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Abstract 

Today, virtually all heterogeneous systems are developed with the help of advanced modelling applications 
supported by a multitude of simulators and test stations. At the same time, complex systems are developed 
using an incremental approach where initial capabilities are validated prior to proceeding to more advanced 
ones. For a complex system it is a fundamental observation that it is virtually impossible to accurately predict 
how long time the development of a new capability will take. Consequently, a development organisation need 
to maintain flexibility, allowing it to integrate individual capabilities as they become available. This paper 
introduces a development model tailored for supporting incremental development of safety critical systems. 

 

Under the proposed development model it is essential to separate models based on their temporal 
characteristics. Architecture views – representing a desired future state, must be separated from models 
capturing design views – a more concrete view on the system, which in turn must be managed separately from 
virtual and physical realisations. The proposed framework is illustrated by a detailed process and an actual 
example. Throughout the paper, the value of applying standards for information exchange, such as the 
Functional Mock-up Interface (FMI) and the System Structure and Parameterization (SSP) standards, are 
highlighted. 

Keywords: Model-Based Systems Engineering (MBSE), Incremental development, Round-trip engineering, 
Functional Mock-up Interface (FMI), System Structure and Parameterization (SSP) 

1. Introduction 

There are many keys for mastering next generation of product development, such as model-based 
engineering, modelling and simulation, digital twins, agile and incremental development, to name a 
few of them. These keys are becoming mature, but individually they do not provide the solution to the 
challenges in systems development. Therefore, the question for an organisation developing complex 
systems is how they shall be combined for attaining the best possible results.  

 

For example, Model Based Systems Engineering (MBSE) has for the last decades been heralded as 
the logical next step in Systems Engineering as defined in INCOSE 2014 [1]. Status for the 
development of complex systems, in terms of MBSE adoption, appears to be that models are used 
extensively in the systems development process, but formal product data management is still based 
on the traditional document paradigm. This partial adoption of MBSE shall not be viewed as a failure. 
It has proved beneficial in development programs, one example being the Gripen E/F fighter aircraft 
development performed by Saab Aeronautics as reported in Andersson et al. [2], Herzog et al. [3] and 
Lind and Andersson [4]. One identified future objective is to embed configuration information in the 
models themselves, i.e., modelling languages and associated development environments need to 
implement comprehensive configuration management support.  

 

Another example is the emergence of various simulation platforms, allowing for simulation of multiple 
aspects of a system. Many simulation platforms, each with its own purpose and strengths, are typically 
utilised within a complex development project. For the development organisation, the task is then to 
ensure that the correct configuration of the right models is executed timely in the right simulation 
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platform to obtain the desired feedback. This also implies increased need of integrated configuration 
management support for all model artefacts and also new approaches to information structuring, such 
that the sum of all relevant models provide an adequate representation of the product under 
development. Similar needs are outlined and discussed in Fisher et al. [5]. Also, the diversity of 
models and analyses implies an increasing need to formulate clear principles on how to structure the 
development work, to give a clear work flow when developing architectures and models and 
performing various analyses. 

 

For a complex system, the requirements and final target change over time. There is a huge amount 
of uncertainty built into the project, characterised by, e.g., an integration plan that is never constant, 
and a large need to coordinate across many disciplines. The development must be flexible and agile 
enough to handle changing circumstances. On the other hand, the models representing parts of or 
the whole product need to be updated over the product life cycle, and still be relevant within each 
specific development step taken on the way to the final target. Hence, product information must be 
managed with a separation between the design and integration of the short-term (present) functions 
from the long-term overall (future) view of the product. The association between these two levels need 
to be managed by configuration management tools. 

 

All these aspects are evident in development of complex systems, such as the truly multi-disciplinary 
development of a fighter aircraft. The aircraft system is developed via a large and heterogeneous 
development organisation, where many specialty disciplines contribute, each of them having its own 
specialised tools for system simulation and analysis that need to interact with the surrounding 
disciplines. The complexity of an aircraft platform dictates an incremental development approach. On 
top of that, there are authority airworthiness regulations demanding a declaration of conformity to 
requirements and design for each specific product configuration, implying a need for a comprehensive 
configuration management support. 

 

This paper outlines principles for structuring models of a product such that both the future and present 
can be maintained in a set of models, over time, as the product evolves throughout the development. 
The paper focuses on models and their structure as the first step in describing the principles and how 
they can be implemented in an instantiated example.  

 

2. Large scale incremental development  

This section introduces the 4-box development model applied for the development of complex 
systems within Saab Aeronautics, presented in Figure 1 below and described in detail in Herzog et 
al. [6]. This model represents both the more fixed and long-term perspective interface to the customer, 
and the more flexible and short-term perspective of the integration of the current configuration. This 
model is used as a basis for the understanding of different time perspectives, and how the models 
and development activities interact with each other over the four levels. 

 

A key element in the 4-box development model also is the clear separation between development 
activities producing components for integration (be it hardware or software) and the actual integration 
of those components. This separation is made based on the insight that it is very difficult to predict 
when individual artefacts will be ready for integration into a product configuration, which is especially 
evident in large-scale development where a large number of development teams are active 
concurrently. 
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Figure 1. The 4-box development model 

In the model there are four separate views, with their specific purpose and time perspective: 

• Development Level represents a contractual obligation to the customer under which the 
organisation delivers weapon system configurations. This is the long-term, future view, where 
requirements analysis and architecting is performed for each product variant and the overall 
integration, verification and validation strategy is set. The Development Level also identifies 
groups of capabilities for realisation by the development teams as part of Development Steps. 

