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Abstract 

Selecting an appropriate set of the initial parameter for the aircraft conceptual design phase has a huge 

effect on the overall design result of the aircraft. Therefore, estimating appropriate combinations of the initial 

design parameters is an essential step for obtaining feasible conceptual design results. Existing methods 

selected the initial parameters by using empirical formulas or adopting the empirical parameters. These 

methods have limitations in that the design results are highly dependent on the user’s experience and prior 

knowledge. Moreover, it is necessary to evaluate numerous empirical formulas to figure out the relationships 

between diverse combinations of variables. To overcome these limitations, this study applied data-driven 

machine learning techniques. The data-driven approach has advantages since it utilizes large, accumulated 

data and depends less on the user’s experience. Therefore, data-driven machine learning models are utilized 

for the estimation of the initial parameters of aircraft conceptual design. 

Several machine learning models, k-nearest neighbors (kNN), variational autoencoder (VAE), and random 

forest (RF) are applied. These models are capable of handling incomplete and heterogeneous data. This is a 

huge advantage because most of the existing aircraft data are incomplete and composed of various data types. 

An incomplete dataset can be entered so that the model can directly learn from the data. The actual data of 

the aircrafts that served in World War II is gathered and utilized in this study. kNN, VAE, and RF have distinct 

learning tactics, so this study set the universal criteria to compare the performances of the three models. 

Furthermore, unlike other studies that require a complete dataset for training and validation, this study 

constructed the repeated imputation procedure and successfully assessed both models. As preliminary 

research, this study presented the validity of applying a data-driven approach to the aircraft initial sizing 

problem. 

Keywords: aircraft conceptual design, initial parameter estimation, k-nearest neighbors, variational 
autoencoder, random forest 

 
 

1. Introduction 

The aircraft design process consists of three major phases: conceptual design, preliminary design, 

and detail design [1]. The conceptual design phase is ahead of the overall design process, so the 

results should be provided fast so that the modification can be reflected in the following stages. The 

conceptual design process requires the design requirements and then explores possible sets of 

specifications such as configuration, weight, and performance. Thus, defining an adequate design 

space is an essential process for attaining a desirable design result. 

Initial design parameter estimation is carried out concurrently with the conceptual sketch of the 

initial layout. The optimization process is followed based on this initialization. Therefore, during the 

aircraft designing process, selecting the initial parameters preceding the conceptual design phase 

has been an essential step in establishing the overall outline of the aircraft to be developed.  

Existing methods have used empirical formulas with assumptions or adopted empirical parameters 

to set the initial parameters. These conventional methods have limitations in that only an insufficient 

small subset of the design space is explored because they reflect very few reference cases. This 

leads to an ineffective design because the user might start exploring at the wrong point and end up 
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calculating at a local minimum. While setting reference cases, the design process and result 

unavoidably become dependent on the engineer’s design experiences and background knowledge. 

For example, the accuracy of the linear regression highly depends on the similarities between the 

input data and the target configuration. Moreover, when an empirical formula is established by 

combining variables, the calculating process is inefficient because each formula has a different 

objective function. Moore et al. [2] developed a design tool for aircraft conceptual design studies 

based on the optimization of the objective functions. Similarly, Ardema et al. [3] estimated relations 

between the load-bearing fuselage weight, wing weight, and other related weights by deriving the 

empirical formulas. However, the derivation of numerous empirical equations regarding diverse 

combinations of variables in serial order was inevitable. In such a problematic situation, the 

limitations of the existing method can be overcome if a data-driven method is applied.  

The data-driven approach has various advantages. First of all, it can utilize a large amount of 

accumulated data when designing a new case. This means that the design result no longer adopts 

a single reference but reflects the overall tendency of cumulated data. Thus, the process gets less 

dependent on user knowledge and experience, facilitating efficient design space exploration. Also, 

models with various inputs and outputs are implementable since the user can make flexible changes 

to the model. 

Despite these advantages, data-driven methods have not been utilized in the initial parameter 

setting of aircraft conceptual design. The existing data-driven parameter estimation methods require 

or assumed as their dataset are complete or homogeneous for training and evaluation. [4] Peyada 

and Ghosh [5] successfully generated the flight data by solving the equations of motions directly 

instead of gathering actual experimental data, yet the incomplete dataset could not be entered 

directly into the model. 

In the real-world application, most of the aircraft databases are incomplete. This is because the 

aircraft specification details are usually incomplete to maintain security due to the nature of the 

aviation industry. Also, the types of available data vary from aircraft to aircraft because the aircraft 

design is extremely complex. For example, the aircraft design parameter dataset gathered from [6]  

is composed of 85 categories in total. For these reasons, most of the existing aircraft databases are 

incomplete and heterogeneous, and thus the conceptual design process could not be fused with 

data-driven methods. An example of the existing aircraft data is demonstrated in Table 1. It is a brief 

overview of the dataset of aircraft that served in World War II. 

