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Abstract 

Flight safety is compromised when positioning with Global Navigation Satellite Systems (GNSS) is 
rendered unusable or unreliable. The cause of such GNSS-denied situations can be signal 
obstruction, multipath issues from mountains or tall buildings as well as malicious jamming or 
spoofing.  

The Swedish company Spacemetric is working together with the Royal Institute of Technology (KTH) 
in Stockholm to address the challenge of accurate and reliable aerial localisation, which is a key 
aspect to ensure flight safety for autonomous aerial navigation. The project, called “Autonomous 
Navigation Support from Real-Time Visual Mapping”, focusses on vision-based methods for aerial 
positioning in Unmanned Aerial Vehicles navigating in natural environments.  

This paper present results from the project’s ongoing research on vision-based approaches with deep 
learning as well as a novel approach to localisation which exploits the three-dimensional structure of 
vegetation and terrain.  
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1. Introduction 

The advantages of Unmanned Aerial Vehicles (UAVs) include cost effectiveness, ease of deployment 
and possibilities for automated operations. UAVs can vary in size from a few hundred grams to that 
of conventional fixed or rotary wing aircrafts. While originally developed for military purposes such as 
reconnaissance or aerial attacks, UAVs are today increasingly being used in the civilian and public 
domains. Applications include real-time monitoring of road traffic, environmental remote sensing, 
search and rescue operations, delivery of medical supplies in hard-to-reach areas, security and 
surveillance, precision agriculture, and civil infrastructure inspections [1]. For instance, fast delivery 
of defibrillators with UAVs is being evaluated in Sweden [2] with the first successful life-saving delivery 
in the beginning of 2022 [3]. In Rwanda and Ghana, autonomously navigating fixed-wing UAVs are 
delivering medical supplies in areas with limited infrastructure [4].  

Increasing degrees of autonomy in UAVs are expected to provide immense advantages, especially in 
support of public safety, search and rescue operations, and disaster management [1].  

The Swedish company Spacemetric is working together with the Royal Institute of Technology (KTH) 
in Stockholm to address the challenge of accurate and reliable aerial localisation, which is a key 
aspect to ensure flight safety for autonomous UAV navigation. The long-term vision is to contribute to 
improved flight safety for autonomous UAVs, by providing a fallback option for map-relative 
localisation, in the event that conventional methods of localisation become unavailable or unreliable.  

The research project focusses on vision-based methods for localisation of UAVs in non-urban 
environments. Such methods are rooted in the domain of photogrammetry and computer vision and 
today have strong links with machine learning. The project builds on one hand on Spacemetric’s 
experience with photogrammetry, sensor modelling, 3D model generation and georeferencing of 
image data, stretching over more than two decades, and on the other hand on the vast experience of 
KTH with respect to computer vision and deep learning.  

This paper presents the results of ongoing research on UAV localisation with  

• deep learning approaches for UAV image matching against satellite images; and  



VISION-BASED LOCALISATION IN GNSS-DENIED SITUATIONS 

2 

 

 

• registration of 3D models derived from UAV images with georeferenced 3D models of terrain and 
vegetation.  

1.1 GNSS-denied navigation 

Unpiloted UAVs commonly navigate based on a combination of dead reckoning and Global Satellite 
Navigation Systems (GNSSs), such as GPS and GLONASS. Dead reckoning, most commonly inertial 
measurements, allows frequent estimation of changes in the vehicle’s velocity, position and 
orientation. Such measurements are however affected by unbounded drift errors, as measurement 
errors are integrated over time. GNSS, on the other hand, provides estimates of absolute position and 
is used to constrain the drift errors from inertial measurements, while also providing map-relative 
localisation [5].  

There are situations when localisation with GNSS can be rendered unusable or unreliable. The cause 
of this can be instrument failure, signal obstruction, multipath issues from mountains or tall buildings, 
and unintentional radio frequency interference as well as malicious jamming or spoofing [6], [7]. Such 
events can quickly render the UAV uncapable of navigating safely. The importance of being able to 
navigate without GNSS has been highlighted by the U.S. Army as a reaction to increased concerns 
of jamming and spoofing of GPS signals targeted at their unmanned aircraft systems [8].  

