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Abstract

An omnipresent conflict in aircraft design optimization is the need for fast yet accurate analysis tools. For a
broad search in a design space, a trade-off is required. One approach is to perform the broad search using
low-fidelity methods and to perform higher-fidelity calculations only at a few design points. The knowledge
gained at these higher-fidelity data points can be formulated as correction factors which are to be applied
to the low-fidelity methods to approximate the higher-fidelity results. This paper explores the potential to
transfer this knowledge across the entire design space considered, focusing on aerodynamic calculations and
mass estimates of a scaled UAV wing. The paper presents curve fits which reveal relationships between
the correction factors and specific aircraft parameters. On top of that, adaption-based multi-fidelity modeling
with a successively increasing number of higher-fidelity samples is applied, in order to explore the potential
for automatic, successive knowledge build-up and transfer. The results of the study indicate the feasibility
of gradual knowledge build-up and transfer for the considered correction factors. Predictions seem to be
possible with high accuracy already on the basis of a few higher-fidelity data points. Furthermore, the study
addresses two issues in the context of the application of multi-fidelity methods to the problem at hand. The
first issue is that, to date, there is a lack of designated semi-empiric wing mass estimation methods for the
UAV class in question. The study uses semi-empiric formulas from other aircraft classes and demonstrates
that the associated correction factors can be related to specific aircraft parameters. The second issue refers
to the accuracy of the higher-fidelity model. Typically, multi-fidelity models try to approximate the higher-fidelity
solution as accurate as possible. However, the "higher-fidelity" model itself is again only an estimation of the
real behavior, and may yield physically inexplicable results. This paper presents an approach, which does
not approximate the higher-fidelity aerodynamic data itself. Instead, it approximates a fit of the higher-fidelity
aerodynamic polar, which incorporates a-priori knowledge about the expected shape of the polar.
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1. Introduction

Aircraft design optimization is a very time-consuming task as it involves a high number of system
model evaluations. This requires fast system models. Typically, low-fidelity methods are used which
are often semi-empiric estimations that capture the basic impact of the main design drivers. However,
the simplified models can represent physics only to a limited extent. On the other hand, higher-fidelity
methods, which represent physics more accurately, are computationally more expensive and there-
fore, not appropriate for an extensive search of a design space. One approach to combine the
advantages of both is multi-fidelity modeling. Here, many samples are evaluated using the computa-
tionally inexpensive low-fidelity models. The results provide information about the principal trends of
the underlying system behavior. Additionally, a few samples are evaluated by means of higher-fidelity
models. These provide information about how the low-fidelity model needs to be adapted in order to
approximate the higher-fidelity results. Eventually, the results obtained from both fidelity sources are
combined into one final prediction model.
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The first part of this paper presents the outcomes of the initial efforts to understand how and where
in the design space the low-fidelity results tend to deviate from the higher-fidelity results. For this pur-
pose, relationships between individual aircraft parameters and the obtained correction factors were
studied in a first step. Relatively simple relationships were found which are presented in the form of
curve fits in section 8. Since the computational effort of the higher-fidelity methods applied in this aca-
demic example is still manageable, a Latin Hypercube Sample of the design space was generated
and both low-fidelity and higher-fidelity methods were applied to all sample points. This allowed to
generate sufficient sample points to perform well-informed manual curve fitting.

Even though manual curve fitting was successfully applied in this study, is has several drawbacks.
Manual curve fitting is laborious and only a limited number of parameters can be visualized in a 3D
representation at the same time. Indeed, more than two parameters may be included in the fit, but
the engineer needs to postulate the final form of the fit equation. That is, a-priori knowledge is re-
quired about the interlinked effects of multiple parameters. However, this a-priori knowledge may not
always be available. For instance, in this study, it is not known a-priori on which aircraft parameters
the correction factors depend and whether there are interlinked dependencies between them. When
no a-priori knowledge is available more sophisticated methods must be sought. Furthermore, manual
curve fitting is not suited to be used inside an automated design optimization process as it requires
a human in-the-loop. In summary, whereas manual curve fitting allows to get insight into simple rela-
tionships, it struggles when the relationships get more complex, more dimensions are involved, and
no a-priori knowledge is available.