 

Table 1 – Brief overview of the dataset of aircraft of World War II 

 

Real-valued Categorical Countable 

Total power 

[h.p.] 

Span 

[m] 

Wing area 

[m2] 

Empty 

weight 

[kg] 

Landing 

gear type 

Number of 

engines 

1 65 7.22 ? 285 fixed 1 

2 520 17.02 43.85 2791 fixed ? 

3 ? 13.1 34 ? retractable 2 

4 ? 31.7 1184 17360 ? 4 

5 2400 12.5 28.06 ? retractable 1 

 

Data-driven machine learning models can be a solution for the limitations of the existing data-

driven methodologies. The presenting research overcame the limitations mentioned above by 

utilizing those machine learning models to estimate the initial parameters of aircraft conceptual 

design. In this study, the k-nearest neighbors algorithm (kNN), variational autoencoder (VAE), and 

random forest (RF) are applied among numerous machine learning models, to estimate the initial 

parameters of the aircraft conceptual design.  

The three models – kNN, VAE, and RF – have remarkable advantages. First of all, they can deal 

with data with inconsistent types. Thus, they can also handle high-dimensional multivariate data. 

Also, they can be trained with incomplete data and consequently fill in the missing attributes. These 
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valuable properties enable the design parameter estimation by applying data-driven methods to real-

world aircraft data. 

In this research, we propose preliminary research presenting the validity of applying a data-driven 

approach to the aircraft initial sizing problem. To verify whether data-driven machine learning 

methods are appropriate for handling the existing aircraft data, missing data estimation experiments 

are conducted. Feasible combinations of input variables are suggested as a result. Furthermore, the 

performances of kNN, VAE, and RF models are compared. The goal of this study is to enable the 

utilization of aircraft databases by imputation techniques when selecting the initial parameters of the 

conceptual aircraft design process. 

 

 

2. Methodology 

2.1 Overview of the comprehensive aircraft design process 

The aircraft design process consists of three main phases: conceptual design, preliminary design, 
and detail design. Setting and adjusting the desired requirements should precede the conceptual 
design stage. The performance or the specifications such as weights should comply with the design 
requirements, and the cost should be compromised along with these results.  

The user explores the possible geometry and following performance of an aircraft that is to be 
designed in the conceptual design phase. In the preliminary design, major decisions on the aircraft 
are done. The details of the aircraft design are realized during this step. Then the detail design phase 
begins by analyzing and scrutinizing the separate elements. The user continuously monitors if the 
design still meets the original requirements. The performances of the actual aircraft are tested and 
modified as a final step. The fabrication of the aircraft follows after these design procedures are done. 

The optimization techniques are used in in the conceptual design phase. For the accuracy of the 
resultant, the calculation loads are very big and therefore the optimization processes are usually 
costly. One of the best ways to reduce the computational load is to start the optimization with 
appropriate design space. Furthermore, starting the aircraft parameter estimation with suitable 
experimental design can lead to more accurate estimation. [7] 

In this sense, this research provides a feasible design space for the variables in the conceptual 
design. This study concentrates on handling incomplete and heterogeneous aircraft data by using 
data-driven machine learning methods. The overall flow of aircraft designing phases is demonstrated 
in Figure 1. 

 

 

 
Figure 1 – Overall flow of the whole framework 
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2.2 Incomplete data processing 

There are two ways of processing incomplete data. First of all, the user can exclude incomplete 

attributes from the dataset. The user can either drop the missing variables or exclude all the 

incomplete cases. Both of these options are mostly disadvantageous since the data can be biased 

or the size of the dataset decreases [8, 9]. Second, the data imputation. There are many ways of 

filling in the missing attributes: mean, median, mode, random sample imputation, linear interpolation, 

linear regression, and other sophisticated imputation methods such as using machine learning 

models. Although simple statistical imputation methods such as mean, median, or mode imputation 

are better than deleting methods, they usually have low precision because they merely fill in a uniform 

value. These methods are prone to be affected by outliers. Linear interpolation and linear regression 

are also vulnerable to outliers, and their performance hugely depends on the distribution of the given 

data. In this regard, users need a more sophisticated and solid method for missing data imputation. 

Among various methods, data imputations using machine learning models are implemented. 

 

2.3 K-Nearest Neighbors Algorithm 

The k-nearest neighbors (kNN) algorithm is a fundamental and simple data-driven method that 

enables fast implementation. The algorithm is firstly suggested by Evelyn Fix and Joseph Hodges 

[10], and applied as a predicting tool [11], classifier [12, 13], numerical regressor [14, 15, 16], imputer 

[17, 18, 19]. It utilizes the local information of k-nearest samples by vectorizing all samples and 

calculating distances between every vector. The distance is calculated by using the distance metrics 

such as Minkowski distance, Euclidean distance, and so on.  