• Weapon System Edition is used to establish a set of aircraft or weapon system configurations 
by integrating product changes from the Main Track in accordance with the overarching plan. 
Models representing a weapon system edition capture the present state of a product 
configuration. Weapon System Editions are defined for well-defined capability levels. This 
allows the integration organisation to seek a feasible integration sequence meeting the 
objectives of the Weapon System Edition. 

• Development Step represents a defined set of capabilities in the development plan. Within the 
Development Step, the coarse development plan is broken down into small-scale tasks suitable 
for incremental development. Hence, the Development Step captures what will be realised in 
the near future. Delivery of the realised system elements to the Main Track is only allowed after 
successful integration testing in a complete system simulator. 

• Main Track is the warehouse containing all versions and variants of all configuration items in 
the product under development available for integration. 

Note that all boxes (except the Main Track) include fully instantiated technical processes, for instance 
in accordance with ISO 15288. The cadence and objectives of the activities are different in the boxes. 

 

3.  A framework for heterogeneous models  

In the aspect of time, the levels represented in the 4-box development model in Figure 1 also represent 
different tenses: 

 The Development Level represents the future tense – what shall be realised at the end.  

 The Weapon System Edition is a representative for the present tense – what it is/becomes for 
each specific product configuration. This could be a realised product, or a model of it.  

 The Development Step is a bridge between these tenses, turning future to present – moving 
towards the future by adding details required for realisation. 
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Therefore, during the development there is a need to manage different time aspects in the models: 

 Model(s) how it will be in the long-term perspective – the architecture or Definition1 of the 
future: 

o Captures the intended architecture. 

o Relatively undetailed in order to be robust to detailed variations in designs. 

o Serves as a long-term memory. 

o Input to change management/development planning. 

o For example, SysML as a common language. 

 Model(s) describing detailed Design of, e.g., interfaces, Human-Machine Interaction (HMI) or 
wiring layout, capturing in detail what has or will be created now or in the near future (turning 
future to present). Design models may be created with multiple intents, i.e., at multiple fidelities 
and with interfaces described at different levels of granularity, for virtual or physical realisation 
or analyses. A design model: 

o Captures a system and its elements from a particular perspective.  

o Characteristic content could be overall or design discipline specific behaviour, interfaces 
or key properties. 

o Multiple Design models may be required to adequately represent the intent captured in 
a Definition model. Moreover, it is often necessary to create an adapted analysis 
architecture model to efficiently integrate individual design models for simulation.  

o Multiple languages and tools in multiple disciplines may be used, e.g., Simulink, 
Modelica, SysML, Computational Fluid Dynamics (CFD) and Fault trees. 

 Executables, representing how a virtual Realisation (a representation of the product – in its 
present state at a selected structural and behavioural fidelity): 

o Multiple virtual Realisations with different fidelities and perspectives may be created. 

o Functional Mock-up Interface (FMI) and System Structure and Parameterisation (SSP) 
are standards preferred for definition of Realisation interfaces. 

o Realisation interconnection models – Composite models – required to adequately 
integrate individual children Realisation for simulation. 

o The Realisation can be virtual, e.g., a compiled model, but also a Realisation in a 
physical object (hardware component, software application, etc.).  

 

Intuitively, the Definition will drive Design, which in turn drives Realisation, as illustrated in Figure 2. 
Both Design and Realisation will feed back knowledge to the Definition – which may prompt 
modifications. Due to the concurrency in development, the Definition, Design and Realisation will 
evolve concurrently and independently over time. 

 

Figure 2. Tenses in models, with feedback of knowledge from the Design and Realisation to the 
Definition  

 

                                                

1 The term Architecture would be a better match against ISO 15288. However, we have found within our organisation that 

the term Architecture is highly ambiguous. 
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Hence, the overall conclusion for incremental development is that no model can represent both the 
present and the future at the same time. The tenses must be separated – the Definition and Design 
need to be captured in different, but coordinated models, just as the generated executables have to 
be coordinated with their corresponding design models. 

 

3.1 Modelling architecture for mixing the tenses 

In this section a modelling architecture framework is presented for how to manage the models on 
different system level for the different modelling tenses as described above.  

 

Coupled to each system element, there are associated Definition, Design and Realisation information 
as illustrated in Figure 3. The Definition information will cover structure, key properties, behaviour 
definition and interfaces. Multiple Design and Realisation information on the top system sets detail 
the Definition each adding information with a dedicated purpose and at a desired level of fidelity. For 
efficiency in development, the objective is to iterate over this information and gradually add more 
detailed information. On the underlying elements, with multiple subsystems, Definition information for 
each subsystem is more detailed, as is also the case for its Design and Realisation information. The 
same pattern also applies to the (lowest) component elements.  

 

Figure 3. Modelling architecture, with the modelling tenses applied to each system level 

 

Having the models on the top system level as an example, it can be seen from Figure 4 that we first 
have a leftmost Realisation, forming a virtual, coarse Realisation. When development progresses, 
Realisations on the underlying level capturing different aspects and disciplines will emerge. A 
combination of them then forms a virtual or physical Realisation on the parent system with 
intermediate details. This Realisation could, e.g., be a simulator representation of the overall system 
properties. The same pattern appears to the next underlying level as well, together forming detailed 
Realisations on the upper levels. These multiple virtual or physical Realisations are on different levels 
of detail and fidelity, and with different credibility. To summarise, there are multiple virtual or physical 
Realisations for a single Definition model version. 

