Han and Liu [12] proposed a surrogate-based multi-objective optimization algorithm (SBMO)
by combing surrogate-based optimization with the strategy of decomposition. The basic idea of
SBMO is to decompose a multi-objective optimization problem into several single-objective optimiza-
tion sub-problems and optimize them simultaneously, in which global surrogate models of each ob-
jective are used to enable full cooperation between sub-problems. The experimental studies on nu-
merical cases show that SBMO is efficient, robust and has a good capability of constraint handling.
And SBMO is successfully applied to multi-objective aerodynamic shape optimization of a transonic
airfoil, offering its great potential to solve expensive multi-objective problems in real-world engineering
design optimization.
This paper does further works on SBMO and the goal of this paper is to improve the distribution
of Pareto optimal solutions obtained. Since SBMO is one of the algorithms under the Tchebycheff
approach and uses weight vectors to guide the search direction of sub-problem optimization, the
weight vector generation method plays a significant role in it. Reasonable distribution of weight
vectors will lead to good distribution of Pareto optimal solutions. An improved SBMO is proposed in
this paper, which uses an adaptive weight vector generation method we developed to obtain well-
distributed Pareto optimal solutions.
The remainder of this paper is organized as follows. Section 2 presents the framework of the improved
SBMO. Section 3 presents the experimental studies on numerical cases. Section 4 presents an
aerodynamic design optimization of a wide-Mach-number-range airfoil using the improved SBMO.
And section 5 is for the conclusions.

2. The Algorithm Framework
In this section, we will describe the framework of the improved SBMO. The definition of a multi-
objective problem and the Tchebycheff decomposition approach will be described at first. Besides,
we will discuss the developed adaptive weight vector generation method in detail.

2.1 The Tchebycheff Approach for Multi-Objective Problems
2.1.1 Multi-Objective Problems
A continuous multi-objective problem (MOP) can be defined generally as:

min . F(x) = ( f1(x), · · · , fm(x))T

s.t. G(x) =
(
g1(x), · · · ,gng(x)

)T ≥ 0

x = (x1, · · · ,xk)
T ∈ Ω

(1)

where F(x) → Rm consists of m individual objective functions and Rm denotes the objective space.
G(x) are ng constraint functions. x = (x1, · · · ,xk)

T is a decision variable which represents a solution to
the target MOP and Ω is the k-dimensional decision space (or search space).
Let xa,xb ∈ Ω be two solutions of a MOP. xa is said to dominate xb if and only if fi(xa) ≤ fi(xb),∀i ∈
{1, . . . ,m} and f j(xa) < f j(xb),∃ j ∈ {1, . . . ,m}. A solution x∗ ∈ Ω is called Pareto optimal if there is no
other solution x ∈ Ω dominating x∗. The set of all the Pareto optimal solutions is called Pareto optimal
set, denoted by PS. And the Pareto optimal front, denoted by PF , is defined as the collection of all
the corresponding objective vectors of the solutions in PS.

2.1.2 The Tchebycheff Approach
There are several approaches had been developed to decompose a MOP into several single-objective
sub-problems such as the weight sum approach, the Tchebycheff approach, the penalty-based
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boundary intersection approach [13] and so on. Among these decomposition approaches, the Tcheby-
cheff approach is the most widely used approach for its ability to solve MOPs with the non-convex
Pareto optimal front.
A single-objective optimization sub-problem decomposed by the Tchebycheff approach can be for-
mulated as:

min
x∈Ω

gtc (x | λ ,z∗) = min
x∈Ω

max
1≤i≤m

{λi | fi(x)− z∗i |} (2)

where λ = (λ1, · · · ,λm) is the weight vector of the sub-problem. z∗ = (z1, · · · ,zm) is the reference point
in objective space. In this paper, z∗i = min

{
f̂i(x)

}
, f̂i(x) is the predictive value given by surrogate

models of objectives.
A mapping vector λ ′ corresponding to the weight vector λ can be defined as:

λ ′ =WS(λ ) =

(
1
λ1

∑m
i=1

1
λi

,

1
λ2

∑m
i=1

1
λi

, . . . ,

1
λm

∑m
i=1

1
λi

)
(3)

Notice that it is a self-inverse equation. That is, λ = WS(λ ′) = WS(WS(λ )). It has been proved that
the optimal solution to the single-objective sub-problem with weight vector λ is the intersection of the
PF and the mapping vector λ ′, if the intersection exists [14].