1.2 Vision-based localisation 
An alternative to GNSS for map-relative localisation is vision-based localisation, whereby data from a 
sensor mounted on the aerial vehicle is compared with a reference model of the environment. The 
sensor is often a camera, but can also be a laser scanner, a radar altimeter, or some other type of 
sensor. At its core, vision-based localisation is a camera pose estimation problem, where the objective 
is to estimate the position, i.e. the three spatial coordinates of the camera, as well as the orientation, 
i.e. the three angles of rotation relative to some frame of reference.  

Map-relative localisation is closely related to visual odometry, in which the motion of the vehicle is 
estimated by matching sequences of sensor data acquired by the vehicle. The difference is that visual 
odometry computes position and orientation through integration of estimates of relative motion 
between sensor acquisitions, while map-relative visual localisation directly estimates the position and 
orientation relative some reference model of the world. The reference model may consist of geocoded 
satellite or aerial images, or 3D models, which are stored onboard the UAV. Our project is concerned 
with map-relative localisation.  

The challenge of vision-based localisation in natural environments is the accurate registration of the 
UAV’s observation data with the reference model, given potentially large differences in viewing 
perspective, scale, illumination, shadows, clouds and scene content. Furthermore, the localisation 
task must be carried out in real-time to be of value for the navigation system. 

Most of the research on vision-based localisation has hitherto been devoted to indoor settings and 
outdoor urban environments. However, many applications require reliable localisation also in non-
urban areas, including search and rescue missions, delivery of supplies in inaccessible locations as 
well as large-scale surveillance and monitoring.  

Urban environments often contain many features that are distinct and stable over time and therefore 
are suitable image matching. The same cannot be said for forests or open terrain, as these are often 
affected by seasonal variations, natural growth and decay, as well as by harvesting and logging. An 
example of such differences in two aerial images over a rural location is shown in Figure 1. The left 
image was acquired on May 13, 2016, whilst the right image was acquired on April 11, 2018. 
Significant differences in colour and texture over the forested area can be observed, resulting from 
the area being imaged before and after the onset of leafing. Shadows are cast in different directions, 
as the images were acquired at different times of day. Such differences complicate image-based 
localisation. In case of low-altitude flights, the reduced imaged footprint on the ground can exacerbate 
the challenge, as exemplified in Figure 2.  
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Figure 1 - An example of significant differences in image content due to seasonal variations and 

illumination conditions. Left: Aerial image acquired on May 13, 2016, at 9:41AM. Right: Same area 
acquired on April 11, 2018, at 3:31PM. Aerial images courtesy of Lantmäteriet, Sweden. 

 

 
Figure 2 – Example of a forest patch from Figure 1 with foliated (left) and bare (right) tree canopies. 

The extent of the images corresponds to an acquisition from a nadir-pointing camera with a 65° 
angular field of view 120 m above the ground. Aerial images courtesy of Lantmäteriet, Sweden. 

 

The authors of [9] classified vision-based localisation approaches into i) template matching, ii) feature 
point matching and iii) deep learning. Template matching directly compares pixel intensities or metrics 
derived thereof, such as correlation or mutual information [10]. Feature point matching instead detects 
distinct image features, such as corners, and match descriptions of those features. Relatively few 
contributions, however, exploit deep learning. [9] attribute this to a lack of publicly available UAV data 
and to the current infeasibility of training Convolutional Neural Networks to learn complete reference 
maps accurately enough due to inherent memory limitations. The authors assess that in this field, the 
current state-of-art consists of approaches that use a combination of feature point matching and 
statistical filtering.  

The use of deep learning approaches and Convolutional Neural Networks (CNNs) are of interest 
due to the ability of such networks to learn complex patterns and their successes for image-related 
tasks, such as image recognition and object detection and classification.  

2. Deep Learning approaches 

There is a general lack of studies on deep learning for aerial pose estimation in non-urban areas. We 
therefore assessed the feasibility of two different published methods that had been developed and 
evaluated over urban and rural areas. We evaluated the efficacy of these methods over forests and 
fields at several sites in Sweden.  

Two different deep learning methods were evaluated, namely those of [11] and [12].  