 

The principle of feedback is also of high importance. The feedback is iterative, and applied on each 
level, as illustrated in Figure 4, where the knowledge from the virtual and physical Realisations are 
used to improve and adjust both the Definition and the Design models. Since virtual Realisations can 
be created with relative ease, this feedback will prompt the generation of new versions of Definition 
and Design models. When automated, we label this feedback pattern Round-trip engineering as there 
will be multiple iterations where the Definition and Design models are refined based on the knowledge 
gained from virtual or physical realisations.  
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Figure 4. Modelling architecture, with multiple virtual and physical Realisations, covering multiple 
perspectives, with various fidelity and credibility. The Realisations capture different levels of details, 

and will feed back information to adjust Definition and Design models. 

 

Configuration management becomes vital in the situation described above. The developing 
organisation needs to adequately keep track of the effective Definition information and the 
corresponding Design and Realisation items. This means the actual versions of individual items, as 
well as the effective traceability links between the items.  

 

Figure 5 captures some potential evolutions of Definition model, Design models and Realisations. In 
the figure, the circles with a black outline that are labelled with a C represent the set of models that 
are valid and consistent at a specific time. Note that for the physical Realisation there are two valid 
representations indicating that two separate items have been produced.  

 

Figure 5. Model evolutions over time 

 

4. Modelling languages and data exchange mechanisms 

Saab Aeronautics has adopted an approach where the best-suited domain specific modelling 
language and tool is used for each development task. Such an approach benefits greatly from well-
established and standardised lines of communication between the different engineering disciplines. 
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In this section, the framework presented in Section 3 is exemplified by means of deploying four 
different standards that together provide the basis to ensure efficient and sustainable model 
integration across all life cycle phases: 

 Modelica [7] 

 System Modeling Language, SysML [8] 

 Functional Mock-up Interface, FMI [9] 

 System Structure and Parameterization, SSP [10] 

 

Generally, the two standardised modelling languages Modelica and SysML, with multiple tool sets 
adhering to each respective standard, ensure that developed models can be migrated at a low cost. 
Thus, avoiding tool vendor lock-in effects and enabling developers to freely exploit the benefits of 
specific Modelica and SysML tools. Furthermore, the FMI and SSP standards jointly address 
challenges associated with model integration and configuration management. Even though a 
significant portion of the physics-based aircraft vehicle system models used at Saab Aeronautics are 
expressed in the Modelica language, many hardware models and software are developed in non-
Modelica compliant tools. In addition, architectural models are typically expressed in SysML. This 
introduces a significant challenge, as information needs to be exchanged between these modelling 
disciplines throughout development. This challenge is the primary focus of the FMI and SSP 
standards. 

 

The exploited standards are here introduced at a level of detailed required to follow the Round-trip 
engineering workflow presented in Section 4.1: 

 Modelica is a multi-domain, object-oriented, and equation-based modelling language. These 
characteristics make the Modelica language particularly suitable for modelling physics-based 
systems; however, the language does by no means exclusively target this discipline. Schamai 
et al. [11], for example, demonstrate how requirements can be formalized using Modelica 
within the field of requirements engineering. The Modelica language is standardised by the 
Modelica Association. Modelica models, that are fully compliant to the standard, can as a result 
be exchanged between different Modelica Modeling & Simulation (M&S) tools. 

 SysML is just like Modelica a standardised modelling language, see for example Friedenthal 
et al. for a detailed description of the language and its use [12]. In contrast to Modelica, SysML 
targets the development of general purpose architectural models. In this context, SysML is 
chosen to model the relationships between executable entities, while providing a connection 
between the modelled physical system and its requirements.  

 The FMI standard targets the exchange of domain specific executable models, so called 
Functional Mock-up Units (FMUs). In short, the FMI provides a standardised API that an 
exported model, source code or executable binary should support. In addition, FMI provides a 
standardized XML format for model interface descriptions. At the time of writing, more than 
150 tools formally support the various flavours of the FMI standard [9], [13]. 

 The SSP standard aims to complement the FMI standard in terms of allowing for standardised 
specification of analysis architectures and variant handling of parameterised models. It 
provides a format for exchanging parameterised and executable analysis architectures, also 
known as simulators [14]. A parameterised simulator exported according to the SSP 
specification is packaged in a zip file format denoted as *.ssp. The zip file, once populated 
with all the required artefacts, contains everything that is needed to execute the simulator. In 
other words, the *.ssp includes both the structure in terms of an analysis architecture, as well 
as artefacts providing the mechanisms for variant handling and configuration management. 
As schematically visualised in Figure 6, an *.ssp file contains the analysis architecture 
description in the System Structure Description (SSD) format along with a resources folder. 
The resources folder can contain other *.ssp files as well as constituent executable models in, 
for example, the FMI format, i.e., executable analysis models exported from their original 
development tool. In addition, any System Structure Values (SSV) files, incorporating 
parameter values, are placed in the resources folder. These SSV files contain information 
rendered by non-executable analysis models. The parameter values in SSV files are bound to 
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the executable model parameters via included System Structure Mappings (SSM) files. 

