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Abstract

To improve the estimation reliability of flight characteristics of aircraft by using flight test data, it is essential to
reduce discrepancy between input data and output model. In this paper, the authors propose to use Student’s
t-distribution in cooperation with Bayesian estimation framework. This method provides the estimated degree of
freedom ν of the t-distribution in addition to the model parameter distribution, and we can utilize ν as the metric
of the discrepancy. The effectiveness of the method is demonstrated with the modeling of the lift coefficient
with actual flight data. The contribution to the lift of the stabilizer deflection, pitch rate, and Reynold’s number
effect are examined by using the proposed method. Consequently, the pitch rate and Reynold’s number effects
are successfully extracted from the flight data by investigating the behavior of the estimated ν .

Keywords: Flight characteristics, Bayesian inference, Markov-chain Monte-Carlo, Student’s t-distribution

1. Introduction
Estimation of flight characteristics of aircraft with flight data has been actively performed for various
applications. The flight characteristics are represented by aerodynamic parameters and stability
derivatives. The former such as lift and drag coefficients are required for validation of aircraft design
and manufacturing. The latter are essential to build a training simulator.
Typically, the estimation procedure is divided into three steps. First, a model to represent the char-
acteristics is postulated based on mechanical and empirical knowledge. For instance of the lift co-
efficient modeling, one of the model postulation is that the coefficient is linear to the angle of attack
in major cruise conditions. Then, parameters of the model are estimated to fit with the selected data
acquired in flight tests. For the example of the lift coefficient, performing flight in which the angle of
attack is swept gives a part of the suitable data. Finally, the model with the determined parameters
is evaluated its effectiveness with certain criteria such as fitness to other different data from the data
used in the previous step. In these steps, the second step has actively been studied, and many
methods represented by least square or Kalman filter were developed [1]. The authors also studied
a method to enhance the estimation not only for parameter itself but also for its distribution by using
a Markov-chain Monte-Carlo (MCMC) sampler, which is one of Bayesian inference methods [2].
Although an estimation method is an important factor to get reasonable and reliable results, the data
used for the estimation in the second step is focused in this study. This is because not only an
estimation method but also selected data affect the estimation results.When we select inappropriate
data which does not include any hint related to the postulated model, the estimation fails even if we
use a sophisticated estimation method. Thus, the relationship between the model and data must be
considered. This relationship is well-known in the field of general system identification problems. In
order to avoid difficult situation, data including various modes of a target system is intentionally utilized
as much as possible for those problems. For instance, a M-series random input signal is utilized to
excite the target system. However, for the flight characteristic estimation, the arbitrary excitation of
aircraft dynamics is restricted due to safety. Therefore, the data selection for the flight characteristic
estimation should be a more important topic compared to the general modeling problems.
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Actually, estimation failure resulted from a combination of a model and dataset was reproduced with
the datasets and models of the authors’ previous study [2]. The study was conducted to model the lift
coefficient of a fixed wing aircraft. There were two postulated model with and without the contribution
of the pitch rate of the body, and there were two dataset with and without pitching motion. The
results showed that the combination of the pitch rate considered model and the data including the
pitching motion achieved the best estimation which had the steepest distribution of the estimated
parameters. On the other hand, the applications of the two datasets to the model without the pitch
rate contribution resulted in the comparable moderate distribution. In other words, the combination of
the dataset having more information than the range of the postulated model did not work well.
Therefore, in order to gain the robustness to input data, the authors propose utilization of a Stu-
dent’s t-distribution in cooperation with the MCMC method for the flight characteristic estimation. The
Student’s t-distribution has a heavier tail distribution compared to a normal distribution. How this
feature contributes the estimation is discussed in Sec. 2 with brief explanation of the MCMC method.
In addition, preliminary effectiveness of the proposed method is demonstrated with simple numerical
examples. Moreover, degree of freedom (DOF) of the t-distribution estimated in the proposed method
is focused as a metric to measure match between data and model. Then, as a practical problem, lift
coefficient modeling of a fixed-wing aircraft by using the proposed method is described in Sec. 3.
Followed by introduction of the target aircraft, input data for the modeling is explained. There are four
postulated models applied to the data, and the performance of each estimation result is discussed
mainly based on the estimated t-distribution DOF. Finally, this study is concluded in Sec. 4.