2.1 End-to-end Convolution Neural Network 

[12] focussed on cross-view geolocalisation over urban areas using high resolution satellite images 
as reference data. It is an end-to-end deep learning approach, which means that it attempts to replace 
the entire conventional pose estimation pipeline of feature detection, description, matching as well as 
camera pose estimation by estimating the pose directly from the images. 
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2.1.1 Method 

The method uses two separate networks, both based on the AlexNet Convolutional Neural Network 
architecture. An overview of the method is shown in Figure 3. The camera localisation network takes 
as its input a single UAV image and a patch of a satellite image, and outputs an estimated camera 
pose relative to the satellite image patch. The horizontal position is estimated through classification 
in an 8x8 cells grid with a ±200 m range along each of the two axes. The altitude and the heading and 
tilt angles are estimated through regression. The roll angle is assumed to be fixed at 0° and is not 
estimated.  

A second network, here called “scene similarity network”, generates a measure of similarity between 
a UAV image and a satellite image patch. The similarity measure is used to combine a set of nine 
preliminary pose estimates from the camera localization network to obtain the final pose estimate. 
The nine preliminary poses are estimated based on the nine satellite image patches closest to the a 
priori estimate of the UAV image.  

[12] used a Kalman Filter to fuse pose estimate with visual odometry to improve the overall accuracy. 
Our intention was to evaluate how accurate their end-to-end deep learning approach is over non-
urban areas. We therefore evaluated that method in isolation, without the integration with visual 
odometry. For full details on the method, see [12].  

 

 
Figure 3 – Overview of the deep learning-based method proposed by [12]. Graphic adapted from 

[12].  

 

2.1.2 Evaluation 

This section describes the experimental setup used in our evaluation of the method proposed by [12]. 
We generated training data from accurately geolocated, high resolution aerial orthophotos provided 
by Lantmäteriet. Satellite images were simulated at 0.5 m pixel size by cropping and subsampling 
480 m by 480 m patches from the orthophotos. UAV perspective images were simulated from 
orthophotos by varying the above ground height between 200 m and 300 m while varying the camera 
tilt angle between nadir (0°) and 45° off-nadir and allowing full freedom in the heading angle. Care 
was taken to produce a balanced dataset, such as a uniform sampling of all the classes for the 
horizontal classification problem.  

Training was performed over two areas in Sweden, shown in Figure 4. The training areas are 
dominated by forest and agricultural fields and has a combined area of 100 km2.  
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Figure 4 – Non-urban areas for network training. Left: “Ockelbo”, which is covered with mainly 
coniferous trees and agricultural fields. Right: “Tomelilla”, containing agricultural fields and a mix of 

deciduous and coniferous trees.  

 

UAV and satellite image pairs were generated from orthophotos acquired several years apart, to 
simulate the fact that up-to-date reference data may not be available. 15000 pairs were generated 
and annotated with the camera pose parameters, for each of the training areas. Examples of training 
data are given in Figure 5 and Figure 6.  

 

   

Figure 5 – Example of training data pair from the Ockelbo area. Left: simulated UAV image. Right: 
corresponding simulated satellite image. 

 

  

Figure 6 – Example of training data pair from the Tomelilla area. Left: simulated UAV image. Right: 
corresponding simulated satellite image. 



VISION-BASED LOCALISATION IN GNSS-DENIED SITUATIONS 

6 

 

 

 

 
Figure 7 – Evaluation area “Grolanda”, containing a mix of agricultural fields and deciduous and 

coniferous trees. 

 

The evaluation of the accuracy was performed with 2000 UAV images over a 42 km2 third non-urban 
site, shown in Figure 7.  

2.1.3 Results 

The mean horizontal position accuracy over the Grolanda evaluation site was 86 m. This is an 
unacceptable error for most applications and a 54% reduction from the error of simply uniformly 
guessing the horizontal position within the classification grid (which would result in a mean accuracy 
of 188 m). The mean altitude accuracy was 23 m.  

The similarity-based weighted average of the nine initial poses was not significantly different from the 
corresponding unweighted average. This was caused by an inability of the scene similarity network 
to learn a good similarity measure for the non-urban data.  

