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Abstract

Computer-Aided Manufacturing (CAM) is of high importance when machining complex geometries. Due to
its complexity, the CAM process significantly contributes to the preparation time of new parts, and the final
part quality depends on the individual programmer’s experience. This paper introduces the groundwork for
an expert agent to improve the knowledge transfer of experienced to new programmers and the programming
flow of the CAM process in general. The envisioned expert agent runs alongside the CAM software and
observes and catalogues user interactions with the CAM programming environment. The goal is to derive in-
situ suggestions to comply with the established CAM workflows of experienced users. This initial work relates
to monitoring and identifying user actions in real-time using computer vision and machine learning. Within this
paper two models are presented, i.e., CNN and YOLOv5. Furthermore, a prefilter in the form of active window
detection is used to improve the predictive capabilities of the CNN model. The results show that a simple CNN
in combination with proper prefiltering is capable of logging and cataloging the user actions for subsequent
querying of relevant information from an external database.
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1. Introduction

Nowadays, an airplane consists of several thousand digitally designed parts and requires complex
machining instructions. The digital processes of designing new parts and preparing them for manu-
facturing are Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM). Especially
in the aerospace industry, the CAM process consumes a large part of the realization time. This is due
to the high demands on aerospace parts with their low margin of errors and tight tolerances. Industry
experts report training periods of years until the CAM programmers reach the required level of exper-
tise and skills to work both efficiently and reliably within the established workflows. The complexity
involved results in the CAM process being a bottleneck during large projects such as designing a new
aircraft.

The CAM process translates digital design data to manufacturing instructions understood by Computer-
numerically Controlled (CNC) machine tools on the shop floor. The resulting quality of a manufactured
part, however, depends on several individual factors chosen by the CAM programmer: the selected
tools, the machining operation, the machining parameters, the machining strategy, the machine tool
capabilities, and the fixture. Besides, also the skill of the machine tool operator significantly affects
the manufacturing outcome. Unfortunately, there is almost no reverse information flow from the shop
floor to the CAM programming department in the current industry besides reporting obvious failures
after the quality assurance. Often operators manually adjust the machining parameters directly on the
shop-floor without notifying the CAM programmers, further preventing learning and improvements.
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1.1 Scope

The research in this paper aims at understanding the CAM programmers’ intentions by recording
a live feed of the computer screen, which is further processed by models of different architectures
which perform image classification and recognition, see Figure[i]
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Figure 1 — Process flow from start to finish. An ongoing user action is captures as an image in the
first blue square and processed in the second. The gray square is the true user action within the
CAM software. The blue squares are parts of the expert agent, and the green square represents the
identified user action.

Within this paper, two possible solutions are explored, i.e., Convolutional Neural Network (CNN)
models for image recognition and You Only Look Once (YOLOV5) which utilizes object detection. The
first requirement on both models and their architectures is to achieve an inference time that allows for
real-time estimations of user actions. The second requirement is to achieve sufficiently high accuracy
on the output of the estimates, whereas both requirements are necessary to allow for reliable usage
in industrial applications.

This project’s scope was limited to two commercially available CAM solutions, namely CATIA v5 by
the company DASSAULT SYSTEMES, Vélizy-Villacoublay, France, and Mastercam by CNC SOFTWARE
LLC, Tolland, Connecticut, United States of America. Figure |2/ displays an example screenshot of
the the CATIA v5 GUI as an example of the CAM programmer’s experience. The screenshot is
exemplary for CAM programs, which share similar approaches when connecting CAD design features
to machining operations via pop-up operation controls and respective widgets.
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Figure 2 — Example image of the CATIA v5 program interface. The model tree shows the contents of
the CAM program. The 3D viewport displays the CAD part. By clicking on the icons in the operations
library, the programmer brings up the operation controls, in this case ‘Circular Milling’.
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1.2 Problem statement

There are several tabs and sub-menus in the active window for an operation, and all of these sub-
menus need to be correctly identified to classify the current action and derive suggestions to the CAM
programmer. In addition, toolbars and other elements of the program change as the user works with
different machining operations. These toolbars are seen at the right border of Figure 2] In contrast to
the object detection problem of finding and identifying the active window or current toolbar, looking at
all of the elements at once, or a subset of the elements, is an image recognition problem.