2.2 The Adaptive Weight Vector Generation Method
The objective of this paper is to improve the distribution of the Pareto optimal solutions on the PF.
Since the optimal solution to a single-objective optimization sub-problem is the intersection of the
mapping vector and the true PF, the distribution of mapping vectors has a serious impact on the dis-
tribution of the Pareto optimal solutions on the PF. Therefore, in order to obtain the optimal solutions
with a good distribution on PF, well-distributed mapping vectors should be generated.
Recently, Dong and Wang [15] proposed a self-adaptive weight vector adjustment strategy based on
chain segmentation. It regards the PF as a chain and generates the chain C = (c1, · · · ,cn) according
to the topology of PF. Then it divides the chain evenly based on the Euclidean distance. And uniformly
distributed weight vectors are generated from the reference point to the segment points. Although the
chain segmentation strategy is a self-adaptive adjustment strategy for weight vectors, it also can be
used to adjust mapping vectors. And in this paper, we used the current Pareto optimal solutions as
an approximation to the true PF and update the mapping vectors based on the shape of the current
approximated PF, since we do not know the shape of the true PF.
Moreover, since SBMO selects the Pareto optimal solutions from all evaluated sample points rather
than the current population, the new sample points will be added in the same regions around the
mapping vectors, which will result in the Pareto optimal solutions being crowded in the specific regions
on the PF. Although the mapping vector adjustment strategy is introduced, this unexpected situation
will still happen because the updated mapping vectors will be close to the old mapping vectors when
the approximated PF is close to the true one. Therefore, it is necessary to introduce randomness
into the adaptive weight vector generation method. In this paper, we select points randomly between
the segment points after the chain segmentation strategy is used and generate the mapping vectors
from the reference point to the random points. In this way, we can generate the uniformly distributed
mapping vectors as far as possible, while the randomness is introduced.
Based on the above ideas, an adaptive weight vector generation method is proposed in this paper
which works as Algorithm 1. And in the algorithm 1, d (ci,ci+1) represents the Euclidean distance
between the adjacent points on the chain (ci and ci+1) and r is random value in (0,1).

2.3 The Framework of the improved SBMO
The improved SBMO has the same framework as SBMO. The major differences between SBMO and
the improved SBMO focus on the weight vector generation method. In addition to the initialization
of weight vectors, the improved SBMO will update the weight vectors using the Algorithm 1 at each
iteration during the search procedure.
The algorithm is summarized in Algorithm 2. The initialization method of weight vectors is the same
as it in SBMO since there is no current approximated PF that can be used to apply the adaptive weight
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Algorithm 1 The Adaptive Weight Vector Generation Method

Require: PFcurrent : the current approximated PF; Nw: the number of weight vectors (i.e. the number
of sub-problems).

Ensure: λ = (λ1, · · · ,λNw): the weight vectors of sub-problems.
Step 1: Divide the current approximated PF as a chain.
Generate the chain C = (c1, · · · ,cn) based on the topology of PFcurrent and calculate the length of C,
L = ∑n−1

i=1 d (ci,ci+1). Then, divides the chain evenly in l = L/Nw. The segment points (s1, · · · ,sNw+1)
are generated.
Step 2: Generate the mapping vectors.
Select random points q between the adjacent segment points and generate mapping vectors from
the reference point z∗ to q:
for i = 1; i < Nw do

qi = si + r(si+1 − si), r = random(0,1)
λ ′

i = qi − z∗
end for
Step 3: Generate the weight vectors.
Transform the mapping vectors λ ′ = (λ ′

1, · · · ,λ ′
Nw
) into the weight vectors λ = (λ1, · · · ,λNw) by the

Equation 3. It would be calculated as:

λi =WS(λ ′
i ) =

 1
qi

1−z∗1

∑m
j=1

1
qi

j−z∗j

,

1
qi

2−z∗2

∑m
j=1

1
qi

j−z∗j

, . . . ,

1
qi

m−z∗m

∑m
j=1

1
qi

j−z∗j



vector generation method. It is noticed that the weight vectors (0,1),(1,0) (for bi-objective problem)
should be added to avoid the reduction of search space. As a result, there are Nw −2 weight vectors
exactly generated by the adaptive weight vector generation method.
In the improved SBMO, we use the Kriging model [16] as the surrogate model. And the acquisition
problems for sub-problems are defined by the infill-sampling criteria. In this paper, the minimizing
surrogate prediction (MSP) and the expected improvement (EI) [17]infill-sampling criteria are both
used. In the case of a bi-objective problem (m = 2), the acquisition problem for i-th sub-problem
(ξ i(x)) is defined as follows.