When the approach was evaluated with UAV and satellite data generated from the same aerial 
images, as opposed to aerial images acquired several years apart, the mean horizontal position error 
was 68 m. This shows that only a minor part of the position error could be contributed to differences 
in scene content.  

2.2 Deep feature representations  

The second deep learning approach evaluated in the project is the method proposed by [11]. They 
hypothesized that a deep CNN could learn image representations which are effective for aligning 
satellite imagery and UAV images containing differences caused by seasonal changes, time-of-day, 
perspective differences, and the addition or removal of buildings or other structures. They state that 
their method can generalize from urban environments to challenging low-texture rural datasets.  

[11] used a deep convolutional neural network to translate the UAV image and the georeferenced 
satellite image into deep feature representation images before estimating the image alignment 
transform using a modified version of the widely used Lucas-Kanade [13] motion estimation algorithm. 
In contrast to [12], this method is thus not end-to-end, as the camera pose estimation itself is 
performed without any learning.  

2.2.1 Method 

The architecture consists of two fully convolutional VGG16 neural networks [14] in parallel, which 
share the same convolutional weights. They use pre-trained networks and fine-tune only the weights 
in the 3rd convolutional block, the output of which is used as feature representations. Such mid-layer 
features are known to have good generalisability characteristics in large image recognition neural 
networks. The UAV image is fed into one of the networks and the satellite image is fed into the second 
network. The loss functions are designed to make the networks learn to generate representations of 
the original images that are as photometrically similar as possible.  
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They used the Inverse Compositional Lucas-Kanade (ICLK) algorithm [15] for homography estimation 
with the use of feature representations of the UAV image and the satellite image. The homography 
encodes the camera pose of the UAV relative to the satellite image. The homography estimation 
makes a planar assumption, i.e., that the scene that is imaged is flat. This assumption will introduce 
errors when height variations in the scene are significant in comparison with the viewing distance.  

The authors integrated visual odometry by joint optimization of the photogrammetric errors between 
representations of a set of overlapping UAV images and the photogrammetric errors between 
representations of those UAV images and a representation of a satellite image. We evaluated their 
deep features approach to camera pose estimation in isolation, without the integration with visual 
odometry, in order to compare the results with our evaluation of the method proposed by [12].   

For complete details on the method, see [11].  

2.2.2 Evaluation 

As in our evaluation of [12], we generated training data based on high resolution aerial orthophotos. 
In addition to the two non-urban training sites shown in Figure 4, we included corresponding training 
data over Stockholm, Sweden and Woodbridge, New Jersey, USA, shown in Figure 8. The 
Woodbridge data was provided by the authors of [11].  

 

 

 
Figure 8 - Urban areas for network training. Left: “Stockholm”. Right: “Woodbridge”. 

 

The roll and pitch angles are assumed to be fixed at 0°. The parameters estimated with this method 
are the horizontal offset, the scale, and the heading angle of the UAV image relative the satellite 
image.  

To create a pair of training images, a location was randomly selected and patches around the location 
extracted from orthophotos acquired at two different dates. The patches were subsampled to 1 m 
pixel size. One of the patches represented the satellite image, while the other represented the UAV 
image, which was generated by warping the patch with a homography parameterised by randomized 
horizontal offset, heading angle and scale. The horizontal offset was varied with ±20 m along each of 
the two axes, the heading angle with ±20°, and the scale with ±25%. These ranges of variation 
correspond to the range of parameters that the network will be capable of estimating. Therefore, these 
ranges also correspond to the requirements on the accuracy of the a priori camera pose.  

Each training pair was annotated with the parameter settings used to simulate the UAV image. In total 
30000 image pairs were used during training.  

Our evaluation was performed assuming a UAV at a flight height of 150 m above ground equipped 
with a downward facing camera with a 60° angular field of view.  

2.2.3 Results 

The resulting mean horizontal position accuracy for the Grolanda evaluation area was 5.5 m. Simple 
uniform guessing of the horizontal position would result in a mean accuracy of 18.9 m, relative to 
which the achieved mean accuracy is a 71% reduction.  

When UAV and satellite image were generated from the same orthophoto the mean horizontal 
accuracy over the Grolanda area improved to 0.9 m. This indicates that a majority of the horizontal 
position error can be contributed to differences in image content. The mean altitude accuracy was 
9.5 m.  