2. Bayesian inference with Student’s t-distribution
In this section, the proposed method used in this study is described in accordance with a framework
of the Bayesian inference. First, the MCMC sampling, well summarized in Chapter.11 of Bishop [3],
is briefly explained. The MCMC method requires a statistical model to estimate a distribution, and the
authors proposes to utilize the Student’s t-distribution instead of the typical normal distribution. Thus,
following to the MCMC explanation, the Student’s t-distribution and its application to the Bayesian
inference are elaborated. At the end of this section, the simple numerical examples demonstrate the
preliminary effectiveness of the proposed method.

2.1 Markov-chain Monte-Carlo (MCMC) method
The Bayesian inference including the MCMC method provides a posterior, i.e., estimated distribution
of parameters P

(
θ |y
)

by using the relationship

P
(
θ |y
)
∼ P

(
y|θ
)

P(θ) , (1)

where y and θ are the data and parameters, respectively. P(·) represents a probability distribution.
The goal P

(
θ |y
)

corresponds to a conditional probability distribution of θ in occurrence of y. P(θ) is a
prior distribution, to which a non-informative prior is typically applied. P

(
y|θ
)

is given by a likelihood
function to be postulated.
The MCMC method generates θ samples many times like its name includes “Monte-Carlo”. This
generation is iteratively performed with adjustment of θ based on the calculated likelihood of the right
side in Eq. (1). “Markov-chain” indicates this iterative process. In a successful case, the generated
θ finally follows to a certain probability distribution, which sufficiently approximates the goal P

(
θ |y
)

distribution.
In this study, Stan [4], a sophisticated MCMC sampling software, is utilized as the authors’ previous
study. Stan has many customization points, and the tuned points for this study are summarized. For
each estimation, 2000 iterations are performed to draw the parameter samples from four indepen-
dent generators (chains). The first 1000 iterations are eliminated from the distribution estimation as
“burnin”, that is, the startup phase to wait for the parameter distribution being converged. In addition,
the thinning parameter is three: every two of three iteration results are excluded for the estimation in
order to mitigate autocorrelation. To summarize the numbers, 1336 samples (= (2000−1000)×4/3)
of each estimated parameter are generated par one estimation trial.
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The convergence of the distribution of the generated samples must be checked before further analy-
sis. In this study, two methods are mainly used. The first method is visual check of a trace plot which
shows history of the samples in the iterations. If the sample is sufficiently random, this check passes.
The second method is to use the R̂, which is a convergence index calculated for each parameter with
variances in a chain and between chains. The convergence is determined when R̂ < 1.1 according to
Chapter 11 of Gelman [5].

2.2 Student’s t-distribution
The Student’s t distribution, which is utilized to determine fitness of structure of a postulated model
to input data in this study, will be explained briefly. The probability density of the distribution is shown
in Fig. 1, and its function is described as

Student_t(y|ν ,µ,σ) =
Γ((ν +1)/2)
Γ(ν/2)

√
πνσ

(
1+

1
ν

(
y−µ

σ

)2
)−ν+1

2

, (2)

where Γ is the gamma function. ν is the number of degrees of freedom (DOF) of the distribution, and
takes a value greater than zero. It regulates the heaviness of the tail distribution, and its effect will
be shown later with comparisons of related distribution. µ and σ are the parameters to determine a
most probable location and steepness of the distribution, respectively. It is not a rigorous explanation
but µ and σ represent mean and standard deviation of the distribution, which are only defined where
ν is in a specific range.
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Figure 1 – Probability density of Student’s t-, normal and Cauchy distributions

The Student’s t-distribution looks like a normal distribution as shown in Fig. 1. Actually, when ν equals
to +∞, the distribution is identical to a normal distribution defined as

Normal(y|µ,σ) =
1√

2πσ
exp

(
−1

2

(
y−µ

σ

)2
)

. (3)

In addition, a ν = 1 t-distribution is a Cauchy distribution of

Cauchy(y|µ,σ) =
1

πσ
1

1+((y−µ)/σ)2 , (4)

which has heavier tail than the normal distribution. Table 1 shows comparisons of these three distri-
butions having same µ = 0 and σ = 1 with various ν for the t-distribution. The values in the table are
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the cumulative probabilities in the condition of y is greater than 1, 2, and 3-σs. As the values shows,
the Cauchy distribution has the larger probability than the normal distribution. The probabilities of
the t-distribution with ν = +∞ and 1 are the same values as the normal and Cauchy distributions,
respectively. Furthermore, the probabilities of the lower ν take the higher values. This functionality of
ν to vary the tail distribution heaviness is utilized in this study.