• Infill-sampling criterion of MSP.

min . ξ i(x) = max
{

λ i
1
(

f̂1(x)− z∗1
)
,λ i

2
(

f̂2(x)− z∗2
)}

s.t. Ĝ(x) =
(
ĝ1(x), · · · , ĝng(x)

)T ≥ 0

x = (x1, · · · ,xk)
T ∈ Ω

(4)

where f̂ (x) and ĝ(x) denote the value predicted by Kriging models for the objectives and con-
straints, respectively.

• Infill-sampling criterion of EI.

min . ξ i(x) = E i[I(x)] ·
ng

∏
j=1

P [G j ≥ 0]

s.t. x = (x1, · · · ,xk)
T ∈ Ω

(5)

where the EI function E i[I(x)] is defined as:

E i[I(x)] =


[
gtc,i

min − ĝtc,i(x)
]

Φ
(

gtc,i
min−ĝtc,i(x)

ŝi(x)

)
+ ŝi(x)ϕ

(
gtc,i

min−ĝtc,i(x)
ŝi(x)

)
, ŝi(x)> 0

0 , ŝi(x) = 0
(6)
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where Φ and ϕ represent the cumulative distribution and probability density function of a stan-
dard normal distribution, respectively. ĝtc,i is the value of i-th sub-problem calculated with the
prediction given by Kriging models for the objectives and constraints and gtc,i

min is the minimum
value among the evaluated sample points.

And P [G j ≥ 0] is the probability of satisfying the constraint at any site, which is defined as:

P [G j(x)≥ 0] = 1−Φ
(
−

ĝ j(x)
sg, j(x)

)
, j = 1, · · · ,ng (7)

where sg, j(x) is the standard derivation of G j(x), which is assumed as normally distributed.

Algorithm 2 The improved SBMO

Require: NI: the number of initial sample points; Nw: the number of sub-problems (i.e. the number
of weight vectors); Nmax: the maximum number of evaluated sample points.

Ensure: The final set of the Pareto optimal solutions Peval.
Step 1: Initial sampling and evaluations.
Generate NI initial sample points by using a design of experiments method (DoE) and evaluate
them by running expensive numerical simulations.
Step 2: Initial surrogate models and weight vectors.
Establish the Kriging models for each objective ( f̂1, · · · , f̂m) based on the initial sample points and
their response. And weight vectors also would be initialized in this step.
Step 3: Update.
Step 3.1: Solve acquisition problems to suggest new sample points.
The acquisition problems are defined as ξ i(x) for i-th sub-problem. Some well-developed single-
objective optimization algorithms are used to solve the acquisition problems and Nw new sample
points will be suggested in turn.
Step 3.2: New sample point evaluations.
Nw new sample points are evaluated by expensive simulations using parallel computing and the
resulting data is augmented to Peval.
Step 3.3: Update the Kriging model and the weight vectors.
if NP (The number of Peval) ≥ Nmax then

Go to Step 4.
else

Update the Kriging model by the Peval.
Update the weight vectors by the adaptive weight vector generation method (Algorithm 1).
Go to Step 3.1.

end if
Step 4: Output.
Record all the information at each iteration and output Peval.

3. Validation and Comparison
In this section, we will employ the improved SBMO to solve several numerical multi-objective problems
and compare the results with SBMO.

3.1 Test instance
In this experimental study, we select four widely used bi-objective ZDT test instances and two bi-
objective test instances with constraints, SRN and TNK [18]. The information of these test instances
is shown in table 1.

3.2 Performance Metric
In this paper, we use the inverted generational distance (IGD) metric and hypervolume difference
HVI metric [19] which are comprehensive metrics of convergence and diversity that can measure the
performance of a multi-objective algorithm.
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Table 1 – List of the selected test instances.

Instances No. of variables No. of objectives No. of constraints Feature of PF
ZDT1 8 2 0 convex and continuous
ZDT2 8 2 0 nonconvex and continuous
ZDT3 8 2 0 convex and discontinuous
ZDT6 8 2 0 nonconvex and continuous
SRN 2 2 2 continuous
TNK 2 2 2 discontinuous

• The IGD metric is defined as:

IGD(P∗,P) =
∑v∈P∗ d(v,P)

|P∗| (8)

where P∗ is a set of evenly distributed points over the PF in the objective space, and v is a
point in P∗. P denotes a set of Pareto optimal solutions which is obtained by an algorithm. | P∗ |
represent the number of points in P∗ and when | P∗ | is large enough, IGD(P∗,P) can evaluate
both the convergence and the diversity of P. The lower value of IGD indicates that P is closer
to the PF and has a better distribution on the PF.