  



VISION-BASED LOCALISATION IN GNSS-DENIED SITUATIONS 

8 

 

 

3. Exploiting vegetation structure 

Vision-based methods relying on colour or texture information in images will fail given sufficiently large 
differences between the image acquired by the UAV and the reference image. An example of such 
differences, caused by different vegetation states over a deciduous forest, was shown in Figure 2. 
Less severe discrepancies caused by differences in illumination, shadows and observation 
perspective also compromise the reliability of vision-based method. The risk of localisation failure 
increases with decreasing flight altitude, as the area on the ground imaged by the camera decreases 
and therefore contains fewer features suitable for image matching. How, then, can the reliability of 
vision-based methods be improved in such challenging scenarios? The project attempts to answer 
this question by exploiting the 3D structure of the scene, instead of its colour and texture.  

3D models can be generated with stereo triangulation in overlapping images and is routinely 
generated from images acquired by airplanes and UAVs. Such models could theoretically be 
generated in real-time onboard the UAV and registered against a georeferenced 3D model stored 
onboard in order to determine the location and orientation of the UAV.  

The project explores the idea that the 3D structure of forests and terrain may be more persistent over 
time than image texture and intensity, given significant differences in illumination, shadows, 
vegetation state or observation perspective and to some extent also snow cover. This idea is 
illustrated in Figure 9, in which the differences between the aerial images (top row) intuitively appear 
less reconcilable than the corresponding height maps (bottom row).  

 

 
 

 

  
  

Figure 9 – Comparison between aerial images (top row) and corresponding height maps 
triangulated from motion stereo (bottom row) for a 135 m by 135 m forested area in the Grolanda 

test site. Left column: data from Aug. 14th, 2015. Right column: data from Aug. 25th, 2019.  

 

Related to our approach is the collection of methods referred to as Terrain Referenced Navigation 
(TRN), variants of which has been developed since the 1970s [16][17]. However, to the best of our 
knowledge, our approach of explicitly relying on vegetation for UAV localisation in non-urban areas 
has not been studied before.  
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3.1 Related work 

A noteworthy study on TRN is [18], who sought a method robust to changes in vegetation appearance 
and assumed that the use of height information was more robust to seasonal variations than an image-
based approach. They matched dense local height patches derived from stereo motion against a 
georeferenced 3D model. They evaluated their method on aerial images acquired from a helicopter 
at 200 m altitude and on imagery acquired from an aeroplane at an altitude of 600 m. Over a residential 
area, they reported a convergence zone for the a priori pose estimate of approximately 30 m in 
diameter, outside of which their optimisation method would be trapped in a local minimum, resulting 
in a large horizontal positioning error.  

Another noteworthy study is [19], who matched height patches from LiDAR measurements 
representing the ground topography against a Digital Elevation Model (DEM). They used the results 
from the height patch matching to correct drift errors of inertial measurements in an error-state Kalman 
Filter. For a 218 km manned helicopter flight, [19] achieved successful matches of the height patches 
in 74.1% of the cases and reported that the localization errors were below 20 m laterally and 5 m 
vertically for most of the flight.  

A major difference between our approach and those of [18] and [19] is that we avoid rasterising the 
3D models. Instead, both the 3D model generated on the UAV and the geocoded reference model 
are matched in their raw form represented as irregular point clouds, with each point holding its 
respective estimated easting, northing, and height coordinates. Our main reason for avoiding 
rasterization is that it reduces structural detail.  

3.2 Method 

Our 3D registration pipeline was implemented with the use of established methods for point cloud 
processing available in the open-source software Point Cloud Library [20]. The registration pipeline 
takes as input two points clouds, which we call the reference point cloud (PCref) and the UAV point 
cloud (PCUAV). PCref contains accurate world coordinates for each point. Some a priori knowledge of 
the UAV’s pose and its uncertainty is required so that a search space can be defined in the reference 
data. The a priori pose may be provided by inertial measurements, through visual odometry or from 
manual initiation, in case GNSS measurements are not available.  