The precision depends on the number of the nearest neighbors setting. The appropriate k depends 

on the characteristic of each data. Generally, models with larger k are less affected by the outliers 

or noise, but the distinction between different classes becomes obscure. On the other hand, models 

with smaller k are more sensitive to the data distribution because it is more likely to get influenced 

by the outliers.  

kNN can handle heterogeneous data by taking different strategies for each data type. In this study, 

kNN regression and kNN classification are used. The output of kNN regression is a real value. To 

estimate the missing attribute, values of the k nearest neighbors are averaged. The process is 

iterated until it meets the criteria. In this study, the model stops its iteration when Equation 1 is 

satisfied where 𝑋𝑛 is a resultant value X at iteration n. The kNN regression process is depicted in 

Figure 2. 

 

𝑚𝑎𝑥(|𝑋𝑛 − 𝑋𝑛−1|) (|𝑋𝑚𝑎𝑥|)⁄ < 𝑡𝑜𝑙𝑒𝑟𝑒𝑛𝑐𝑒    (1) 

 

The output of kNN classification is a class label. The distance between each case is the same 

every time, so the kNN classification iteration is not needed. The kNN classification process is 

demonstrated in Figure 3. To impute regression and classification data jointly, an integrated kNN 

sequential process is set. An incomplete regression data is imputed firstly, and the resultant complete 

regression data is coupled with incomplete classification data for the following kNN classification. 

Therefore, the performance of kNN regression affects the results of kNN classification. Missing 

attributes are considered as the value of 0. The flowchart of the integrated kNN sequential process 

is shown in Figure 4. 
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Figure 2 – kNN regression process 
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Figure 3 – kNN classification process 

 

 

 

Figure 4 – Flowchart of the integrated kNN sequential process 
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2.4 Variational Autoencoder 

2.4.1.  Generative Model 

Generative models are capable of generating realistic new data. A generative model learns and 

generates new data that is similar to the true data. Generative adversarial network (GAN) [20] and 

variational autoencoder (VAE) [21] are the representatives of deep generative models. GAN is 

composed of the generator and discriminator. The generator generates new fake data, and the 

discriminator tries to distinguish the real data. The situation can be interpreted as a two-player 

minimax game. GAN uses backpropagation to earn the gradient, so it can generate samples without 

using the Markov chain, and no inference is needed during the training. However, GANs have some 

disadvantages, including the vanishing gradients, oscillation during the optimization process, and 

mode collapse problems. Furthermore, a newly proposed GAN application, GAIN [22] can complete 

incomplete input data by using the generator. This model also has a shortage in that it can only 

handle limited types of data such as binary data. For these reasons, VAE is utilized in this study. 

 

2.4.2.  Variational Autoencoder 

Variational Autoencoder (VAE) is one of the representative deep generative models. VAE reads 

and emulates the underlying distributions of the original data. VAE consists of the encoder and 

decoder. The encoder is a recognition network that extracts the features out of the input x and 

generates latent variables z. Among these encoded results, a set of mean and variance is randomly 

sampled to form a latent space. Then, the decoder generates the output according to the given latent 

variables. The operating flow of VAE is depicted in Figure 5. 

 

 

Figure 5 - Flowchart of VAE 

 

Let us consider that there is the dataset X = {𝑥𝑖}𝑖=1
𝑁  that consists of N i.i.d. (independent and 

identically distributed) samples of input variable x and an unobserved random variable z that 
produces x. The variable z is also known as the latent variable. The posterior distribution can be 
denoted as Equation 2, and it is intractable, where θ and ϕ are the generative model parameters and 
recognition model parameters, respectively. 

 

𝑝𝜃(𝑧|𝑥) = ∫
𝑝𝜃(𝑥|𝑧)𝑝𝜃(𝑧)

𝑝𝜃(𝑥)
𝑑𝑧

𝑧
        (2) 

Variational inference is used since the posterior is intractable. Thus, variational approximation 
𝑞𝜙(𝑧|𝑥) is defined to be considered as an approximation of the posterior 𝑝𝜃(𝑧|𝑥). 𝑞𝜙(𝑧|𝑥) can also 

be denoted as a recognition model, encoder.  

The likelihood function represents how much a particular population is likely to produce an 
observed sample. It is a form of a joint density function. The marginal likelihood can be defined as 
Equation 3. 