Table 1 – Cumulative probability of normal, Cauchy, and Student’s t distributions

Distribution
Cumulative probability

|y| ≥ 1σ |y| ≥ 2σ |y| ≥ 3σ
Normal 0.3173 0.0455 0.0027
Cauchy 0.5000 0.2952 0.2048

Student’s t ν = + inf 0.3173 0.0455 0.0027
ν =100 0.3197 0.0482 0.0034
ν =8 0.3466 0.0805 0.0171
ν =4 0.3739 0.1161 0.0399
ν =2 0.4226 0.1835 0.0955
ν =1 0.5000 0.2952 0.2048
ν =0.5 0.6022 0.4455 0.3673

2.3 Application of Student’s t-distribution in a Bayesian inference framework
As mentioned, the likelihood function is required to perform estimation with the MCMC method. The
likelihood function will be configured by considering the distribution of residual, which is the difference
between the observed data and the model outputs. For the flight characteristic estimation, it is typical
that the residual is assumed to be approximated by a normal distribution as well as a general parame-
ter estimation problem. This assumption is reasonable, because many traditional estimation methods
represented by least square and Kalman filter used the same assumption implicitly or explicitly. The
assumption is formulated with a likelihood function as

y ∼ Normal( f (x,θ) ,σ) , (5)

where f is a model whose arguments are state variables x, and model parameters θ . y is a system
output, and σ is residual variance. While x and y are observed, θ and σ are estimated.
The proposal of this study is to alter the normal distribution to the Student’s t-distribution as

y ∼ Student_t(ν , f (x,θ) ,σ) , (6)

where in addition to θ and σ , DOF ν is also estimated. There are two intended points for this change.
Firstly, thanks to the heavier tail of the Student’s t-distribution, the estimation will get robustness to
outliers in observed data. This is because different from the normal distribution, the t-distribution
makes the adjustment of the model parameters insensitive to the outliers, which are located suffi-
ciently far from space where major samples exist. Secondly, the estimated ν will be used as the
metric for the better estimation. As far as the true error belongs to the normal distribution, higher ν
means more fitness of model outputs to data. In other words, a low ν notifies us that the data may
contain disturbing data from the aspect of the postulated model. In that case, one idea is to segment
the data and try to achieve higher ν in each segmented estimation. As the consequence, we can im-
prove the model performance comprehensively because the estimated parameters in the segmented
estimation have the steeper distribution compared to the unified estimation.

2.4 Numerical examples
The effectiveness to use the t-distribution will be demonstrated by using simple numerical examples
before the application to the flight characteristic modeling. The example problem is to estimate a
parent distribution with an observed dataset consisting of 1000 samples. The samples are generated
by two “true” and “disturbing” distributions, and their portion varies in a different set of the samples.
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The true distribution, which is the true goal to be estimated, belongs to a normal distribution, and its
mean and standard deviation are configured as zero and one, respectively. On the other hand, the
disturbing distribution is a uniform distribution whose samples are configured to populate in a range
from −5 to 5. For example, Fig 2 shows a sample set whose 30% are outliers.
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Figure 2 – Sample set occupied with outliers by 30%

The estimation is performed with two postulated models consisting of normal and Student’s t-distribution.
Table 2 summarizes the results of the estimation. In the table, the mean µ and deviation σ of the
estimated distribution are represented by their mean in partition with their standard deviation, while
the estimated DOF ν for the Student’s t-distribution is represented by the median. Note that the
convergence of the estimated parameter distribution has been confirmed with their trace plot and R̂
both of which are not included in the paper. In terms of the estimated mean, irrespective of both the
postulated models and ratios of outliers, the mean, which is close to the true value, i.e., zero, is well
estimated. This is natural because the mean of both the true and disturbing distributions is zero. On
the other hand, the accuracy of the deviation of the estimated distribution goes worse as the outlier
ratio increases. In addition, this phenomena is severer in the normal distribution compared to the
Student’s t-distribution. Figure 3a indicating the density of the deviation also highlights the phenom-
ena. The estimation by using the Student’s t-distribution is located near from the true value even if
the number of the outliers increases. Thus, it concludes that to use the Student’s t-distribution as the
postulated statistical model relaxes the requirement on the input data. In addition, the estimated ν
gives an important queue for the better estimation, because the ν decreases as the ratio of outliers
increases. This means we can perform the model adjustment and/or the input data selection so that
the estimated ν is increased or at least retained. Moreover, according to Fig. 3b showing the density
of the estimated ν , the ν rapidly changes in a range of 0% to 10% of the ratio of outliers. This is the
preferable characteristic for fine modeling to include rare cases with low probability of occurrence.