• The HVI metric is defined as:

HV = δ

(
N∪

i=1

vi

)
HVI = HVPF −HVnond

(9)

where δ is the Lebesgue measure and vi is the hypervolume of i-th point in the set of Pareto
optimal solutions. HVPF and HVnond represent the hypervolume of the PF and the Pareto optimal
solutions obtained by an algorithm, respectively. The lower value of HVI also indicates that the
Pareto optimal solutions obtained is closer to the PF and has a better distribution on the PF.

3.3 Parameter Settings
In this experimental study, the parameter settings of the improved SBMO and SBMO are set as
follows.

• The number of initial sample points NI is set to 10k+1 for all the instances, where k represents
the number of design variables. And the design of experiments is Latin hypercube sampling
(LHS).

• The maximum number of evaluation iterations Nmax is set to 200 for all the instances.

• The number of weight vectors Nw is set to 12. There are two weight vectors (1,0) and (0,1),
which apply the EI infill-sampling criteria. And the other 10 weight vectors apply the MSP infill-
sampling criteria, which are generated by LHS in SBMO and by the adaptive weight vector
generation method (Algorithm 1) in the improved SBMO.

3.4 Experimental Results
In this paper, we run 10 times independently with different random initial points for each test instance.
Table 2 and 3 present the mean of the IGD metric value and the HVI metric value of the final Pareto
optimal solutions obtained by SBMO and the improved SBMO for all the instances over 10 indepen-
dent runs, respectively.
It is evident that the improved SBMO performs better than SBMO in the test instances with complex
PF. In the ZDT3 and TNK which have a discontinuous PF, both IGD and HVI metric value of the
Pareto optimal solutions obtained by the improved SBMO is better than that obtained by SBMO. And
the improved SBMO also performs better in the ZDT6, although it has lower value of IGD in the
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ZDT2 and performs worse in the ZDT1. Figure 1 shows the Pareto optimal solutions in design space
obtained by the improved SBMO for all the test instances.

Table 2 – Statistic IGD metric value of the Pareto optimal solutions obtained by the improved SBMO
and SBMO.

Instances ZDT1 ZDT2 ZDT3 ZDT6 SRN TNK
SBMO 0.0079 0.0082 0.0232 0.0648 1.2258 0.0179

The improved SBMO 0.0087 0.0103 0.0203 0.0545 1.2322 0.0162

Table 3 – Statistic HVI metric value of the Pareto optimal solutions obtained by the improved SBMO
and SBMO .

Instances ZDT1 ZDT2 ZDT3 ZDT6 SRN TNK
SBMO 0.0118 0.0097 0.0069 0.0563 0.0045 0.0116

The improved SBMO 0.0125 0.0091 0.0064 0.0492 0.0050 0.0113

(a) ZDT1 (b) ZDT2 (c) ZDT3

(d) ZDT6 (e) SRN (f) TNK

Figure 1 – The Pareto optimal solutions obtained by the improved SBMO for all the test instances.

4. Aerodynamic Design Optimization of an Airfoil Using SBMO-AW
In this section, the improved SBMO will be applied to a wide-Mach-number-range airfoil design opti-
mization. Wide-Mach-number-range airfoil design optimization is a typical multi-objective optimization
since it has a conflict between the lift-to-drag ratios under transonic and hypersonic.

4.1 Problem Description
In this airfoil design optimization, we choose NACA64A-204 as the baseline airfoil and regard the
lift-to-drag ratios under transonic and hypersonic as two objectives to optimize. The design points
are Ma = 0.8,Re = 7.6× 106,α = 1.5◦ and Ma = 6.0,Re = 4.23× 106,α = 5◦, where Ma means Mach
number, Re means chord Reynold number and α means the angle of attack.
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The optimization problem is defined as

max . f1 = (L/D)Ma=0.8

f2 = (L/D)Ma=6

s.t. | t − tbaseline |≤ 0.02× tbaseline

(10)

where, (L/D)Ma=0.8 and (L/D)Ma=0.8 represent the lift-to-drag ratios at Ma = 0.8 and Ma = 6.0 respec-
tively. t represents the maximum thickness respect to chord of airfoil. And the variable with subscript
"baseline" represents that of the baseline airfoil.
Since we apply the eighth-order class-function shape-function transformation (CST) [20] method to
perturb the shape of an airfoil, the number of design variables comes to 18. 100 initial sample points
are generated by LHS and evaluated by our in-house RANS flow solver. At each generation, 12 new
sample points are generated and added to update the Kriging models, in which 2 sample points are
generated by EI infill-sampling criteria and 10 sample points are generated by MSP infill-sampling
criteria. The optimization will stop when the total number of evaluated points reaches 400.