 

𝑙𝑜𝑔𝑝𝜃(𝑥𝑖) = 𝐷𝐾𝐿 (𝑞𝜙(𝑧|𝑥𝑖) ∥ 𝑝𝜃(𝑧|𝑥𝑖)) + ℒ(𝜃, 𝜙; 𝑥𝑖)              (3) 

 

𝐷𝐾𝐿 (𝑞𝜙(𝑧|𝑥𝑖) ∥ 𝑝𝜃(𝑧|𝑥𝑖)) is the Kullback-Leibler (KL) divergence of the approximation 𝑞𝜙(𝑧|𝑥) 

from the true posterior 𝑝𝜃(𝑧|𝑥). KL divergence measures how two probability distributions 𝑝𝜃 and 𝑞𝜙 

 

 
Input 𝑥 Output 𝑥 Latent VariableEncoder Decoder
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are different from each other. ℒ(𝜃, 𝜙; 𝑥𝑖) is known as the variational lower bound on the marginal 
likelihood. KL divergence is non-negative and is equal to zero if two distributions are identical, and 
thus Equation 4 follows. 

𝑙𝑜𝑔𝑝𝜃(𝑥𝑖) ≥ 𝐸𝑞𝜙(𝑧|𝑥𝑖)
[𝑙𝑜𝑔 𝑝𝜃(𝑥𝑖|𝑧)] − 𝐷𝐾𝐿 (𝑞𝜙(𝑧|𝑥𝑖) ∥ 𝑝(𝑧)) (4) 

 

Equation 4 is the evidence lower bound (ELBO) of the marginal likelihood. The first term on the 
right-hand side of the inequality is the reconstruction error. The model should have objectives of 
minimizing the KL divergence and maximizing the likelihood function and ELBO. 

 

2.4.3.  Heterogeneous-Incomplete Variational Autoencoder 

Although VAE is an elaborate model with an outstanding performance, particular VAEs are not 
capable of dealing with incomplete or heterogeneous (mixture of discrete and continuous) data. 
However, handling incomplete data is a critical task in this study. Thus, the Heterogeneous-
Incomplete Variational Autoencoder (HI-VAE) [23] is chosen among the application of VAEs for this 
study. The flowchart of HI-VAE is demonstrated in Figure 6. 

HI-VAE separates observed and missing attributes, and pre- and post-processes each data type 
separately. Pre-processed attributes enter the encoder and decoder together. Missing attributes are 
initially considered as a value of zero and have no contribution to the training. The decoder is 
factorized as Equation 5. 

 

𝑝(𝑥𝑛, 𝑧𝑛) = 𝑝(𝑧𝑛)∏ 𝑝(𝑥𝑛𝑑|𝑧𝑛)𝑑          (5) 

 

 

Figure 6 - Flowchart of HI-VAE 

 

Table 2 – Likelihood models for each data type 

Real-valued data 

Likelihood model Gaussian likelihood model 

Relation 
p(𝑥𝑛𝑑|γ𝑛𝑑) = 𝒩(𝑥𝑛𝑑| 𝑑(𝑧𝑛),  𝑑

2(𝑧𝑛)) 

𝛾𝑛𝑑 = { 𝑑(𝑧𝑛),  𝑑
2(𝑧𝑛)} 

Positive 

real-valued data 

Likelihood model Log-normal likelihood model 

Relation 
p(𝑥𝑛𝑑|γ𝑛𝑑) = log𝒩(𝑥𝑛𝑑| 𝑑(𝑧𝑛),  𝑑

2(𝑧𝑛)) 

𝛾𝑛𝑑 = { 𝑑(𝑧𝑛),  𝑑
2(𝑧𝑛)} 

Count data 

Likelihood model Poisson likelihood model 

Relation 
p(𝑥𝑛𝑑|γ𝑛𝑑) = 𝑃𝑜𝑖𝑠𝑠(𝑥𝑛𝑑|𝜆𝑑(𝑧𝑛)) 

𝛾𝑛𝑑 = 𝜆𝑑(𝑧𝑛) 

Categorical data 

Likelihood model Multinomial logit model 

Relation 
p(𝑥𝑛𝑑 = 𝑟|γ𝑛𝑑) =

exp(−ℎ𝑑𝑟(𝑧𝑛))

∑ exp(−ℎ𝑑𝑞(𝑧𝑛))
𝑅
𝑞=1

 

ℎ𝑑0(𝑧𝑛) = 0 

Ordinal data 

Likelihood model Ordinal logit model 

Relation 

p(𝑥𝑛𝑑 = 𝑟|γ𝑛𝑑) = p(𝑥𝑛𝑑 ≤ 𝑟|γ𝑛𝑑)

− p(𝑥𝑛𝑑 ≤ 𝑟 − 1|γ𝑛𝑑) 

p(𝑥𝑛𝑑 ≤ 𝑟|γ𝑛𝑑) =
1

1 + exp(−(𝜃𝑟(𝑧𝑛) − ℎ𝑑(𝑧𝑛)))
 

Definition of 

variables 

d=dimension of the vector 

n=the numbering of the objects 

γ=likelihood parameter 

μ=mean 

σ2=variance 
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HI-VAE applies different likelihood models for each data type. Likelihood models are demonstrated 

in Table 2. HI-VAE divides data into numerical and nominal variables. There are three types of 

numerical variables: real-valued data, positive real-valued data, and discrete countable data. 