Non-parametric machine learning (ML) provides a means to overcome the disadvantages of curve
fitting outlined above. It allows to perform curve fitting in a more generic, high-dimensional space with-
out the need for a-priori knowledge about the impact of specific parameters on the output parameter.
Adaption-based multi-fidelity modeling can be combined with various machine learning techniques.
A machine learning model can be trained to predict the adaptive corrections which need to be applied
on available low-fidelity results to approximate the associated higher-fidelity solutions.

Usually, a design is subject to many changes during the entire design process. This applies not
only to the initial optimization phase but also later when, for instance, requirements are changed
and the design may need to be re-evaluated and re-sized. This means, higher-fidelity analyses
are typically not performed once at the beginning of an aircraft design project, but rather gradually
as the design evolves and gets more and more refined. A multi-fidelity optimization approach should
therefore incorporate a successive inclusion of higher-fidelity data points, as performed by [1] and [2].

The second part of this paper will apply adaption-based multi-fidelity modeling to the aerodynamic
calculations and mass estimates of a scaled UAV wing. The approach includes a supervised ma-
chine learning model, which gradually learns the correction factors between the low-fidelity and the
higher-fidelity models, based on a successively increasing set of higher-fidelity samples.

In summary, the goals of this study are:
» Explore relationships between correction factors and aircraft parameters

* Investigate the usability of non-dedicated wing mass estimation methods for the UAV class
considered

» Prevent unquestioned imitation of higher-fidelity aerodynamic results; provide a method with a
postulated extent to which the lower-fidelity results are to be corrected

* Investigate potential for automated knowledge transfer during successive knowledge build-up

In the multi-fidelity context, levels of fidelity are always defined relative to each other. That is, one
2



Table 1 — Parameter space considered in this study.
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Parameter Lower boundary | Upper boundary | Unit
Wing aspect ratio AR 5 15

Wing reference area Syt 0:2 3:0 m?
Design airspeed Vgesign 15 30 ms !
Design altitude above MSL hgesign | 0 5000 m

level is denoted as "low-fidelity", and the the other level as "higher-fidelity", regardless of the ac-
tual physical level of fidelity of the associated tools. In this study, the physical level of fidelity of the
"higher-fidelity" methods applied is actually medium. From now on, the two levels are referred to as
"low-fidelity" and "medium-fidelity".

The next section introduces the scalable wing geometry and the parameter space considered in
this study. Section [3.briefly presents the tools used for wing aerodynamic calculations. Section
| outlines the wing mass estimation methods used. Following completion, section [§. presents the
determination of the correction factors. The obtained curve fits are presented in section [§. Section
| briefly describes the machine learning techniques used. The setup for the gradual training of the
ML models is presented in section[§and the results are shown in section . Finally, a conclusion and
outlook are provided in sections[TQand[T1.respectively.

2. Wing Geometry Used and Parameter Space Considered for the Analyses

The basic wing planform used for this study is depicted in Fig. (1l Two differently scaled versions are
illustrated. The scaling of the wing is performed based on specified values of the wing reference area
Sret and the aspect ratio AR. During the scaling of the wing, other wing parameters such as taper ratio,
sweep of the leading edge, dihedral, twist, etc. are held constant. The wing area and aspect ratio are
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Figure 1 — Wing planform scaled according to different values for Syes and AR.

two of the four parameters which define the parameter space considered in this study. The remaining
parameters are the design airspeed Vyesign and the design altitude hgesign. Whereas Syes and AR have
a direct influence on the wing geometry, Vyesign @and hgesign have an impact on the operating conditions,
in particular, on the Reynolds number. The boundaries of the entire considered parameter space are
shown in Table ] In order to obtain samples which are well distributed across the entire parameter
space, a Latin Hypercube Sampling (LHS) with 500 samples was performed. Samples resulting in
operating Reynolds numbers which lie outside the region of available airfoil data were discarded.
After this, 450 samples remained. For each sample, the basic wing planform from Figure |1| was
scaled according to the values of Sy and AR of the associated sample.

3. Wing Aerodynamic Calculation Methods Applied

This section introduces the methods used for the calculation of the wing aerodynamics. First, the
medium-fidelity tool is briefly presented. Following completion, the low-fidelity formulas are provided.