4.2 Optimization Result
Figure 2 shows the approximated PF found by the improved SBMO. There are 68 Pareto optimal
solutions found in 400 evaluated points with all the constraints being strictly satisfied. The comparison
of objectives and constraints of three selected optimal airfoils and the baseline airfoil is shown in
Table 4. It can be seen that the Opt 1 and Opt 3 airfoils have the best lift-drag-ratio value at one
objective while having a little improvement or even getting worse at another objective. And the Opt 2
balances the lift-drag-ratios under transonic and hypersonic. Designers can select the optimal airfoil
as their wish and analyze the relationship between objectives, which will significantly contribute to
the improvement of the aerodynamic design. Figure 3 gives a comparison of pressure coefficient
distributions of three selected optimal airfoils on the approximated PF with that of the baseline airfoil.

(L/D)
Ma=6.0

(L
/D

) M
a
=

0
.8

3 3.5 4 4.5 5 5.5

55

60

65

70

75

80

85

90

95

(3.2,69.9)baseline

1(3.8,90.2)opt

2 (5.1,83.7)opt

3(5.3,57.2)opt

Figure 2 – Final Pareto optimal solutions obtained by the improved SBMO in the objective space for
multi-objective optimization of an airfoil.

5. Conclusion
In this paper, we proposed an improved SBMO using an adaptive weight vector generation method to
obtain Pareto optimal solutions with better distribution. The basic idea of the adaptive weight vector
generation method is to generate well-distributed weight vectors based on the shape of the current
approximated PF. In this paper, we generated mapping vectors by uniformly distributed segments
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0 0.2 0.4 0.6 0.8 1

(a) Ma = 6.0,Re = 4.23×106,α = 5◦ (b) Ma = 0.8,Re = 7.6×106,α = 1.5◦

Figure 3 – Comparison of pressure coefficient distributions of three selected optimal airfoils and the
baseline airfoils.

Table 4 – Comparison of objectives and constraints of selected optimal airfoils and the baseline
airfoils.

Airfoil
Objectives Constrations

(L/D)Ma=6.0 (L/D)Ma=0.8 t | t − tbaseline | /tbaseline

Baseline 3.2 69.9 0.0400
Opt1 3.8(+18.75%) 90.2(+29.04%) 0.0394 0.015<0.02
Opt2 5.1(+59.38%) 83.7(+19.74%) 0.0396 0.010<0.02
Opt3 5.3(+65.63%) 57.2(-18.17%) 0.03922 0.0195<0.02

on the topology of the current approximated PF and transform the mapping vectors into the weight
vectors. Randomness is also introduced into the weight vector generation method to avoid new
sample points being added in the same regions as the last iteration. We compared the improved
SBMO with SBMO in four well-known ZDT instances and two instances with constraints (SRN and
TNK). And the improved SBMO was also employed for aerodynamic design optimization of a wide-
Mach-number-range airfoil.
The results of experimental studies on numerical cases indicated that the improved SBMO is able to
obtain a well-converged and well-distributed set of Pareto optimal solutions. And the metrics of Pareto
optimal solutions indicated that the improved SBMO performs better than SBMO on the test instances
with complex PF. The study on aerodynamic design optimization indicated that the improved SBMO
can find a set of Pareto optimal solutions in a limited number of evaluated sample points, which
will significantly contribute to the improvement of the aerodynamic design. The aerodynamic design
optimization showed that the improved SBMO has great potential to solve expensive multi-objective
problems in real-world engineering design optimization.
There are still more works that need to be done in the future, such as a study on other infill-sampling
criteria and the way how to combine different criteria. Further improvements to the weight vector
generation method also should be studied, such as how to figure the discontinuous part on the
PF out for the MOP with a discontinuous PF. The other processing in SBMO such as selecting the
candidate points in each generation and building the global surrogate models are also worth being
studied. And we will also focus on the works on the application of SBMO to real-world engineering
problems, such as aerodynamic shape design optimization for aerospace engineering.
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