Countable data is a positive integer. Also, there are two types of nominal variables: categorical data 

and ordinal data. For example, categorical data can be a set of ‘yellow, red, and blue’ attributes and 

ordinal data can take values with orders such as ‘low wing, mid wing, and high wing’. 

The model processes all data in a form of numbers. Each attribute of categorical and ordinal data 

is therefore given a distinct number. For example, the low wing is considered as a value of 1, mid wing 

as 2, and high as 3. Nominal variables are processed based on different log-likelihood functions, thus 

the numbers given to those variables are distinct from that of the numerical variables. 

 

2.5 Random Forest 

2.5.1 Decision Tree, Random Forest, and MissForest  

A decision tree (DT) is one of the most widely used non-parametric supervised learning algorithms. 

Decision trees are typically used for divide-and-conquer classification and regression problems. The 

algorithm divides the given input data from the root node according to certain criteria until it 

terminates the training at the leaf nodes. There are various versions of decision tree algorithms that 

enable effective decision-making. Among them, Iterative Dichotomiser 3 (ID3) [24], Classification 4.5 

(C4.5) [25], Classification and Regression Trees (CART) [26] algorithms are extensively used. 

Decision trees are capable of serving the following tasks: variable selection [27, 28, 29], correlation 

analysis between variables, prediction [30, 31], incomplete data imputation [32], data manipulation, 

and so on. 

Both the regression trees and classification trees are built based on recursive partitioning. 

Recursive partitioning is a process that splits the feature space into subsets that contains attributes 

with similar traits. The procedure repeats until it reaches the stop condition. The user can effectively 

understand the decision-making recursive partitioning process because the decision tree model is 

an interpretable white-box model. The result of a decision tree is simple, straightforward, and easy 

to visualize. The model can handle both numerical and categorical data and does not require any 

assumptions regarding the data distribution since it is a non-parametric model. On the other hand, 

there are some disadvantages of a single decision tree model: it can only deal with one type of data 

at a time, it is unstable that the result can be biased by the outliers, and the result is inaccurate 

especially when the relationship between the input variables is complex. In this sense, a decision 

tree model is considered a weak learner. 

To overcome these limitations, Breiman [33] developed the random forest (RF) by reflecting 

multiple results of classification and regression trees (CART). The random forest training is done by 

a bootstrap aggregation (bagging) process; the result of each decision tree is integrated to make the 

resultant model robust. Bootstrap aggregation, so-called bagging, is based on random sampling with 

the replacement of the training dataset. Multiple decision trees are trained in parallel by the random 

sampled subsets.  

The use of multiple trees to form a random forest model can lead to inefficient and complicated 

computation. It also causes a lack of interpretability unlike a model composed of a single decision 

tree. Despite several disadvantages, there are useful advantages of random forests. 

First of all, bagging makes the random forest model more robust to the overfitting issues. The 

variance of the prediction model decreases by utilizing a number of subsets, the model becomes 

capable of dealing with overfitting. Also, a random forest model can deal with continuous numerical 

data and discrete classification data simultaneously. This is very advantageous since real-world data 

are composed of various types of data in many cases.  

This study used the MissForest model, which is a specified version of the RF model. Missforest 

(MF) [34] is based on a random forest and is suitable for incomplete data imputation. It trains the 

model with the observed values first and iteratively imputes the missing values. The MissForest 

imputation flowchart and process demonstration are shown in Figures 7 and 8, respectively. The 

columns are rearranged according to the missing rates (Figure 8(b)), the mean imputed for the initial 
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guess (Figure 8(c)), and the rest of the data are used for the target attribute estimation (Figure 8(d)). 

The whole process is repeated until it reaches a stopping criterion. Stopping criterion is met when 

the difference between the results of previous and current time steps increases for the first time. The 

difference between the continuous numerical values, ∆𝑛𝑢𝑚, and discrete categorical data, ∆𝑐𝑎𝑡, are 

demonstrated in Equation 6 and 7, respectively, where 𝑋𝑡 denotes the imputation result at a time 

step t, and 𝑁𝑚𝑖𝑠𝑠,𝑐𝑎𝑡 denotes the number of missing attributes in the discrete categorical data. 