 

 

Figure 6. Schematic overview of a packaged simulator exported according to the SSP 

standard 

 

4.1 Round-trip engineering for complex systems 

This section introduces a Round-trip engineering pattern for complex systems. Round-trip engineering 
is a development method in which the activities are conducted concurrently and in synchronisation. 
Tool support enabling engineers to move freely between disciplines are a pre-requisite to Round-trip 
engineering [15], [16].  The workflow presented in Figure 7 is a detailed realisation of the evolution 
presented in Figure 2. This detailed representation is the result of a prolonged research collaboration 
on the topic conducted in the two successive ITEA initiatives: the OpenCPS [17] and EMBrACE [18] 
projects. The workflow visualises the evolution of primary artefacts, and their relationship to one and 
another, that are seen as relevant when exploiting M&S during aircraft system and subsystem 
development. Furthermore, Figure 7 aims to highlight the feedback necessary for evolving all the 
relevant artefacts. The exploited standards enable model based information exchange and, as a 
result, the flexibility required in Round-trip engineering. The considered artefacts are: 

 Requirements  

 System architecture 

 Analysis architecture  

 Analysis model(s)  

 Composite system simulation 

 

 

Figure 7. Round-trip engineering workflow. The swimlanes of the workflow SysML representation 
does not encompass all the constituent activites. A minimal subset of the activities are presented in 

order to convey the overall flow of information. 

 

These artefacts relate to the Definition, Design, and Realisation models of Figure 2 as follows: 
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 The System architecture artefact maps to the Definition model as it captures what shall 
eventually be realised.  

 Analysis models maps to Design models as they represent a current (virtual) state of product 
development. Analysis models can, for example, be parametrised executable models 
representing several potential realisations. 

 For simulation purposes, it may be necessary to adapt the general system architecture model 
to adequately meet the identified intended use(s). Such an Analysis architecture is viewed as 
a special class of Design models.  

 Realisations are executable models, either generated from a single Design model or a 
composite system simulation and they represent what is currently realised (virtually). In other 
words, an Analysis model becomes a Realisation model once it is compiled and coupled to 
the parameter set of a specific realisation. 

 

All models described above will evolve independently of each other, i.e., there is no defined starting 
point in the workflow, but the end results must be kept under stringent configuration control. 

  

4.2 Process descriptions 

This section details the processes for developing and managing the artefacts identified in the previous 
section and in Figure 7.  

 

4.2.1 Define requirements  

 

Figure 8. Requirements swimlane as a process in an Input-Process-Output diagram 

 
The purpose of the activities within the Define requirements process in Figure 8 is to identify the 
requirements to be investigated, analysed, and verified related to the whole or part of the System of 
Interest. The activity to Analyse system requirements, initiated from various roles working within the 
process, aims to identify and select requirements relevant for the analysis based on the input 
Stakeholder system requirements.  
 
Furthermore, the process includes an activity where the identified requirements are modelled. One way 
to Model requirements is to employ assumption and guarantees grouped in contracts [19], [20]. Such 
contracts enable a close integration between the requirements and the System and Analysis 
architectures if all artefacts are expressed in the same standardised format, for example SysML. 
Contracts, as schematically visualised in Figure 9, include the assumptions and guarantees of the 
engaged stakeholders. Such modelled contracts can be coupled to both the System and Analysis 
architectures. 
 

 

Figure 9. Schematic representation of a contract, including an assumption and a guarantee, between 
two stakeholders; Stakeholder A is engaged in activities related to System/Subsystem A whereas 

Stakeholder B is engaged in activities related to System/Subsystem B. 
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The Modelling requirements activity of Figure 8 should be applied to a degree deemed as useful and 
feasible. In some cases, expressing the Stakeholder system requirements in an executable format may 
be beneficial. When applied, executable requirements enable continuous verification, or monitoring of 
contracts, using M&S applications such as simulators. An implementation of modelling formal 
executable requirements in the Modelica language is provided by Otter et al. [21]. A more recent effort 
on the topic of modelling of executable requirements is the Common Requirements Modeling Language 
(CRML) currently under development within the frame of the EMBrACE project [18]. 
 
The last activity presented in Figure 8 is denoted Evaluate and decide on changes. This activity 
addresses any input Change requests related to the requirements of the system of interest.  

 

4.2.2 Define System architecture 
 

 

Figure 10. System architecture swimlane as a process in an Input-Process-Output diagram 

 

The System architecture swimlane includes the process activities shown in Figure 10. One or more 
candidate architectures are created aiming at meeting identified System requirements. The System 
architecture is created/modified in Select/updated system architecture for system of interest activity 
based on architecting best practice and feedback from analysis and simulation activities. The System 
architectures can be expressed in multiple formats, for example, using SysML or in the xml formats 
of the SSP standard. Such formats facilitate a model-based communication, and consistency checks, 
with the subsequent Create analysis architecture activity of the Define analysis architecture process, 
see Figure 11. The Evaluate and decide on changes activity provides a mechanism for feedback just 
as in the Define requirements process. 

 

4.2.3 Define analysis architecture 
 

 

Figure 11. Analysis architecture swimlane as a process in an Input-Process-Output diagram 

 

The Define analysis architecture process activities, see Figure 11, can be seen as the link between 
the System architecture view and the analysis view of the system of interest. This process provides 
an optimisation of the System architecture to match the needs of individual simulations. Therefore, it 
has to take into consideration the System requirements, the Intended use for each simulation, and 
the System architecture. Depending on where in the process the work starts, the Define analysis 
architecture process output artefacts will influence, or be influenced by, all of the process input 
artefacts.  

 

The objects in the System architecture and the corresponding objects in the Analysis architecture can 
be either directly mapped, or lumped, to one and another. For example, a System architecture 
identifies the subsystem, but does not specify the number of Analysis architecture constituent 
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executables. For this reason, the Check consistency activity is essential to ensure traceability. 
However, performing such a consistency check can be a significant challenge, especially for large 
scale systems. One desirable approach, simplifying the activity, is to ensure that both architectures 
are expressed in the same standardised formats; such that objects in the two architectures can be 
directly mapped to each other.  