3. Lift coefficient modeling of Cessna 680
In this section, the modeling of the flight characteristic by using the proposed statistical estimation
method with the postulation of the Student’s t-distribution is described. The modeling target is the lift
coefficient CL of the fixed wing aircraft, and with the utilization of the t-distribution demonstrated in the
previous section, the modeling is refined. In the followings, the target aircraft and the flight data used
as the inputs are explained firstly. Then, the CL modeling is elaborated in four steps; base modeling
followed by additional consideration of stabilizer deflection, pitch rate and Reynold’s number effect.

3.1 Target aircraft
The target aircraft is the Cessna 680 Citation Sovereign owned by JAXA shown in Fig. 4. It is twin
jet-powered fixed-wing aircraft, and modified for various experimental purpose [6]. In terms of the
modification items related to this study, the electrical signals of the aircraft are monitored to record

5



STATISTICAL DATA SELECTION FOR BETTER FLIGHT CHARACTERISTIC MODELING

Table 2 – Summary of normal distribution estimation with outliers

Ratio of
outliers

Postulated models and results (mean±1σ of estimated distribution)
Normal Student’s t

Mean (µ) Deviation (σ) Mean (µ) Deviation (σ) DOF (ν) *1

0% −0.011± 0.033 1.021± 0.023 −0.010± 0.031 1.008± 0.026 87.119
5% 0.010± 0.037 1.182± 0.026 −0.012± 0.035 0.998± 0.037 6.895

10% −0.011± 0.042 1.343± 0.031 −0.025± 0.037 1.020± 0.039 4.506
15% −0.039± 0.046 1.469± 0.033 −0.045± 0.040 1.053± 0.043 3.716
20% −0.038± 0.050 1.587± 0.035 −0.036± 0.043 1.130± 0.050 3.527
25% −0.012± 0.054 1.699± 0.038 −0.016± 0.045 1.211± 0.056 3.477
30% −0.015± 0.058 1.810± 0.042 −0.013± 0.053 1.365± 0.068 3.970

*1 Instead of mean and standard deviation, median is displayed.
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the aircraft state consisting of not only flight conditions but also internal commands. In addition, as
the figure shows, the boom is equipped on the nose of the body. It has pitot holes and vanes on
the tip to acquire air data information such as airspeed and angle of attack without flow disturbance
generated by the body. Furthermore, the aircraft weight in flight is accurately estimated due to precise
acquisition of fuel consumption [7]. The thrust is also able to be estimated in a sufficient accuracy
with the dedicated method.

Figure 4 – Target aircraft named “Hisho”, which means fly higher in Japanese

3.2 Input data
The input data for the flight characteristic estimation is the lift coefficient CL and its related variables
generated by preprocessing the flight data obtained with the target aircraft. The flight data was
obtained in the summers of 2016, 2018 and 2020, and its total flight numbers and length were 22
and 84.7 hours, which were approximate twice as much as 10 and 43.8 hours of the previous study.
The data is decimated in order to reduce the computation time of the MCMC estimation to a practical
length. Figure 5 indicates the airspeed and altitude histories recorded in the data. The figure shows
that the data sufficiently covers the flight envelop of the target aircraft shown in its dotted lines.
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Figure 5 – Flight data

Before the conversion to CL, the flight data is refined for simplicity. The data on the grey lines in Fig. 5
is removed by the selection, and its length is 31.9 hours corresponding to 12,021 sample points.
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The following conditions are firstly used for the data selection; the altitude is greater than 15,000 ft,
the gross thrust is greater than 1 kN, the rolling is up to 2 degrees, and spoilers and flaps are not
activated. Then, the segmented data whose duration is less than 10 seconds is removed. It is noted
that the maximum takeoff thrust and the ceiling altitude of the target aircraft are 25.66 kN and 47,000
ft.
Finally, the filtered flight data is transformed to CL by using the relation of the equation of motion like