 

∆𝑛𝑢𝑚=
∑ (𝑋𝑡−𝑋𝑡−1)

2
𝑖∈𝐶

∑ (𝑋𝑡)
2

𝑖∈𝐶
      (6) 

 

∆𝑐𝑎𝑡=
∑ ∑ 𝐼𝑋𝑡≠𝑋𝑡−1

𝑛
𝑖=1𝑗∈𝐷

𝑁𝑚𝑖𝑠𝑠,𝑐𝑎𝑡
      (7) 

 

 

Figure 7 – MissForest data imputation flowchart 

 

 

Figure 8 – MissForest data imputation process  
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3. Experimental Setup 

3.1 Dataset 

In this study, Jane’s World War II (WWII) dataset with 228 aircraft cases is gathered from the book 

<Jane’s Fighting Aircraft of World War II>. The book contains assorted information about the aircraft 

that served in World War II. Aircraft cases included in this book had similar purposes of serving in 

the war. Therefore, there was no need to classify the data as their distinct purposes. 

We gathered usable aircraft cases with sufficient specifications. Then one countable, three 

categorical, and nine positive-valued categories are selected among 85 available categories 

because they have missing rates no higher than 30 percent. Types and missing rates of these 13 

categories are summarized in Figure 9 and Table 3.  

 

 

 
Figure 9 - Missing rates of each category in the WWII dataset 

 

 

Table 3 - Summary of the WWII data 

Data types Classes 
Missing rates 

[%] 

Real-valued 

Total length 2.2 

Total height 8.7 

Wing span 2.2 

Wing area 12 

Empty weight 23 

Loaded weight 26 

Total power 16 

Maximum speed 7.0 

Service ceiling 29 

Countable 

Number of Engines 4.8 

Wing Position 6.1 

Tail Unit 23 

Landing Gear 21 

Categorical Total missing rate 14 
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3.2 Training Conditions 

Hyperparameters such as epochs, latent dimension, and batch size are tuned elaborately based 

on the training objectives.  

The number of nearest neighbors in kNN experiments is chosen based on the heuristic 

experiments. The value of k is set as 5. For kNN experiments, data are normalized before the 

imputation to avoid bias among different data types with different scales. All data are normalized on 

a scale between -1 to 1 since the unknown attributes are considered as 0.  

If a model is trained excessively with a certain dataset, the model can be overly fit only to that 

dataset. Under this circumstance, the model performance can be poor when new data is entered. 

This is known as overfitting, and early stopping is a solution to avoid overfitting. When the early 

stopping is applied, it allows the model to update the training parameter and continue to iterate the 

process until it begins to over-fit. The early stopping criterion is applied for kNN. The maximum 

iteration of kNN is 300 and the number of epochs of HI-VAE is set as 500. For VAE experiments, 

data is entered with its original scale since the model contains a batch normalization layer. 

VAE uses the LeakyReLu as an activation function and Mean Squared Error as a loss function in 

this study. The latent dimensions of VAE are all set as 100. 

The hyperparameters of the RF are selected by using Bayesian optimization. The number of trees 

in the forest is set as 138, the minimum number of samples required at a leaf node is set as 2, and 

the minimum number of samples required to split an internal node is set as 2. The Missforest model 

can directly deal with the original scale data. 

 

3.3 Standard Error Criteria 

kNN, VAE, and RF have distinct imputation procedures and tactics. The objective function of kNN 

is based on the difference between the actual values of the overall imputed data. On the other hand, 

VAE updates its weights based on the training, test, and validation loss, and RF decides whether to 

split according to the numerical difference between time steps. Hence, there is a need to establish 

standard error criteria to compare the two models’ performance properly. From the user’s point of 

view, the information of the calculated output is one of the most accessible data. 

Therefore, two error indicators monitoring the difference between the true and predicted values 

are defined: Mean Average Percentage Error (MAPE) and Proportion of Falsely Classified (PFC) 

entries. They indicate regression and classification errors, respectively. The ways of calculating 

MAPE and PFC are demonstrated in Eq 6 and Eq 7.  

  

𝐸𝑀𝐴𝑃𝐸 = 𝑎𝑣𝑔 (|
𝑡𝑟𝑢𝑒−𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑟𝑢𝑒
× 100|)  (%)     (6) 

 

 

𝐸𝑃𝐹𝐶 = (
# 𝑜𝑓 𝑤𝑟𝑜𝑛𝑔 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑐𝑎𝑠𝑒𝑠
) × 100 (%)    (7) 

 

3.4 Validation 

Existing studies regarding the missing data imputation validate their studies by using complete 

datasets. However, the aircraft dataset used in this study does not have a full version of itself. Thus, 

there is a need of defining a distinct way of validation to assess the result of this study. We suggest 

a repeated imputation validation procedure, which repeats the imputation procedure twice. This 

procedure considers the firstly imputed dataset as a true value. Then, the values other than the 

initially missing attributes are removed according to the original missing rates of each category. This 

way, MAPE and PFC errors can be calculated. The repeated imputation procedure is demonstrated 

in Figure 10. Based on the repeated imputation validation procedure, two versions of the WWII 

dataset are imputed. The first one is a complete dataset that is organized by removing all the 

incomplete cases. The other one is the original WWII dataset containing 228 cases. Once the 
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imputation procedure is done, the completed full dataset is given as an output. Datasets are modified 

to have 5, 10, 15 percent of missing rates by removing some random attributes other than the original 

missing ones from the imputed full datasets. 