 

In addition, the Analysis architecture provides information concerning the architecture constituent 
entities. Interface descriptions, evolving alongside the Analysis architecture, can be deduced for all 
the included subsystems. If the interface descriptions are expressed in the format provided by the FMI 
standard, then they can directly serve as templates when developing the corresponding analysis 
models in an M&S development tool; for example, the Modelica tool OpenModelica [22]. Analysis 
architectures are advantageously expressed using both the FMI and SSP format. Adding the SSD, 
SSV, and SSM formats of the SSP standard enable standardised descriptions of the flow of 
information between models from different engineering disciplines. Note that the Analysis 
architecture, independent of the level of abstraction, merely defines the pattern for interfacing models. 
Any needed executable simulation models are realised through the Implement Analysis model(s) 
process, see Section 4.2.4 below.  

 

Furthermore, in close analogy with the Define requirements and Define system architecture 
processes, there is an activity providing a feedback mechanism within the Define analysis architecture 
process. This activity is denoted Evaluate and suggest improvements. However, Evaluate and 
suggest improvements is slightly different compared to the two corresponding activities in the 
Requirements and System architecture processes as it operates on input Simulation results compared 
to input Change requests. Simulation results may, however, raise Change requests. Changes in an 
Analysis model interface description may, for example, be prompted from the input Simulation results 
once these results are compared to the Intended use. 

 

4.2.4 Implement Analysis model(s) 
 

 
Figure 12. Analysis model swimlane as a process in an Input-Process-Output diagram 

 

The Develop model activity is one of the key activities in the Implement Analysis model(s) process 
shown in Figure 12. The development of analysis models is based on the input model or simulator 
Interface description and the Intended use. These are analysed to form detailed model requirements. 
For tools supporting FMI or SSP Analysis model interfaces are generated based on the Analysis 
architecture, if such support is lacking the interface definition must be created manually. The model 
Intended use(s) drives the desired model fidelity and it thus serves as foundation for model 
development.  

 

The Implement analysis model process activities may result in additional identified support Analysis 
models as a result of ownership, legacy, identified reuse potential, and separation of concerns. Any 
additional Analysis models are developed iterating the process described in Figure 12. 

 

Moreover, the Analysis model process also includes the activity Design parts for simulation. The 
Design parts for simulation activity includes any development of support models providing the 
parameter values necessary to evolve an Analysis model from Design to Realisation model. This 
activity should be seen as its own instance of the Implement analysis model(s) process; however, it 
is shown as an activity in Figure 12 as its resulting artefacts typically provides information on which 
the executable Analysis models and simulators rely. Geometry models are examples of non-
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executable models providing essential input to the corresponding executable models. The geometry 
of the System of Interest is modelled by the geometrical domain experts in their preferred tools. The 
geometry models are, just as Analysis models in general, founded on the input requirements of the 
system of interest and corresponding model Intended use which are analysed and translated to 
requirements on the geometry model. Once the model has been concretised, all the data relevant for 
analysing the system of interest is suggested to be converted to the standard SSP format. The SSV 
concept of the SSP standard is exploited to store the parameter values specified in the geometry 
modelling domain. Storing Design parts for simulation artefacts in the SSV format facilitate a number 
of beneficial features. For example, these supplemental artefacts can be coupled, with ease, to the 
dependent Analysis models. Furthermore, consistency checks in terms of, for example, regression 
testing against previous artefact versions can be automated and used to trigger communication 
between the different actors working within the Round-trip engineering workflow described in this 
paper.   

 

The developed Analysis model needs to be verified before being used in simulation. The verification 
includes checking the model functions and interface against the specification. Assessing the 
representativeness of an executable model, with respect to its intended use, can be done as soon as 
an executable version of the developed model is available. The methods for assessing model validity 
depend on the life cycle stage of the system of interest. In early life cycle stages, sensitivity analysis 
and uncertainty quantification are applicable methods [23]. In later life cycle stages, these methods 
are complemented with comparisons to in-situ measurements in activities often referred to as 
predictive validation [14]. The representativeness of the emergent behaviour, on a system level, is 
assessed in the Verify and Validate activity of Figure 11. Eek et al. [24] propose packaging analysis 
model V&V and Uncertainty Quantification results in a meta-model, along with its corresponding 
Analysis model, such that the Analysis model carries information concerning its own credibility. Such 
an approach enables a solution where the assessment results can be provided to the end-user in a 
model-based format. The model is ready for export, for use outside its development environment, 
once enough evidence has been gathered indicating that the model fulfils the specification and its 
intended use. For tool independent exchange the FMI and SSP standards can be exploited. 

 

The feedback mechanisms is, just as in the Implement Analysis model(s) process, represented by the 
Evaluate and suggest improvements activity of Figure 12. 

 

4.2.5 Execute composite system simulation  
 

 

Figure 13. Composite system simulation swimlane as a process in an Input-Process-Output diagram 

 

The Execute Composite system simulations process, see Figure 13, includes the activity Specify 
intended use in which the purpose of the executable model or simulator is expressed and related to 
the requirements of the system of interest. Once the expectations and purpose of the simulation is 
stated, be it for system validation, system verification or exploration, it is possible to formulate the 
Simulation requirements. Such requirements can be both functional and non-functional; for example, 
the model should predict the cooling performance with a maximum relative error of 5%, and the model 
should be provided to the end-user in the FMI format. 