3
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3.1 Medium-Fidelity Wing Aerodynamics Calculations

The medium- delity tool used for aerodynamic calculations is PAWAT (Propeller and Wing Aerody-
namics Tool) [3, 4], which is based on a modi ed three-dimensional lifting line theory. Classical
lifting line theory uses the two-dimensional Kutta-Joukowski law. In contrast, PAWAT applies a three-
dimensional vortex lifting law, which is an adaption described by [5]. PAWAT requires airfoil data which
must be calculated beforehand, e.g., by means of XFOIL [6]. The aerodynamic airfoil data needs to
be provided in the form of multidimensional data tables, which depend on the angle of attack, the
Reynolds number, the Mach number, and the ap de ection angle. PAWAT can handle nonlinear and

viscous airfoil data.

For further information regarding theory and implementation of PAWAT, the reader is referred to [3]
and [4].

The aerodynamic panel data obtained by means of PAWAT are required by the medium- delity tool
used for the wing mass calculation.

3.2 Low-Fidelity Wing Aerodynamics Calculations

The low- delity wing aerodynamic calculations are based on simple assumptions for the aerodynamic
polars. The c_ over a curve of the wing is assumed to have a linear slope. The lift curve slope ¢ 4 is
obtained by means of a semi-empiric formula provided by [7]:

a0 AR 1
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where Lsg is the sweep angle at the half chord line in degrees and AR the aspect ratio. Since no
compressibility effects are considered, Ma in Eq. [1|is set to zero. Furthermore, ay is obtained from
thin airfoil theory, which yields ap = 2p. The lift polar is approximated by a linear expression as a
function of the angle of attack a:

c(@)=ca (@ acy) (2)

where ac_, denotes the angle of attack at zero lift. According to [8], ac , is equal to the airfoil's zero
lift angle of attack at the underlying Reynolds number. The airfoil data for various Reynolds numbers
is obtained by means of XFOIL [6].

The drag polar of the wing is approximated as a quadratic parabola (k. is set to 1 for the low- delity
polar estimation), as a function of ¢ :

cp=Cpo+ ki E+(ky 1) o (3)

where cpg is the wing's zero lift drag coef cient. According to [8], cpo can be approximated as the
airfoil's zero lift drag coef cient cgg, which is obtained from the airfoil data. The factor k; in Eq.|3|is

obtained by:
1

- p AR e @)
where e is the oswald factor which is assumed to be 0:98 in this study. The use of the term (ko 1)

instead of just k» is due to numerical reasons and serves to avoid division by zero in the implemented
code. For the low- delity polar estimation, k; is set to 1. Hence, Eq. 3 describes a symmetric polar.

Ky

4. Wing Mass Estimation Methods Applied

This section presents the wing mass estimation methods used in this study. First, the medium- delity
tool is introduced. Following completion, two semi-empiric formulas are presented.
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Figure 2 — Schematic build up of a hollow moulded wing [9].

Figure 3 — Wing spar gemetry [9].

4.1 Medium-Fidelity Wing Mass Estimates

The medium- delity wing mass estimation method was developed by [9]. It can be used to calculate
the mass of a hollow moulded wing, as depicted in Fig. 2. The main components of the wing are a
sandwich shell, a main spar and additional webs. Whereas the shell is designed to carry the torsion
load, the main spar is assumed to carry the entire bending load. The carbon layer of the shell is sized
based on a method developed by [10]. The equation for the thickness dimensioning of the carbon

layer at the root chord is:
¢ M bU
carbonlayer= m (5)

where M; denotes the torsion moment at the root chord, b the span, U the circumference of the root
airfoil chord, A the surface area of the root airfoil chord, G the shear modulus, and f the twist angle.
The carbon layer thickness obtained is rounded up to the next available fabric thickness.

The method [9] used for the sizing of the spar is based on [11]. The calculation bases on the wing
spar geometry depicted in Fig. 3. The thickness ts of the spar caps is set equal to the sandwich core
thickness. The sandwich core material thickness, the width of the wing closing web, the area mass of
the cover and the inner sandwich layer are not sized by the method. These parameters are assumed
to be xed. The spar cap width is calculated by:

6 M, H
W= ———————— 6
S Sb (H3 h3) ( )
where My, is the bending moment and s, the maximum allowable bending stress. The spar cap width
is determined for every wing section.