CL =
1

qS

[
Rot(α,β )

(
ma⃗− T⃗

)]
z
, (7)

where q and a⃗ are the dynamic pressure and accelerometer outputs, respectively, both of which are
observable. Rot(α,β ) is the matrix to rotate a vector from the body axis to the wind axis through the
observed angle of attack α and sideslip angle β . m and T⃗ are the estimated weight and thrust, and S
is the main wing area.
As the related variables of CL, the angle of attack α, elevator deflection δe, stabilizer deflection δstb,
pitch rate q, and Reynold’s number Re are selected in this study. Figure 6 is called a pair plot which
shows the frequencies and relationship of the CL and related variables. Note that the absolute val-
ues of CL are intentionally removed. The diagonal elements of the figure are the histograms. The
lower triangle elements are the scatter plots of each item pair. The upper triangle elements indi-
cate the scaled Spearman’s rank correlation coefficients, which are one of the index values how a
pair is linearly correlated. The -100 and 100 of the coefficients represent fully positive and negative
correlations.

3.3 Base model with consideration of angle of attack α and elevator deflection δe
For the base modeling of CL, the contribution of the angle of attack α and the elevator deflection δe

are taken into account. This modeling postulation is the same as the authors’ previous study except
for the assumed distribution of the normal distribution. At this time, the Student’s t-distribution is
postulated and the model equation is

CL ∼ Student_t
(
ν ,CL0 +CLαα +CLδeδe,σ

)
, (8)

where CL0 and CLα are the estimated zero angle lift coefficient and lift slope. CLδe represents the con-
tribution derived from the elevator deflection. The estimated parameters are summarized in Table 3
with the estimated ν . The results obtained with other postulations mentioned later are also described
in the same table. As the representative statistical values of the estimated parameters, the mean,
standard deviation, 2.5 and 97.5 quantiles are listed In the table. In addition, all the R̂ of the table
show that the convergence condition R̂ ≤ 1.1 is satisfied for the all parameters. Note that the esti-
mation convergence is additionally checked with the trace plots not shown here. Another note that
instead of the absolute values of the estimated CL0, the differences from the estimated CL0 mean are
provided in the ∆CL0 rows.
In the followings, the means of σ and ν are commonly discussed later, and at this time, they are
1.585×10−2 and 4.594, respectively. The preferable σ and ν are smaller one and larger one as dis-
cussed in Sec. 2.3. They correspond to the steeper estimated distribution and the smaller number of
disturbing samples. For reference, the minimum mean of the σ estimated with the normal distribution
postulation was 1.762×10−2 in the authors’ previous study. The difference is mainly derived from the
robustness of the t-distribution to the outliers.

3.4 Stabilizer effect CLδstab
consideration

The second model is to consider the effect of the stabilizer deflection as

CL ∼ Student_t
(
ν ,CL0 +CLαα +CLδeδe +CLδstabδstab,σ

)
, (9)

where CLδstab is the added parameter. The stabilizer contribution is anticipated to be hard to model.
This is because the stabilizer movement δstab is the strong linear to the angle of attack α changes
shown in Fig. 6, in which their Spearman’s rank correlation coefficient is -97. However, the further
investigation is conducted. Figure 7 shows the binned scatter plot of δstab and α. The color of each
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Figure 6 – Pair plot of input data
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Table 3 – Estimation results of base model and those of stabilizer and pitch rate effect consider-
ation

Postulated
Model Item Mean Standard

deviation 2.5% 97.5% R̂

Base model
Eq. (8)

∆CL0 (0.000) 7.489×10−4 (−1.433×10−3) (1.433×10−3) 0.999
CLα

*1 8.893×10−2 1.052×10−4 8.873×10−2 8.913×10−2 1.000
CLδe 1.600×10−2 5.083×10−4 1.505×10−2 1.701×10−2 0.998

σ 1.585×10−2 1.807×10−4 1.551×10−2 1.622×10−2 1.004
ν 4.594×100 2.035×10−1 4.221×100 5.006×100 1.002

Base + CLδstab
Eq. (9)