 

Subsequently, in the Map system requirements to simulation requirements activity, a mapping is 
established between the input System requirements and the generated Simulation requirements. This 
mapping aids to ensure relevance and traceability. Furthermore, just as in the Define requirements 
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process, the derived requirements should be modelled in a suitable language if deemed beneficial. 
The modelling of model requirements is conducted in the Model simulation requirements activity. 

 

The Model/Simulator declaration process input serves as foundation in the Credibility assessment 
activity. This activity connects all evidence of representativeness, gathered in the Implement analysis 
model process, to the intended use of the Realisation exploited in the Execute composite system 
simulation process.  

 

The fifth bullet listed in Figure 13 is the Execute simulation activity. This activity includes the steps of:  

 Conducting a consistency check on the input Analysis architecture (provided in the Executable 
simulator process input) against previously exploited architectures (if any). 

 Importing the input executable Analysis model or simulator in the simulation tool driving the 
simulation. 

 Compiling, aggregating and analysing the credibility of the simulation. 

 Executing simulation in accordance with the Scenario to be investigated. 

 Compiling and communicating Simulation results. 

 

Any required updates to the constituent Analysis models or Analysis architecture are communicated 
to all stakeholders, preferably via the FMI and SSP formats, so that all impacted artefacts can be 
updated as efficiently as possible with minimal risk of misinterpretations. If successful, the outcome 
of any executed simulation is communicated via the process output Simulation results.   

   

5. Instantiated example 

The formulation and development of an aircraft Environmental Control System (ECS) here serves as 
an example intended to demonstrate the workflow presented in Figure 7. This example is an 
expansion of the application example described by Hällqvist et al. [25]. The system of interest is an 
ECS, coupled to a coolant distributions system providing coolant to a consumer requiring cooling 
power. The end goal of this example is to facilitate a platform, a simulator, for model-based evaluation 
and comparison of two different Realisations of the coolant distribution system. This simulator needs 
to evolve as more information becomes available. Both Realisations will be refined during this 
evolution until a well-founded decision, on which Realisation to proceed with, can be made. 

 

5.1 Use-case 

The Round-trip-engineering workflow is exemplified via a use-case representing a realistic scenario 
during aircraft vehicle system development. The purpose of the use-case is to compare and evaluate 
two different physically feasible installations of an aircraft cooling system. The two alternatives require 
different routing solutions of the piping system transporting the coolant from the cooling system to the 
consumer. The evaluation is to account for transient operation of the aircraft where the inertia of the 
system of interest can be exploited to fulfill the subsystem requirements. 
 
The actors involved in the use-case are engineers developing aircraft tactical subsystems, vehicle 
systems hardware and vehicle systems software. 
 

5.1.1  Pre-requisites 

A set of requirements for the system of interest is the primary pre-requisite to the use-case. The 
system of interest is the cooling system providing cooling to a radar deployed in a fighter aircraft. In 
summary, a radar with a specified cooling need is to be installed in a fighter aircraft. Identification of 
possible installation space enables two different variants of the cooling system. Which of the two 
options to proceed with is not obvious as emergent dynamic behavior needs to be considered. A 
central storage containing a large set of parameterised executable legacy models (Design models, in 
the terminology introduced in Section 3), including a modelled Environmental Control System, a 
modelled coolant power distribution system, and a modelled ECS controlling software is available for 
use, see Figure 14 and  Figure 15. The coolant distribution system model is parameterized such that 
it can represent any feasible routing option. The controlling software ensures that the consumer of 
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coolant power can operate at temperatures specified as desirable. The controlling software set-point 
temperature is specified via the parameter denoted Constant2 in Figure 15. 

 

Figure 14. Legacy Modelica model of 
Environmental Control System (ECS) coupled 
to a liquid coolant distribution system 

 

 

 

Figure 15. Legacy Simulink model of ECS 
controlling software 

 

5.1.2 Main Scenario and Expected Outcome 

1) Triggered by the purpose of the example, see Section 5, geometry models are developed of 
the two different routing options. Once these routing options are available, the geometry 
information needed to instantiate two executable Realisations is available. These two 
executables are realised by means of incorporating SSV files containing the geometry 
parameter values. 

2) In parallel, available system requirements are identified and transformed to an intended-use 
in the Specify intended use activity of the Execute composite system simulation process. 
Included are identification of test cases and preparation of necessary stimulus. 

3) The M&S engineer responsible for the coolant power distribution Analysis model imports the 
geometry information in the Design parts for simulation activity. The incorporation of geometry 
information evolves the Analysis model from a Design model to a Realisation. The two 
modeled solutions are validated and exported to later be integrated in the Analysis model 
representing the complete system. 

4) An architect receives the legacy models and establishes an Analysis architecture that fulfills 
the composite system simulation intended use, as well as is consistent with the system 
requirements, and architecture. This Analysis architecture is populated with the required 
executable models; it is then exported for integration in a simulation tool. 

5) An M&S engineer integrates the complete Analysis architecture, including executable 
Analysis models and their parameter values, in the best suited simulation tool. The actor then 
executes the simulation(s) and compiles the simulation results. 

6) The simulation results are fed back for evaluation purposes in all the processes described in 
Section 4.2. 

 

5.2 Results 

The artefacts realising the use-case are developed and evolved by means of exploiting the processes 
of Figure 7. These artefacts, and their relationships, are described in this section.  