Speaking generally, and not explicitly relating to CAM programming, using ML and Atrtificial Intel-
ligence (Al) in guiding employees is a promising approach. A fully developed expert agent could
provide new employees with support and knowledge which require advanced employees’ months or
years to acquire. Alleviating the need of support from senior employees to younger employees during
high load projects will be instrumental in increasing efficiency and keeping costs low.

The described Machine Learning (ML) approach was favored over application specific Application
Programming Interfaces (APIls) due to the possibility to incorporate a new CAM program into a work-
ing ML model quickly. A switch of the software would hence only require gathering a new data set for
that new program instead of adapting the code to a possibly vastly different API with varying capa-
bilities. Hence, in the case of an API-based communication to the CAM backend, the solution would
be only tailor-fitted to that specific CAM solution and almost the entirety of the user prediction would
have to be rewritten.

2. Background

At the core of Industrie 4.0 is the digitalization of every aspect of manufacturing. Computer vision
is predicted to be an elementary part of the fourth industrial revolution [1]. Hereby, expert systems,
i.e. software agents, play an important role in the decision making process. They are capable of
intelligent problem solving and use declarative knowledge [2]. Zhao et al. [3] applied cooperative
agents for the process planning. Later, Feng et al. [4] researched the improvement of the process
modeling and knowledge share between different manufacturing applications. Zakarian applied neu-
ral networks in an expert system to support CAD [5]. Another research track is the monitoring of user
actions to model user behavior and predict recommendations based on previously performed tasks
[6]. A prerequisite for this is the accurate capturing of the user interaction, .e.g, by understanding
the software via computer vision. This becomes feasible as modern hardware and computer vision
models are capable of real-time processing [7].

The detection of pop-up windows and widgets in graphical user interfaces (GUIs) was approached
by several researchers. Jaganeshwari and Djodilatchoumy [8] used OpenCYV, a free and open source
computer vision library, and PyAutoGUI to monitor the activities of the mouse cursor and classify
the widgets with a KNN classifier in near real-time. Goyal et al. [9] performed Hierarchical Layout
Analysis on screenshots to classify images, icons, and text in mobile applications with high accuracy.
Cheng et al. [10] utilize a You Only Look Once (YOLO) model to identify bounding boxes and rec-
ognize significant parts of GUI layouts. Radzikowski et al. [11] benchmark several machine learning
algorithms for widget detection using a pre-filter in the form of Canny edge detection [12] and post-
process the detected objects with an Optical Character Recognition (OCR) algorithm. Chen et al.
[13] gives a comprehensive study of similar approaches and approaches without edge detection.

2.1 Convolutional Neural Networks (CNN) and Machine Learning (ML)

Object detection and recognition is a common application of Convolutional Neural Networks (CNN)
[14]. CNNs are a deep learning model inspired by the animal visual cortex. They are best suited
for processing data such as images, which are stored in a grid-like pattern [15]. CNNs consist of
three types of layers: convolution, pooling and fully connected layers. The main benefit of a CNN is
that it automatically identifies relevant features without human supervision [16]. Three key benefits
of a CNN according to Goodfellow et al. [17] are equivalent representations, sparse interactions, and
parameter sharing.

This results in an small number of parameters, which simplifies the training process. As a result,
it speeds up the network and makes real-time usage possible. The output of each layer is fed into
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the next layer, which allows for extracted features to become hierarchically and progressively more
complex as one travels through the network [15]. Figure [3] shows an example of a CNN architecture.
The input of each layer has three dimensions: height, width and depth, denoted as m-m-r [16].
The height is the same as the width, as square matrices are used for mathematical operations. The
depth in an RGB image is equal to three, representing the three channels of red, green and blue. A
grayscale input image can thus be described by a square matrix, where each pixel is described by a
decimal value in the matrix, which ranges from zero to one. The value of one would be a fully white
pixel, whereas zero would correspond to a completely dark pixel.
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Figure 3 — An example of a CNN architecture adapted from Alzubaidi et al. [16].