The spar's shear web is composed of balsa wood, which is coated with glass ber in  45° orien-
tation. The shear load is carried by the glass ber coating. The area weight of the glass ber fabric
for each side of the web is determined by:

ms = (7

gk h
5
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where Q is the shear force and g the acceleration due to gravity. The factor k; is a generalized dimen-
sioning parameter for E-glass fabric. Based on [12] and in accordance with [9], k; is set to 10km

The nal wing mass MyingroessieralSo includes estimates of the required glue and paint mass. A
manufacturing skill factor is included, which has an in uence on the amount of glue needed and the
ber volume coef cient obtained.

For more information regarding the medium- delity wing mass estimation method, the reader is re-
ferred to [9].

4.2 Low-Fidelity Wing Mass Estimates

No semi-empiric wing mass estimation formula was found, which has been developed speci cally
for the UAV class considered in this study (< 50kg). Hence, formulas, which have originally been
developed for other aircraft classes, are used and compared in this study. The rst low- delity wing

mass estimation method used in this paper is given by [13]:

mNing;GundIach: 0:0038 (NZ mTO)1:06 ARO:SS §é2f5 (1+ I )0:21 (t:C)ro(()):t14 [kg] (8)

where Nz denotes the ultimate load factor, mro the maximum takeoff mass in kg, ARthe aspect ratio,
Set the wing reference area in m?, | the taper ratio, and (t=c)oot the thickness to chord ratio at the
wing root. The equation was derived based on sailplanes ranging from 250to 889kg

The second wing mass estimation formula considered in this paper is provided by [14]:

0:6 _ 0:3
0:0035 AR 0:006 | 004 100 t=c 0:49

MyingRaymer= 0:036 §é7fss Mt el co2 L o5 Oc coSL 250, (Nz mro) [Ib]

9)
where Sef denotes the wing reference area in ft?>, AR the aspect ratio, g. the dynamic pressure at
cruise in Ibft 2,1 the wing taper ratio, t=c the thickness-to-chord ratio, Nz the ultimate load factor,
and myo the ight design gross weight in Ib. According to [14], the equation is applicable to general
aviation aircraft. As the wing in this study does not carry any fuel, ms e in Eq. 9 is set to 1 so its effect
is ignored. Since the wing planform of this study has multiple wing segments with individual sweeps,
a surrogate sweep angle needs to be determined for the entire wing so it can be inserted in Eg. 9.
For this purpose, a weighted average value is determined according to:

_ bsegment L25°/q'segment

Lo594= = (10)

where b denotes the span of a segment or of the entire wing, respectively. There may be several
ways to determine a surrogate sweep for a wing with multiple individually swept segments. Indeed,
the formula used to calculate this sweep may affect the accuracy of the estimation obtained by Eq. 9.
However, in the context of this study, it is irrelevant how the surrogate sweep is determined. A different
method to determine L 250, Will just result in different correction factors. The correction factors basically
correct the error Eq. 9 makes with regard to the medium- delity tool. Errors which are arti cially
introduced in Eq. 9 (e.g., inaccurate L 59, Use of Loy, instead of L o5y, inserting myo in kg instead
of Ib,...) are just additional errors to be corrected by the correction factors. However, the calculation
of the surrogate sweep must be consistent throughout the determination and usage of the correction
factors.

5. Determination of the Correction Factors

A very popular adaption-based multi- delity method is the multiplicative scaling approach as pre-
sented in [15]. In this approach, correction factors are obtained by the fraction of medium- delity (in-
dex PAWAT) and low- delity solution (index LF) as a function of x = fxy;:::Xpg, which contains the
constellation of the p input variables:

_ Ypawar(x)
b(x)= YLr(X) )
6
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For any given x, the scaling function b (x) speci es how the low- delity solution needs to be corrected
to obtain the corresponding medium- delity solution.

To estimate b (x) at points where it has not been calculated, various options are possible. [15] propose
a sensitivity-based approach, where the correction factors are assumed to vary linearly in space. [16]
and [17] demonstrated the inclusion of second-order information to approximate the scaling function.
This paper, however, will apply more generic methods from the eld of supervised machine learn-
ing to predict the correction factors at arbitrary points in the design space. A comparison of three
machine learning methods is carried out: decision tree ensembles, support vector machines and
Gaussian process regression. The latter has already been used in the context of variable delity
optimization, e.g., in [18-20].