 

The Analysis architecture of the application example is visualised in different views, with differently 
detailed interfaces, in Figure 17 and Figure 21. The corresponding System architecture is visualised 
in Figure 16 and Figure 20. In order to use any simulation results, it is necessary to understand how 
well the Realisation, used in the simulation, represents the actual system described in the system 
architecture. A consistency check between these two views can then be performed and possible 
differences can be identified and managed. This consistency check between the two architectures 
can be more or less trivial; the degree of difficulty depends on the status of the System architecture 
with respect to the intended use and with respect to the Analysis architecture,. In this example some 
of the Analysis models represents multiple systems found in a traditional airborne vehicle system 
structure, for example parts of the engine system is represented in the ECS_HW Analysis model. The 
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difference, with respect to the systems and elements within the System and Analysis architectures 
can be seen in Figure 16 and Figure 17.  

A corresponding architecture with detailed interfaces, in a later stage of evolution, can be seen in 
Figure 20 and Figure 21. Knowledge about the models and what they represents are vital to assess 
the credibility of the complete simulator. In other words, the mapping between the presented 
architectures needs to be tracked and verified if to maximise the value of MBSE. 

  

 

 

Figure 16. System architecture for parts of an airborne 
vehicle system 

Figure 17. Initial analysis architecture 
based on available models 

 

The initial Analysis architecture is created based on a set of legacy Analysis models from the systems 
simulation and software engineering domains, see Figure 14 and Figure 15 respectively. These legacy 
models are first combined, together with a model of a consumer of cooling power, to represent a 
closed loop radar cooling system. This expansion is a consequence of an interpretation of the, at this 
point in the workflow, informal and somewhat vague available intended use of the needed composite 
system simulation artefact. The intended use is at this point merely a qualitative statement that a 
simulator for concept evaluation during dynamic operation, accounting for transient emergent 
behaviour, is needed. 

 

At this stage, the consumer model is merely a representation of a possible system, and this 
representation will later be populated with an executable model representing the actual components. 
Functionality to export interface descriptions from such a draft representation, in the standardised FMI 
format, was implemented in the Papyrus open-source UML/SysML modelling tool [26] within the frame 
of the OpenCPS project.  

 

Once an initial version of the consumer Analysis model has been integrated into the overall Analysis 
model of the example, then the resulting Design model needs to be converted into a Realisation via 
two different sets of parameters. These two parameter sets are generated through the Design parts 
for simulation activity.  

 

  
Figure 18. Application example geometry for 
configuration one 

Figure 19. Application example geometry for 
configuration two 

 

In this step of evolution, Analysis models from the geometry modelling domain are coupled to the 
application example via the SSV and SSM concepts of the SSP standard. The application example 
geometry configurations are shown in Figure 18 and Figure 19; extracts of the corresponding SSV 
files are listed in Listing 1 and Listing 2. The difference between the two configurations is made 
apparent if comparing the two SSV files one row at a time. 

 

 

AirborneVehicleSystem bddAirborneVehicleSystem[Package] bdd  ][ 

AirborneVehicleSystem

«block»

LiquidCoolingSystem

«block»

PropulsionSystem

«block»

ConsumerSystem

«block»

AirCoolingSystem

«block»

TacticalSystem

«block»

ECSGeometry

«block»

ECS_SW

«block»

ECS

«block»

PFDSystem

«block»

tacticalSystem

liquidCoolingSystemECS_SW

pFDSystem

ECS geometryairCoolingSystem

propulsionSystem

consumerSystem

ECS

AircraftSystemSimulation bddSimulationComponents[Package] bdd  ][ 

AircraftSystemSimulation

«block»

Adaption_Unit

«block»

Atmosphere

«block»

ECS_HW

«block»

ECS_SW

«block»

ECS

«block»

Consumer

«block»

ECS consumer

ECS_HW

adaption_Unit environment

ECS_SW
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Listing 1. SSV file corresponding to 
application geometry for configuration one 

Listing 2. SSV file corresponding to application 
geometry for configuration two 

<ssv:ParameterSet> 

  <ssv:Parameters> 

    <ssv:Parameter 
name="part_'ret'.paramSet_'outParam'.param_'ZParamRL'"> 

      <ssv:Real unit="Unit Not Applicable" value="2.417386"/> 

    </ssv:Parameter> 

    <ssv:Parameter 
name="part_'ret'.paramSet_'outParam'.param_'pipeLengthTotRL'"> 

      <ssv:Real unit="[m]" value="7.41248272578546"/> 

    </ssv:Parameter> 

  </ssv:Parameters> 

</ssv:ParameterSet> 

 

<ssv:ParameterSet> 

  <ssv:Parameters> 

    <ssv:Parameter 
name="part_'ret'.paramSet_'outParam'.param_'ZParamRL'"> 

      <ssv:Real unit="Unit Not Applicable" value="0.88024"/> 

    </ssv:Parameter> 

    <ssv:Parameter 
name="part_'ret'.paramSet_'outParam'.param_'pipeLengthTotRL'"> 

      <ssv:Real unit="[m]" value="4.57083438288096"/> 

    </ssv:Parameter> 

  </ssv:Parameters> 

</ssv:ParameterSet> 

 

At this point, all the SSP artefacts that renders a complete Realisation, that can serve the Execute 
composite system simulation process, is available. This Realisation, in its current evolutionary state, 
is imported in a SSP supporting SysML tool such that the Analysis architecture can be refined and 
mapped to a corresponding System architecture.  

 

A SysML block diagram of the System architecture is shown in Figure 20, the corresponding Analysis 
architecture is shown in Figure 21. A significant difference in the level of detail of the interfaces is 
made apparent if comparing these two views. Both architectures contain interfaces described at the 
level of detailed that is necessary for the purpose of the respective representations. This difference is 
fully natural; however, it needs to be tracked and checked for consistency just as in the earlier 
evolutionary state presented in Figure 16 and Figure 17. 