The convolutional layer performs convolution operations on the input. The kernel, or filter, is a grid of
discrete numbers where each value is called a kernel weight. These weights are adjusted each train-
ing epoch, thereby allowing the kernel to learn to extract significant features. The hyperparameters
include the filter size F and stride S [4]. Figure |4/ shows the calculations within a convolutional layer
with an input picture averaged around zero and normalized to a maximum of three as an example.
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Figure 4 — Calculations performed in each convolutional layer. The input matrices are the outer
matrices outlined in gray. The kernel, or filter, is depicted in yellow. The feature map is the matrix in
the center. In this example, the filter size is F = 2x2, and the stride S = 1.

The filter slides over the input, moving the number of pixels equal to S. The dot product between the
input image and kernel is determined and its value is then stored in a single cell of the output, called a
feature map or activation map. In a CNN model, Several convolutional operations with different filters
are performed on the input. The resulting feature maps are then put together as a final output of
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the convolutional layer. The pooling layer is a down sampling operation, reducing the dimensionality
and is typically placed after the convolutional layer. It shrinks large-size feature maps into smaller
feature maps, reducing the dimensionality while attempting to maintain dominant information [2].
One of the most common types of pooling is max pooling, which selects the maximum value of the
current window (2x2). Some information may be lost during the pooling operation, which potentially
reduce the overall CNN as a result. The benefits of the pooling operation, however, outweigh the
detriments, which is why it is still utilized. The benefits are a smaller set of features, which shorten
the computational time of the entire network, and the reduced risk of overfitting.

An important factor, which occurs after each layer, is the activation function. It determines whether
to fire a neuron or not, depending on the output of the previous layer. There are different types of
activation functions, whereas one of the most common for CNNs is the Rectified Linear Unit (ReLU)
in the form of f(u) = max(0,x).

In the ReLU, the input is converted into positive numbers with the benefit of a lower computational
load, as compared with other activation functions, e.g., the Sigmoid function.

The fully connected layer is located at the end of a CNN architecture. It consists of an input layer,
multiple hidden layers and an output layer. Every node in one layer is connected to every node in the
next and is utilized as the CNN classifier [16].

One of the goals of this work was good prediction accuracy, which in turn signifies a generalization
capability of the model [5]. The models are trained on a sample dataset, and proper training must
ensure that the the model does not adapt to the noise and the training data itself. The term for such
an occurrence is overfitting, see Figure [B|for a visualization. Overfitted models perform poorly on new
or unseen data, which is the input during practical use.
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Figure 5 — Example of underfit, overfit, and balanced models.

Various concepts are used to help regularization, thereby avoiding overfitting [18]. Two techniques
are utilized in this paper, i.e., dropout layers [19] and data augmentation [20]. Dropout is the action
of randomly dropping certain neurons during each training epoch, which forces the model to learn
different independent features. Data augmentation increases the amount of training data by creating
duplicates of input images with, e.g., blurring, slight translation or rotation or by removing colors.
Loss functions, i.e., minimize the error (the difference between the actual and predicted output), are at
the core of all supervised learning algorithms. The network parameters should update for all training
epochs, while the network searches for the locally optimized answer in order to minimize the error
[2]. The learning algorithm utilized in this paper is called Adaptive Moment Estimation (Adam). It
represents one of the latest trends in deep learning optimization, which is a combination of RMSprop
and Stochastic Gradient Descent with momentum [6]. It is less computationally demanding and more
memory efficient when compared to similar methods.

There are several different CNN architectures and model architecture selection is vital for improving
the prediction performance. Generally, an increased depth enhances generalization of the model but
also increases the risk of overfitting. The first architecture of notoriety is AlexNet, which has had
considerable significance for recent CNN generations, since it employed various techniques which
reduces the risk of overfitting. Visual Geometry Group (VGG) proposed the idea of utilizing a number
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of smaller filters (3x3), by experimentally showing that the parallel assignment of small filters could
produce the same result as large-size filters (7x7 and 5x5) [16]. Smaller filters also decrease the
number of parameters, which reduces the computational complexity. The Residual Network (ResNet)
was the winner of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2015. The
objective of the architecture is to design an ultra-deep network without the vanishing gradient issue,
weights approach zero as one travels through the network which in turn results in mathematical errors
(division by zero is not an eligible operation). Table[T]gives a short overview of the discussed models.