For the wing aerodynamic calculations, the multiplicative scaling approach presented above is modi-
ed. Itis important to emphasize that the medium- delity solutions are not the all-encompassing truth
but rather just a more accurate estimation of the real behavior. This estimation may still be inaccurate,
e.g., due to numerical instabilities which occurred during the calculations, which is a common issue
in aerodynamic analyses. Therefore, an unquestioned approximation of the medium- delity solutions
is not always desirable. In fact, the engineer must be well aware of the extent to which a correction of
the low- delity results is actually appropriate. In line with this motivation, a different approach is cho-
sen for the multi- delity modeling of the wing aerodynamics. For the approach to be suitable within
automated analyses, it is important that no human in-the-loop is needed to decide to what extent
the low- delity solutions shall be adjusted. The approach proposed in this paper does not approxi-
mate every single data point of the higher- delity aerodynamic polars. Instead, it rst postulates the
mathematical form of the expected lift polar to be the same as in the low- delity estimation:

ClLi-pawar = b1 CLa (a b, aCL;O) (12)

Then, this postulated equation is tted on the data obtained by PAWAT to determine the unknown
parameters by and b,. These parameters basically specify how the initial estimations for ¢ 4 and ac_,
need to be corrected.

For the drag polar, the procedure is similar. A general non-symmetric quadratic polar is postulated:
CDit;pawat = bs cpo+ ba ki CE+(b5 ke 1) c (13)

and the unknown parameters bz to bs are determined by tting Eq. 13 to the data obtained by PAWAT.
The parameters bz to bs de ne how the initial estimations for cpg, k1 and k, need to be corrected.

Figure 4 illustrates the concept of tting the postulated aerodynamic polar equations to the data
obtained from PAWAT.

The wing mass correction factors are obtained by means of the unmodi ed multiplicative scaling
approach. The correction factors are given by:

_ MaS§ingRoessler
b6;GundIach— (14)
MaS§ingGundlach
Mas§ingRoessler
beRaymer= —— OO (15)
MasS§ingRaymer

The next section presents the correction factors for all wings, that have been designed according
to the samples introduced in section 2.

6. Curve-Fits of the Correction Factors

This section presents the results for the correction factors, which were obtained for various wing de-
signs. Figure 5 shows the ts obtained for the aerodynamic correction factors b; to bs. Very good

7
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Figure 4 — Concept of tting polars with postulated shapes to the data obtained from PAWAT.

ts were obtained for bj, by, by and bs. For by and by, some data points needed to be excluded in
order to obtain clean ts. Consequently, the ts are not valid in the regions where the data points

were excluded (Re< 1:7 10° for by and Re< 3:2 1CP for b,). For bs, no t was found. However, in
the region 228 10°< Re< 7:2 10° bz can be approximated as 1. Apparently, for Reynolds numbers
below and above this interval, assuming cpg = Cgg as in Eq. 3 results in a considerable error with
regard to the results obtained by PAWAT. Obviously, at these Reynolds numbers, some effects are
not captured by solely looking at the 2D airfoil data, which is retrieved using the Reynolds number at
the mean aerodynamic chord of the wing.

The equations for the ts of the aerodynamic correction factors are:

by = 0:1612 R&1666 AR 01225 3:342 10 7 Ret+ 0:00756 AR (16)
b, = 0:8061+ 1:894 10° Re 5% (17)
bs= 9:791 Re %2238 ARP824341 5:929 10 / Re 0:1948 AR (18)
b5 = 0:8993 Ré):007461 AR 0:00243 (19)

Figure 6 shows the ts obtained for the wing mass correction factors bggundiach @nd bg:raymer Very
good ts were obtained for both bggundiach@nd beraymer This shows that either of the methods can
be used for the considered wing planform; a correction of the low- delity predictions appears to be
simply predictable based on Set and Vgesign

The equations for the ts of the wing mass correction factors are:

be;Gundiach= 0:6111+ 0:002931 Vgaooo, St (20)
be:Raymer= 0:5505+ 0:0002084Vd2é‘,‘5i7§n SI715 (21)

7. Machine Learning Models Applied

This section provides a brief description of the machine learning methods applied and is mostly
adapted from [21-24].

The goal of supervised machine learning for regression applications is to build a model which ac-
curately makes predictions about the value of a continuous variable (response variable) based on
provided input variables, denoted as predictors or features. The space de ned by the predictors is
called predictor space. A point in this space is called sample. Samples with associated responses
used for the training of a model de ne the training data set.
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