The extent of PCref is computed based on the extent of PCUAV and the uncertainty in the a priori pose, 
with larger uncertainty requiring a larger PCref to be considered to ensure that it contains PCUAV.  

The point clouds are processed with general-purpose point cloud registration algorithms, resulting in 
a rigid body transform that aims at aligning PCUAV with PCref, effectively geocoding each point in PCUAV. 
The estimation of the camera pose can then be formulated as the well-known Perspective-n-Point 
problem using the correspondences between the world coordinates in PCUAV and image pixel 
coordinates.  

Note that the colour information available in the aerial images is discarded, as this information may 
contribute to false matches – only the 3D structure is used in the processing.  

3.3 Evaluation 

The point clouds used in our experiments were generated with Spacemetric’s software Keystone, 
based on monocular motion stereo triangulation in aerial images. The aerial images were acquired as 
part of two different flight campaigns carried out by order of The Swedish Mapping, Cadastral and 
Land Registration Authority (Lantmäteriet). Specifications of the acquisitions are provided in Table 1. 
Two images from each date were used to generate the point clouds. The resulting point clouds, which 
cover a 1 km2 area in the Grolanda test site, are shown in Figure 10. The aerial images used to 
generate the point clouds were acquired four years apart. This is a reasonable time span considering 
the challenges involved in obtaining up-to-date reference data. As can be seen in the height difference 
image in the rightmost graphic in Figure 10, significant changes took place within this time span, 
mainly in terms of vegetation growth.  

 

Purpose Acquisition 
date 

Acquisition 
local time 

Flight altitude Spatial 
resolution 

Generation of PCref Aug. 14th 2015 12:28 3900 m 26 cm 

Simulation of PCUAV Aug. 25th 2019 08:42 3200 m 16 cm 

Table 1 – Specification of aerial images that were used for generation of our experimental data.  
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Figure 10 – Left: Point cloud PC2015 used for generation of PCref. Centre: Point cloud (PC2019) used 

for simulation of PCUAV. Right: Height difference map (PC2019 - PC2015).  

 

The assumed configuration in our experiments was a UAV at an altitude of 90 m above ground, with 
a downward facing camera with an angular field of view of 73.9°. An overlap between successive 
images of 50% along and across the flight path was assumed, resulting in a point cloud extent of 67 
m x 67 m.  

Here, we present initial results for two different scenarios for the a priori displacement errors of PCUAV. 
These displacement scenarios (Table 2) correspond approximately to uncertainties in the a priori 
knowledge of the position and orientation of the UAV. The extent of PCUAV together with the 
displacement scenario was used to compute the extent of PCref required to ensure full overlap with 
PCUAV.  

 

 Horizontal 
error 

Heading angle 
error 

Pitch and roll 
angle errors 

Scale error Corresponding 
PCref extent 

Scenario A 60 m 5° 0.5° 2% 180 m x 180 m 

Scenario B 10 m 25° 5° 2% 109 m x 109 m 

Table 2 – Scenarios for a priori displacement errors in our experiments. 

 

Registration experiments were performed at locations evenly distributed over the test area shown in 
Figure 10. The UAV point cloud for each particular location (PCUAV,i) was simulated by cropping a 67 
m by 67 m subset from PC2019 centred at the location, and subsequently translating, rotating and 
scaling that subset according to scenario A or scenario B from Table 2. The corresponding reference 
point cloud PCref,i was generated by cropping a section from PC2015 with an extent (see Table 2) that 
ensured that the entire PCUAV,i was contained within PCref,i. Examples of PCUAV,i and PCref,i for scenario 
A and B are shown in Figure 11 and Figure 12.  

We measure the achieved registration accuracy with the mean target registration error (MTRE) [21], 
which is the average Euclidian distance in meters between all points in the aligned UAV point cloud 
and the ground truth. The ground truth in our case corresponds to the original subset in PC2019, from 
which PCUAV,i was simulated. The MTRE includes the three-dimensional translation error as well as 
rotation errors.  
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Figure 11 – Example of point clouds for scenario A. Color represents height. Nadir view of a UAV 
point cloud (left) and the corresponding 180 m wide reference point cloud (right). The registration 

accuracy (MTRE) achieved in this experiment was 3.3 m.  