Model Main finding Depth Errorrate Input size Year
AlexNet Utilizes dropout and ReLU 8 16.4 227 x227x3 2012
VGG Increased depth, small filter size 16,19 7.3 224 x224 x3 2014
ResNet Robust against overfitting 152 3.6 224 x224 x3 2016

Table 1 — Short table of different network architectures adapted from [16].

This paper utilizes the idea of these networks when attempting to construct a network suitable for the
task of real-time classification of CAM operations.

2.2 You Only Look Once object detection

One issue with using CNNs for this type of problem is that the output is a classification of the image.
The benefits of locating the viewport, tool panel and other menus in CAM software would allow for
more options when designing additional features for the expert agent. Because of this reason, object
detection, i.e., is the task of locating objects in an image, is also explored as a solution.
State-of-the-art methods utilize Region-CNN (R-CNN), Fast R-CNN, Faster R-CNN to achieve this
task. The problem with these models is the inference time, which is too slow for real-time detection.
To solve this problem, You Only Look Once (YOLO) introduces a faster way of object detection suitable
for real-time detection [21].

3. Method
3.1 Model selection
The model type determines the format of the data. Within this paper, three models were selected:

* CNN classifying a full screen capture
* CNN classifying a section of the screen, i.e., the active window

* YOLOVS5 object detection

The underlying assumption for the full screen capture CNN is that some information would be lost
if only the active window was captured. This information would be located in the menus of the
application, which usually change as the user works in the CAM software. The potential advantages
of the section model based on the active window is that it is highly likely that most of the relevant
information on the user action is located here. Preprocessing the data in this manner is likely to
eliminate irrelevant data. A successful implementation of YOLOv5 would allow for a wider array of
uses at a later stage, e.g. helping geometry macros, geometry construction, or file handling. The
CNN models were built in Python using Tensorflow, whereas the YOLOv5 model utilized was the
implementation created by Ultralytics [22] in PyTorch.

3.2 Labeling, data collecting and evaluation metric

The data set was manually created by capturing screenshots from CATIA v5 and Mastercam and
then labeling the images by hand. A supporting Python program was made in order to capture data
from either the entire screen or the active window. This code is later reused to create the live feed of
screen data for predictions using the trained models. In the case of YOLOv5, images were captured
by the same Python program and uploaded to https://roboflow.com| to create bounding boxes and
labels for objects in the images.
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Care was taken to create balanced data sets, i.e., data sets in which there is an equal amount of
labeled samples belonging to each class. The validation set in Tensorflow is the hold-out set, and
therefore equivalent to the testing set. Rather than randomly sampling and splitting one large data
set into a training and validation set, dedicated training and validation data sets were created to
maintain balance between the classes of the set during training, but also in order to ensure correct
classification due to the nature of the data sets.

The validation set was crafted in such a way as to provide realistic scenarios for unseen data. The
sizes of the data sets also pose a set of unique problems. In most cases, a data set contains images
ranging in the 100°000s, whereas due to practical reasons the three data sets utilized for this paper
contain images in the 100s. Given the variety of classes, this leads to a comparatively low number of
samples per label. Figure [6|displays some of the training and validation images taken in preparation
of the training process. Shown are the input images of the active window crop, full-screen captures,
and changes in the sub menus. Table [2 gives an overview on the manually created data sets.
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Figure 6 — Examples of the images in the data sets depicting the full screen capture, cropped images
to the active window, and displaying occurring changes due to the selection of different sub menus in
the operation controls panels.
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Data set Utilized for Number of images Preprocessing Number of labels
#1 CNN 168 none, full screen capture 20
#2 CNN 114 active window crop 12
#3 YOLOvS 109 Data augmentation 40

Table 2 — Summary of the three generated data sets

It is noted that there is very little to no variation between images depicting a certain user action on the
same tab in the active window. For example, capturing a new image of the drilling operation controls
panel would look the same, so it would simply have the same effect as duplicating the image in the
data set. It is therefore of importance to have an even distribution between the number of images for
different labels. It was therefore ensured that all labels in the training data set had an even distribution
in the number of images.