∆CL0 (3.042×10−6) 7.650×10−4 (−1.445×10−3) (1.489×10−3) 0.999
CLα

*1 8.887×10−2 5.294×10−4 8.780×10−2 8.995×10−2 0.999
CLδe

*1 1.597×10−2 5.228×10−4 1.495×10−2 1.702×10−2 0.999
CLδstab

*1 −1.921×10−4 1.477×10−3 −3.165×10−3 2.719×10−3 0.999
σ 1.584×10−2 1.928×10−4 1.547×10−2 1.620×10−2 1.006
ν 4.566×100 2.027×10−1 4.208×100 4.998×100 1.008

Base + CLq
Eq. (10)

∆CL0 (7.187×10−3) 7.153×10−4 (5.761×10−3) (8.532×10−3) 0.999
CLα

*1 8.905×10−2 1.014×10−4 8.886×10−2 8.925×10−2 1.001
CLδe

*1 2.038×10−2 4.996×10−4 1.936×10−2 2.129×10−2 1.000
CLq

*2 4.954×10−2 1.083×10−3 4.735×10−2 5.159×10−2 0.999
σ 1.654×10−2 1.687×10−4 1.619×10−2 1.686×10−2 0.999
ν 8.568×100 6.040×10−1 7.484×100 9.780×100 0.999

*1 [1/deg] *2 [1/(deg/s)]

dot corresponds to the ratio of the samples acquired in 2020 respect to the whole samples belonging
to each bin. The number of the samples of each bin corresponds to the dot size. As the figure shows,
some samples acquired in 2020 are located at the position where the linearity is corrupted. They may
be helpful for the estimation of the stabilizer contribution.
The estimated results are summarized in the middle of Table 3. The estimated σ is almost identical
to the base model results, however, ν is slightly smaller than the base model. In addition, CLδstab is
not estimated well due to its relatively large standard deviation 1.477× 10−3 compared to its mean
−1.921 × 10−4. Therefore, the modeling to include the stabilizer effects is concluded to fail. On
the other hand, the t-distribution postulation may be helpful to protect the estimation of the other
parameters from this deterioration of the model, because the means of ∆CL0, CLα , CLδe and σ are
almost unchanged from the base model.

3.5 Pitch rate effect CLq consideration
The third model is the linear conjunction of the pitch rate contribution to the base model as

CL ∼ Student_t
(
ν ,CL0 +CLαα +CLδeδe +CLqq,σ

)
, (10)

where CLq is the new model parameter. The estimation results are described in the bottom of Table 3.
Although the mean σ is slightly enlarged to 1.654× 10−2, the mean ν is greatly improved to 8.568
compared to the base model. The effect of the inclusion of the pitch rate contribution can be visually
recognized with Fig. 8. The figure shows residuals calculated by subtracting the mean model output
in condition of each sample. Namely, the residual of the base model is

CL −
(
CL0 +CLαα +CLδeδe

)
, (11)

while that of the third model including CLq is

CL −
(
CL0 +CLαα +CLδeδe +CLqq

)
. (12)

Every residuals in the third model are located near from the zero residual compared to the residuals
in the base model. From another point of view, the regression line ¯CLqq is successfully estimated in
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Figure 7 – Binned scatter plot of angle of attack and stabilizer deflection

the third model because the residuals in the base model are located near from the line. Although
there are small number of samples which have the information about the q effect shown in the figure,
it is concluded that this third model extracts that information and leads to the ν improvement.

3.6 Reynold’s effect CLRe consideration
The forth model cooperates with Reynold’s number effect based on the third model like

CL ∼ Student_t
(
ν ,CL0 +CLαα +CLδeδe +CLqq+CLRe (log10 Re− log10 Re0) ,σ

)
, (13)

where the last term of the right side is that effect. Its linear formulation to logarithm of the Reynold’s
number is applied according to Wang [8]. Re0 is the reference Reynold’s number defined as the
sample mean of the data in which α ≤ 0.1 [deg] in order to mitigate the change of CL0.
The estimated results are summarized in the top of Table 4. For reference, the results of the third
model are duplicated in the bottom of the table. The middle of the table discussed later is the results
of the same forth model but the applied data is different from the original data. Compared the third
model results, the forth model improves the mean σ from 1.654×10−2 to 1.445×10−2, while the mean
ν is degraded from 8.568 to 8.259.
According to the discussion in Sec. 2.3, the data may contains the disturbing data in terms of the forth
model. It implies that if the data is appropriately segmented, it is possible to improve the model in a
specific region. Therefore, the distribution of the Reynold’s number in the data is checked as shown
in Fig. 9. The figure shows the scatter plot of the Reynold’s number respect to the angle of attack α.
It indicates that there are many samples varying the Reynold’s number in the region of α ≤ 5 [deg].
The data in that low α region are 10791 samples, which is still sufficiently much because of 89.8% of
12021 samples in the original data. The estimation results of the low α data with the forth model are
summarized in the middle of Table 4 as mentioned previously. It is natural that the mean σ decreases
from 1.445× 10−2 of the original data to 1.317× 10−2, because part of the reason is reduction of the
samples. However, the improvement ν from 8.259 to 8.855, which is more than 8.568 of the third
model, is especially significant. Therefore, it is proved that although space covered by the model may
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Table 4 – Estimation results with Reynold’s number effect consideration