 

 

 

Figure 20. System architecture of 
the System of Interest developed 
through Round-trip-engineering 

Figure 21. Analysis architecture of example simulator 
developed through Round-trip engineering 

 

Application example results from the Execute Composite system simulations process are provide in 
Figure 22 and Figure 23. The application example contract selected for monitoring is presented in 
SysML format in Figure 24. The simulation boundary conditions, for a specific analysed flown mission, 
are provided in Figure 22 and Figure 23. The two different Realisations, one for each configuration, 
render different increases in liquid temperature across the consumer. Simulations of configuration 
one, the longer routing option visualised in Figure 18, results in higher temperature increases 
compared to that of configuration two. However, for this particular mission, the contract under 
investigation, see Figure 24, is fulfilled for both investigated configurations. No decision on preferred 
configuration can therefore be made based on these simulation results alone and the analysis needs 
to continue for other relevant missions.  

AircraftSystem ibd hifiAircraftSystem[Block] ibd  ][ 

airborneVehicle : AirborneVehicleSystem

propulsionSystem : PropulsionSystem

pFDSystem : PFDSystem

ECS : ECS

tacticalSystem : TacticalSystem

consumerSystem : ConsumerSystem

airframe : Airframe

BleedAirAirInlet

PFD

EngineBleedAir

RAMOutlet

RAMInlet

PFD

LiquidCooling

RAMAirInlet

LiquidCooling

Cooling LiquidCooling

RAMBleedAir
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Figure 22. Application example composite simulation boundary conditions. The boundary conditions 
are generated from in-situ measurements conducted in an unspecified aircraft 

  

Figure 23. Liquid temperature increase for the 
consumer for the two different coolant 
distribution routing options 

 

Figure 24. Application example contract 
including a “Guaranteed” and an “Assumed” 
liquid temperature increase 

 

6. Discussion 

In this paper, a new structuring principle is proposed for models created to support the incremental 
development of complex systems, in accordance with the Saab Aeronautics 4-box development 
model. The key principle promoted is that model elements with different perspectives (tenses) must 
not be managed in the same model. Model elements capturing a desired future state (Definition 
model) must not be mixed with the model elements capturing what is presently available for virtual 
integration (Realisation), and the development activities where the Realisation emerges (Design 
model). 

 

The Round-trip engineering framework, described from both a process perspective and with an 
instantiated example in this paper, illustrates the “Definition-Design-Realisation” tenses introduced in 
Figure 2. The example clearly show how the strengths of different languages are utilised to form an 
integrated workflow. Moreover, it also highlights the value and importance on applying standards like 
FMI and SSP for automating the information flow across the tenses. The framework could be 
instantiated, to the degree necessary to any system level. 

 

The principles proposed herein has the following advantages: 

 It acknowledges that there is not a question of one model or one language to succeed in 
engineering supported by models. As an example, it is not a question of creating a single 
detailed, all encompassing, digital twin, but rather multiple twins with identified purposes, 
fidelities and credibility. 

 It allows for any number of views using any number of languages that can be developed 
independently of each other. 

 

When adopting the principles proposed, an organisation will have to place attention on realising a 
model configuration management capability where individual models (the correct version of each 
model) can be related to each other. Such a configuration management capability need to focus on 



Heterogeneous System Modelling in Support of 

Incremental Development 

18 

 

 

supporting and relating models captured at different abstraction levels. For a complex product there 
might exist a number of coarse Design models and Realisations, as well as an equally large number 
of medium granularity models built from subsystem models. Moreover, there will also exist a number 
of fine grain Design models and Realisations built from composed subsystem models.  

 

It is not a trivial task for a development organisation to correctly manage and control the evolution of 
such a large modelling flora. However, the alternative, to consciously reduce the number of models 
used to represent a system under development will increase project risks and negate the advantages 
of introducing modelling and simulation.  

 

In addition to separating the tenses of models, we see the following key enablers for the 
implementation of an integrated modelling and simulation capability: 

 Integration of Realisations from different sources, by ensuring a common interface standard 
(e.g., FMI and SSP). 

 Emerging standards, like SSP, facilitates management of heterogeneous yet related models, 
and are essential tools for facilitating the adoption of a truly model based approach to 
development.  

 Single classification framework for coordinated integration of Realisations. 

 Definition of a model credibility measure, to clarify to what extent simulation results based on 
the integrated models can be trusted to adequately represent an actual system. One such 
example, inspired by the NASA Credibility Assessment Scale [27], is the model credibility 
assessment approach proposed in Eek [24]. 

7. Conclusions and future work 

For efficient development of next generation safety critical systems, organisations need to find 
approaches that combine the advantages of incremental development in terms of flexibility with the 
rigour provided by model based ways of working. The approach proposed in this paper – to partition 
models based on their respective tense – allowing the development organisation to develop models 
in parallel and combine them to adequately represent a relevant system configuration. Thus allowing 
for simulation services that can serve multiple purposes and be updated at a small cost.  

 

Within Saab Aeronautics, parts of the outlined framework has been in operation for a long time and 
validated extensively. The contribution in this paper is the structure for integrating contributions from 
multiple sources. The principles presented have been evaluated on a small scale using paper 
examples and practical work within research projects. Results are encouraging and the presented 
solutions will be applied in next generation development projects. There is also a need for additional 
work in developing and promoting standard-based interoperability mechanisms and for further 
standardising frameworks for Analysis model classification and credibility assessment.  
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