The validation data set contains images of previously unseen data. Sub menus were changed, which
in turn change the appearance of the active window. Training data for all the different sub menus and
options was not provided, as the goal was to create a model which could generalize without providing
data for every possible scenario. The features learned by keeping a simple training data set and a
validation set with specific examples ensure proper generalization. The validation data set was not
balanced in the same way as the training set.

Since the data set was ensured to be balanced, accuracy is an appropriate evaluation metric for the
models [23]. Other than accuracy, the loss function and error rate were also analyzed to judge the
models’ performance.

3.3 Model development, training, and refinement

Due to architecture complexity and depth in contrast to the limited data set, the models would quickly
overfit and produce poor results. Therefore, a simple version of the VGG model was implemented,
which showed increased accuracy. The filter size was fixed to F = 3x3, as it had been shown that
F = 3x3 filters of increasing depth can be equivalent to filters of larger size. Depth was increased if
validation accuracy increased. This was done until the model showed signs of overfitting.

The training process was set up in such a way as to save two versions of the model during run
time. The epoch with the best validation accuracy was saved for predictions, while the model of the
last epoch was saved for later iterative training. Early stopping was implemented at a later stage,
but due to above mentioned constraints models effectively applied early stopping by saving the first
instance of its highest validation accuracy. The number of epochs was set to 120, but in the case
of need of further training a model could be loaded and trained for an additional 60 epochs at a
time. Batch size was set to 128, which basically allowed the entire data set to be fit into one batch.
The chosen optimizer was Adam, with a decay learning rate equal to 0.9 and a starting learning
rate of 0.01. Since the data set had an even distribution of samples between labels, accuracy was
deemed an appropriate evaluation metric. The image size was scaled down to 512x512 pixels, since
studies have shown a general trend of increased accuracy at larger image sizes. RelLU was chosen
as the activation function for the convolutional layers. Other than network depth and complexity, the
dimensionality of the output space in the first convolutional layer was deemed important for increasing
the accuracy of the model. Increasing the dimensionality of the output space of this layer increased
accuracy of the model.

YOLOV5 was trained in Google Colab using GPU resources, due to the computational intensity of
training process. YOLOV5 could be trained from scratch or be implemented with transfer learning,
i.e., using models which were previously trained for example on the Common Objects in Context
(COCO) data set. The image size for YOLOv5 was tried at both 512x512 and 1280x1280 pixels.
YOLOv5s, YOLOvEm and YOLOv5I were trained in order to ascertain differences in accuracy for
each model on the problem. A test run of training for 150 epochs was applied in each case. The
training time was approximately 4 hours for each test.
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4. Results and discussion
4.1 CNN-based prediction of user actions

By running the model and observing the output of the predictions while performing operations in CAM
softwares it was determined that the full screen capture models were overly sensitive to translational
invariances of the control panels, e.g., While repositioning the active window, the VGG-based model
could estimate the action to be circular milling instead of drilling. This was dependent on whether
the positioning for the drilling control panel was the same as one of the training samples for circular
milling.

Since the data set for the section model contains 12 different labels, a model picking a label at random
would have a 1/12 chance of being correct. Any accuracy above 8.33 % would therefore indicate
results better than random guessing. Rather than increasing the data set with the goal of having
enough images to bake the translational information into the data set, the feature was eliminated by
creating code which captured the part of the screen which contained the active window, i.e., operation
controls after pressing the respective button, and used that as input data. This greatly increased the
accuracy on test data.

Both AlexNet and ResNet never reached sufficient accuracy on the test data. Due to the small size of
the data set, a complex architecture like ResNet quickly overtrained. This made it unsuitable for the
task of real-time classification of user actions. In comparison, AlexNet performed slightly better.
Reviewing the results of AlexNet and ResNet the optimal architecture would exhibit just enough
training depth to learn more features and does not overfit on training data. Therefore, the chosen
architecture was a simplified version of the VGG architecture. Figure [8]shows the training and testing
plots over the various training epochs.
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Figure 7 — Accuracy of the training process and the testing of the VGG CNN models.