 

  
Figure 12 – Example of experiment data for scenario B. Nadir view of a UAV point cloud (left) and 

the corresponding 109 m wide reference point cloud (right). The registration accuracy (MTRE) 
achieved in this experiment was 1.8 m.  

3.4 Results 

We evaluated the registration accuracy rather than the camera pose accuracy in these experiments. 
However, the roll and pitch angle errors were consistently small, which means that the horizontal 
registration accuracy closely correspond to the obtainable horizontal localisation accuracy of the 
camera pose.  

The results for scenario A are summarised in Figure 13. The average MTRE over the test site was 
13.1 m. As can be seen in the histogram in Figure 13, the distribution of MTRE values is highly skewed 
with 73% of the experiments achieving an MTRE <5 m. The mean horizontal registration accuracy for 
scenario A was 8.9 m. This is approximately an 86% reduction compared with a theoretical guesswork 
algorithm. It can be noted that the median horizontal registration accuracy is significantly lower at only 
1.9 m.  
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Figure 13 – Point cloud registration errors (MTRE) for scenario A. Left: spatial distribution of 
registration errors (MTRE) overlayed on the test area. Right: corresponding histogram.  

 

The registration results for scenario B are shown in Figure 14. As in the case with scenario A, the 
distribution of MTRE values is highly skewed, with a mean MTRE of 8.2 m but with 76% of the 
experiments achieving an MTRE <5 m. The mean horizontal accuracy is 5.1 m, which is approximately 
87% improvement compared to guesswork.  

 

  

 

Figure 14 – Point cloud registration errors (MTRE) for scenario B. Left: spatial distribution of 
registration errors (MTRE) overlayed on the test area. Right: corresponding histogram.  

 

4. Conclusions 

The interpretation of the achieved pose estimation accuracies must take into account the uncertainty 
in the a priori knowledge of the pose. Simply put: what accuracy can be achieved with mere 
guesswork, given the a priori knowledge of the pose?  

The mean horizontal position accuracy achieved with the end-to-end deep learning approach of [12] 
over the Grolanda evaluation area was 86 m. This is not sufficient accuracy for most applications and 
is only a 54% improvement over a theoretical guesswork-algorithm. Improvements may be achieved 
by increasing the number of classes used for the position classification task, or by replacing the 
classification with a regression approach. The approach performs better in urban areas, for which it 
was initially developed, than in non-urban areas. For further details on our evaluation of [12], see [22].  

The mean horizontal position accuracy achieved with the deep features approach of [11] over the 
Grolanda evaluation area was 5.5 m. This is an order of magnitude better than our accuracy achieved 
with [12]. However, considering the higher accuracy of the a priori knowledge of the pose, the 5.5 m 
accuracy correspond to 71% improvement relative pure guesswork. Thus, while the accuracies of the 
two approaches differed by more than an order of magnitude in absolute terms, their improvement in 
relative terms is less dramatic. However, the results motivate further research with deep features 
representations. For full details on our evaluation of [11], see [23].  
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The initial evaluation of our novel approach of exploiting vegetation structure showed promising 
results, with successful localisation (<5 m horizontal accuracy) in more than 73% of the experiments. 
This success rate is at levels similar to those achieved by [19]. Furthermore, the convergence zone 
of our approach is at least 120 m in diameter, which can be compared with the 30 m convergence 
zone for the related method proposed by [18].  

5. Outlook 

We will further study and develop our approach for exploiting vegetation structure for UAV localisation.  

We have carried out image acquisition campaigns with a small commercial UAV over several forested 
areas in Sweden and are currently cooperating with the Swedish company I-CONIC Vision who will 
provide rapid generation of highly detailed 3D models from these images.  

We consider deep feature representations to be a promising approach, which we also intend to 
explore further. The project is expected to conclude during 2023.   

There is no single vision-based method that is optimal for all possible types of discrepancies between 
observation data and reference data. Furthermore, there will be situations when most vision-based 
methods will fail, such as over large water bodies, in fog or above cloud cover. Therefore, vision-
based systems should integrate several different types of vision-based methods together with inertial 
measurements, in order to maximise localisation accuracy and overall reliability.  
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