Postulated Model
& Data Item Mean Standard

deviation 2.5% 97.5% R̂

Base +CLq +CLRe
Eq. (13)

&
Original data

∆CL0 (−2.152×10−3) 5.873×10−4 (−3.284×10−3) (−1.004×10−3) 0.999
CLα

*1 9.322×10−2 1.159×10−4 9.300×10−2 9.344×10−2 1.000
CLδe

*1 1.279×10−2 4.326×10−4 1.197×10−2 1.361×10−2 0.999
CLq

*2 3.872×10−2 1.178×10−3 3.635×10−2 4.093×10−2 0.999
CLRe 1.282×10−1 2.100×10−3 1.242×10−1 1.322×10−1 0.998

σ 1.445×10−2 1.429×10−4 1.418×10−2 1.473×10−2 1.002
ν 8.259×100 4.900×10−1 7.380×100 9.339×100 1.000

Base +CLq +CLRe
Eq. (13)

&
Data in α ≤ 5

∆CL0 (−1.153×10−2) 6.492×10−4 (−1.281×10−2) (−1.022×10−2) 0.999
CLα

*1 9.772×10−2 1.454×10−4 9.744×10−2 9.801×10−2 0.998
CLδe

*1 9.535×10−3 4.510×10−4 8.690×10−3 1.041×10−2 0.999
CLq

*2 2.703×10−2 1.099×10−3 2.486×10−2 2.921×10−2 0.999
CLRe 1.443×10−1 2.050×10−3 1.403×10−1 1.481×10−1 1.003

σ 1.317×10−2 1.243×10−4 1.293×10−2 1.342×10−2 0.999
ν 8.855×100 5.481×10−1 7.859×100 9.987×100 1.000

Base + CLq
Eq. (10)

&
Original data

∆CL0 (7.187×10−3) 7.153×10−4 (5.761×10−3) (8.532×10−3) 0.999
CLα

*1 8.905×10−2 1.014×10−4 8.886×10−2 8.925×10−2 1.001
CLδe

*1 2.038×10−2 4.996×10−4 1.936×10−2 2.129×10−2 1.000
CLq

*2 4.954×10−2 1.083×10−3 4.735×10−2 5.159×10−2 0.999
σ 1.654×10−2 1.687×10−4 1.619×10−2 1.686×10−2 0.999
ν 8.568×100 6.040×10−1 7.484×100 9.780×100 0.999

*1 [1/deg] *2 [1/(deg/s)]

be narrower, an appropriate data segmentation is effective for the improvement of the model in terms
of the pursuit of the steeper parameter distribution.

4. Conclusion
In this study, the relationship between data and postulated model for the estimation of the flight char-
acteristics of aircraft was discussed. Compared to a general identification problem, the coverage of
the available data respect to the postulated model must be carefully checked for the reliable estima-
tion of the flight characteristics. Therefore, using Student’s t-distribution with the MCMC sampling
method was proposed for the estimation. The two advantages resulted from the method; the robust-
ness to the data, and the estimation improvement by using the ν , that is, the degree of freedom of
the t-distribution. The former was the functionality to make the estimated distribution insensitive to
infrequent data. The latter ν worked as the metric to improve the model by segmenting the input data
in a specific region. These advantages were proved by the simple numerical examples and the lift
coefficient modeling with the flight data of the fixed-wing aircraft. Especially, the lift coefficient model-
ing was successfully performed by taking the pitch rate contribution and Reynold’s number effect into
account. Moreover, the ν helped to reveal that the data used in this study did not have the meaningful
information about the stabilizer contribution to the lift.
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