The network architecture for all VGG-based models consist of several instances of three repeating
layers. The first layer is a convolutional layer, with smaller F = 3 x 3 filters and a stride of S =1,
the second layer is a pooling layer with a kernel size of F =2 x 2 and stride S = 2. The last layer
is a dropout layer. The number of filters of the convolutional layers increase as one travels down
the network. The architecture was then extended with more instances of the three-layer-structure if
the testing accuracy increased. The resulting network architecture is displayed as a TensorBoard in
Figure [8]

Ensemble learning, through average voting, did not increase accuracy when combining three of the
classifiers. This result could be due to the setup of the training data set. Randomly sampling the data
set on training could create differentiated classifiers which produce better results once in ensemble.
It’s difficult to predict, however, if such an ensemble would outperform a single classifier trained on a
balanced data set.

Dropout layers on both the final fully-connected layer and the max-pooling layers increased accuracy,
because they could be utilized in conjunction with a deeper network. The simple VGG wothout
dropout layers and a depth of 5 could not reach a validation accuracy above 68 % on the test data.
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Figure 8 — Network architecture of “VGG-based” visualized by TensorBoard.

This is most likely due to the depth of the network limiting the learning of features at some point. By
adding dropout layers at above mentioned positions, the depth of the network could be increased
without incurring overfitting. This resulted in a model with the best validation accuracy. On the other
hand, adding layers up to a depth of 15 increased the complexity of the model, and performance
decreased which lead to higher inference times around 150 ms. Table (3| gives the summary of the
performed analyses. Figure [9] shows some results of the real-time prediction of user actions using
the CNN-based model architecture within CATIA v5.

Architecture Input Accuracy Depth
Training Test

VGG screen 15.3 16 19
AlexNet screen 63.2 16.2 8
ResNet screen 100 3.05 50
VGG screen 99.2 69.5 13
VGG section 100 67.7 5
VGG section 5.2 222 15
VGG Dropout section 97.3 743 9
VGG Dropout section 98.3 90.3 13

VGG Dropout + Ensemble  section 98.3 90.3 13

Table 3 — Results of the CNN training process

4.2 YOLOv5-based detection of user actions

YoloV5 never achieved good enough results. In fact, the model did not make any predictions for
object detection in the tested images. According to the YoloV5 documentation: “Most of the time
good results can be obtained with no changes to the models or training settings, provided your data
set is sufficiently large and well labeled.” [8]. Since the data set is too small, YoloV5 may not be a
suitable model for this type of problem. The data set was slightly increased by the usage of data
augmentation, i.e., creating images with blur, varying degrees of grayscale. This proved insufficient
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Figure 9 — Real-time predictions of user actions in CATIA v5 with the VGG-based architecture.

at solving the issue, however. It is noted that the data augmentation was not optimal in this case as
many of the performed operations did not preserve the manual labels post-augmentation. Figure [10]
displays some of the labeled objects and the accuracy versus recall plot.
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Figure 10 — Input data for the YOLOv5 model. Objects, such as the operation controls, view-port, and

taskbar were manually labeled in CATIA v5 and Mastercam. The model fails to recall the manually
labeled objects.
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5. Conclusion and outlook

A simple CNN with active window detection proved sufficient for the detection of intended user actions
withing the researched CAM software. It was found that model complexity is the greatest factor on ac-
curacy while working with limited data sets of this type. There is a balance between model depth and
the implementation of dropout layers, where additional depth and accuracy can be reached through
the use of dropout layers in the models. Additional max-pooling dropout layers proved beneficial in
this case. Data augmentation and ensemble learning using average voting proved less beneficial in
increasing accuracy for this type of problem and data set.

Future work will cover the extraction of additional information from CAM software. The input parame-
ters on the operations could be read from external databases so that an expert system can generate
informed decisions regarding tool selection in real-time. As for solving the problem of attempting to
increase accuracy in small data set with this type of problem, more advanced ensemble techniques
could prove beneficial. If a classifier which utilized the history of previous user actions were trained
on predicting the next action, this result could be included in such an ensemble. There has also been
research indicating that an ensemble consisting of classifiers with different image sizes as inputs
could improve accuracy as well.
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