 

Original incomplete data

Real-valued Categorical Countable

Total power

[h.p.]

Span

[m]

Wing area

[m2]

Number of

engines

Wing

position

1 2350 16.6 ? Two Low

2 2640 27 112 ? High

3 ? 21.35 42.7 Two Mid

4 2860 16 32.4 Two Shoulder

5 1200 ? 98 Two High

Imputed data; a new input

Real-valued Categorical Countable

Total power

[h.p.]

Span

[m]

Wing area

[m2]

Number of

engines

Wing

position

1 2350 16.6 31.3 Two Low

2 ? 27 112 Three High

3 2466 ? 42.7 Two Mid

4 2860 16 32.4 ? Shoulder

5 1200 23.7 ? Two High

Imputed data; an output

Real-valued Categorical Countable

Total power

[h.p.]

Span

[m]

Wing area

[m2]

Number of

engines

Wing

position

1 2350 16.6 31.3 Two Low

2 2600 27 112 Three High

3 2466 22 42.7 Two Mid

4 2860 16 32.4 Two Shoulder

5 1200 23.7 105 Two High

(a) (b)

(c)
 

Figure 10 – Repeated imputation procedure 

 

 

4. Result and Discussions 

4.1 Variational missing rate 

To verify the repeated imputation procedure, the same imputation experiments are conducted for 

the new versions of two WWII datasets. One dataset is only composed of 80 complete cases by 

excluding all the incomplete cases. This way, we can obtain the complete real aircraft data. The other 

one is the original incomplete dataset that consists of 228 cases.  

Both datasets are imputed once to form complete versions of themselves. Then, we eliminated 

some attributes from which the datasets have missing rates of 5 %, 10 %, and 15 %. The originally 

missing positions are not deleted again. The error would increase if the missing rate rose because 

there are fewer references that the calculation process can utilize. In this sense, if the error increment 

trend is similar, then it can support that the repeated imputation procedure is valid. 

As a result, similar trends of MAPE error increments between the dataset composed of 80 

complete cases (Figure 11(a)) and the dataset composed of 228 incomplete cases (Figure 11(b)) 

are observed. In both cases, RF had the greatest errors and VAE had the least errors. This tendency 

can be interpreted as one of the proofs that this validation tactic is reasonable. 
 

 
Figure 11 – MAPE errors using (a) 80 complete and (b) 228 incomplete cases 
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4.2 Original missing rate 

The actual MAPE and PFC errors of the WWII original dataset with an original missing rate are 

indicated in Table 4 and plotted in Figure 12. Both the MAPE and PFC errors of the VAE were about 

half of those of the kNN. Both kNN and VAE had better performance on regression tasks than the 

classification tasks. However, RF had the opposite tendency compared to the other models. RF had 

the worst regression estimation while having the best classification performance. This can be 

interpreted as the RF regression tactic is not appropriate for the datasets that are similar to Jane’s 

WWII dataset used in this study. RF regression partitions the input and then averages the values in 

each subgroup. However, Jane’s WWII dataset only contains 228 cases with similar tendencies since 

the dataset is composed of aircrafts that served similar purposes during the Second World War. 

Thus, the numerical values have biased tendencies. Partitioning the biased regression data into 

small subgroups and averaging their information can cause a wrong estimation. The characteristics 

of the dataset and the regression tactic have led the RF model regression inaccurate. 

A specific example of M-14 from The Miles is demonstrated in Figure 16. The service ceiling 

information is imputed in the first place and regarded as true data since it was unavailable in the 

book. To calculate the model error, information about the empty weight is removed and then the 

imputation process is repeated. In this sense, the MAPE error is calculated by comparing the original 

and the estimated value. It is clear that the VAE performance excels that of the kNN and RF in 

regression problems.  

The VAE training is monitored by the log-likelihood function. In this experiment, log-likelihood 

functions for the positive-real value, countable, and categorical types are used. The maximization of 

the likelihood is observed, so it can be concluded that the optimization process is successfully 

implemented. The log-likelihood functions regarding the epochs are demonstrated in Figure 13. 

Values are averaged according to their data types. 

From the user’s perspective, the VAE and RF models are much easier to use than the kNN model 

because it can handle various types of data at the same time. The user should complete the kNN 

regression and then continuously add single categories listwise. The calculation process becomes 

ineffective. Figure 14 depicts the situation where the kNN classification of the countable data – the 

number of engines – is done after the kNN regression. The user still has to go through the remaining 

classification procedures. After several classification procedures, a comprehensive result is obtained. 

The part of the comprehensive result is depicted in Figure 15. On the other hand, VAE and RF can 

output a complete result at once. In other words, they do not need to undergo the process illustrated 

in Figure 14. 
 

Table 4 – MAPE and PFC errors with the original missing rate 

Model EMAPE [%] EPFC [%] 

K-NN 6.1 13 

VAE 2.8 13 

RF 17 3.5 
 

 

 
Figure 12 – MAPE and PFC errors using 228 incomplete cases 
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Figure 13 – Log-likelihood of (a) positive real-valued, (b) countable, and (c) categorical data 

 

 

 

Figure 14 – Intermediate result of the kNN sequential imputation process 

 

 

 

Figure 15 – Partial demonstration of imputation result 
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Figure 16 – Demonstration of the imputation process of The Miles M-14 case 

 

 

5. Conclusion 

This research presents the validity of applying machine learning techniques to the aircraft 

conceptual design initial sizing problem. Conventional empirical methods of parameter estimation 

regarding the aircraft conceptual design have limitations in that only the insufficient size of the design 

space is explored. Also, the design result gets highly dependent on the experience and knowledge 

of a designer. This means that a lot of background knowledge of a user is required to get a satisfying 

design result. Furthermore, the calculation process is inefficient since each empirical formula 

requires different objectives. These limitations can be overcome by applying data-driven machine 

learning techniques.  

Unlike using the empirical parameters or empirical relations, the data-driven approach enables the 

utilization of accumulated large datasets and enables the implementation of flexible input and output 

settings. However, the data-driven approach could not be used in aircraft design processes because 

existing aircraft data are mostly incomplete and heterogeneous. Additional advantages are retained 

by applying the data-driven machine learning models. Furthermore, the use of the data-driven 

machine learning models is advantageous since the models can read the hidden correlations among 

the parameters. The existing solvers can merely calculate the optimal values for each parameter, 

but deep learning models can emulate the decision-making process done by a human intelligence, 

and estimate the combinations of the design parameters that are not only optimal but also feasible 

for certain realistic reasons. 

Three machine learning models – kNN, VAE, and RF – are utilized for the imputation of real-world 

incomplete aircraft data. kNN, VAE, and RF are capable of handling incomplete data that is randomly 

missing. To process heterogeneous data, both models have particular tactics. kNN separately 

processes regression and classification, while VAE and RF process the whole data simultaneously. 

kNN utilizes information from the nearest neighboring samples with an incomplete sample, and RF 

sets an appropriate criterion for each decision-making instant. VAE divides the distribution 

information of the missing and observed attributes and processes them separately. 

VAE tends to be more accurate than kNN since it trains with the whole data simultaneously while 

kNN goes through the sequential process. RF has the opposite tendency regarding the regression 

and classification accuracies compared to kNN and VAE. Furthermore, from the user’s perspective, 
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Empty

weight

[kg]

Loaded

weight

[kg]

Max

speed
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Service

ceiling

[m]

# of

engines

Wing

Position

K-NN 130 10.3 7.7 2 16.3 568 846 232 ? 1 5

VAE 130 10.3 7.7 2 16.3 568 846 232 ? 1 5

RF 130 10.3 7.7 2 16.3 568 846 232 ? 1 5
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Wing

Position
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[%]

K-NN 130 10.3 7.7 2 16.3 619 846 232 5508 1 5 9

VAE 130 10.3 7.7 2 16.3 561 846 232 4871 1 5 1

RF 130 10.3 7.7 2 16.3 478 846 232 4898 1 5 16
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K-NN 130 10.3 7.7 2 16.3 ? 846 232 5508 1 5

VAE 130 10.3 7.7 2 16.3 ? 846 232 4871 1 5

RF 130 10.3 7.7 2 16.3 ? 846 232 4898 1 5
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VAE and RF are more convenient to use than kNN. Once the VAE and RF training results are saved, 

it is not necessary to carry the training data afterward. As the model or the data becomes complicated, 

VAE and RF implication would be much more convenient than kNN.  

In conclusion, this study presented the validity of applying machine learning techniques to the 

initial sizing of the aircraft conceptual design problem as preliminary research. So far, this study 

suggested point estimations, but it will be able to suggest the feasible ranges of the design 

parameters and the uncertainties, making it more reasonable using the data-driven machine learning 

tactics. 
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