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Abstract

An Efficient global optimization (EGO), with multi-additional sampling multi-fidelity for single-objective optimiza-
tion via expected improvement (EI) process in genetic algorithm, is applied to reduce the time and computa-
tional cost for aerodynamic design. The generating fidelity data and the maximization EI are used for finding
the additional sampling to improve the Kriging surrogate model during the EGO process. The objective of this
research is to find NACA 4-digit optimal airfoil design with maximized proportion lift coefficient (C;) to drag coef-
ficient (Cq) at C; = 0.5 with the condition at 1,000,000 of Reynolds number. The EGO evaluation and numerical
method indicate the result of optimal airfoil design with NACA 4305 airfoil design and C;/Cy is approximately
47.20 at an approximate 0.55 degree of angle of attack with a 2.08% C;/Cq improvement compared with the
maximum C;/Cy of its initial sampling.
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1. Introduction

The wing is an important component for creating lift power in an aircraft as it moves through the
air. The cross-section form of the wing, known as an "airfoil," splits the airflow to create a distinct
pressure, which gives the advantage of generating lift force for an aircraft. The shape of the airfoil
will affect the aerodynamic performance in terms of lift and drag; previously, the airfoil design process
used actual experiments with airflow in wind tunnel tests, then measuring and observing the force
that happens to the wing; however, wind tunnel tests are expensive to create, especially to construct
the wing specimen which is scaled-down but remains the same geometrical wing shape. Another
designing process, numerical and analysis design, apply aerodynamic theory to design optimum
airfoil shape with the computer then collect the simulation data but this method also takes high cost
for computation calculation and time.

To reduce experiment cost and computing time, Efficient global optimization (EGO) [6] with multi-
additional sampling, multi-fidelity will be applied. Multi-additional sampling [2] via maximizing Ex-
pected Improvement (ET) value and multi-fidelity [2] via different data resources.

The EGO with multi-additional sampling and multiple objectives [9] was purposed to solve the airfoil
aerodynamic design problem for minimizing drag and maximizing airfoil thickness at the trailing edge.
Another study [7] improved multi-additional sampling via Expected Improvement (EI) for the EGO to
test with test function and airfoil design problem.

In this research, An EGO with multi-additional sampling will be applied for solving a single objective
aerodynamic airfoil design problem, with the goal of maximizing the proportion of lift coefficient (C;)
to drag coefficient (Cy).
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2. Methodology
2.1 Multi-Additional Sampling Multi-Fidelity Single-Objective Efficient Global Optimization
The EGO [6] procedure displays here in Figure 1. The EGO algorithm based on the ordinary Kriging
method, firstly, begins its operation by generating the high and low fidelity initial sampling for the
design of the experiment via using the Latin Hypercube Sampling [5], or LHS. Then, evaluate the
data sample and apply the Kriging method to create the Kriging surrogate model [8] to predict the
function of sampling point. Finally, an additional sampling point is found by maximizing the Expected
Improvement (ET) value using the genetic algorithms (GA) [1]. The definition of the ETI at point (x) is
given by

1(x) = max{frey — (x), 0] (1)
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where ¢ stands for the probability density function representing uncertainty about y(x), which predicts
a function value from a surrogate model. Additional sampling points, based on the calculation, are
repeated until the objective function are converges.

High-fidelity data is the expensive data that is high accuracy but high time-consuming for calculation
and has a lower quantity than low-fidelity data. Low-fidelity data is the inexpensive data that has less
accuracy but more quantity and can be rapidly acquired from the calculation. Both fidelity data can
be combined to use the advantage of each for generating a surrogate model.

The fidelity data in this research is implemented by numerical method via Computational Fluid Dy-
namics (CFD) from for the high-fidelity data and panel method theory for the low-fidelity data.
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Figure 1 — Flowchart of Multi-Additional Sampling Multi-Fidelity EGO [2].

2.1.1 Low-fidelity data

Low-fidelity data in this study is Xfoil [3] software. As inexpensive data, it uses a high-order panel
method and a fully-coupled viscous/inviscid interaction method to evaluate drag, boundary layer tran-
sition, and separation. The viscous analysis of Xfoil can be used to predict lift coefficient () and
drag coefficient (Cy) [4]. The design variables from the design of experiment or LHS process are
used to generate the shape of the airfoil to calculate the aerodynamics value with Xfoil. The panel
quantity in this study is 300 panels with varying the angle of attack (AoA) between 0 to 15 degrees to
acquire the required aerodynamic data. The experiment data of NACA 0012 [10] is used to validate
the aerodynamic data accuracy and mesh independent of the computation.
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Figure 2 — Airfoil sample with panel setting for the Xfoil software.

2.1.2 High-fidelity data

High-fidelity data in this study is CFD FLUENT (ANSYS FLUENT) software with the viscous model
as the Spalart-Allmaras turbulence model [11] to obtain the aerodynamic force that acts on the airfoil
shape. C-type mesh is applied for the flow boundary with ten times larger than the chord length of
the airfoil and the mesh element quantity is approximately 540,000 elements. The angle of attack is
also varying between 0 to 15 degrees to acquire the required aerodynamic data.

Figure 3 — C-type mesh for CFD FLUENT.

Figure 4 — Airfoil with mesh element inside C-type mesh.
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2.1.3 Kriging method
An unknown function $(x) can be estimated by using a Kriging method [8] in the following equation:
F(x) = p(x) —e(x) (3)
where §(x) designated as a global model and €(x) as a local model. An equation u(x) is given by
1"R-IF
He) = prpeig @

where R denotes a matrix of the correlation between the sample points, and F denotes a vector
containing the evaluation data of each sampling point. The u is set to a constant value for the global
model, and (¢(x)) is the local model, that expressed as

e(x)=r(x) 'R (F-1)u (5)

where r(x) denotes a vector written in terms of x.r(x) denotes a vector of sampling points. The
correlation value of £(x) and &(x') is a distance function between x and x'. In the Kriging model, the
local derivation at an unknown point x is predicted via stochastic processes.
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Figure 5 — (a) Diagram of single computing EGO, (b) Diagram of parallel computing EGO [2].

2.1.4 Multiple Additional Sampling for Single-Objective Optimization

The EGO can achieve a single additional sample in each iteration but there is the limitation to the user
that using computational resources can only use for a single evaluation, and the initial sampling can
be created by parallel evaluation. The limitation continues during the additional sampling process and
computational resources cannot be used (see Figure [5(a)). Moreover, for maintenance the diversity
of additional samples in surrogate model’s improvement via EI maximization, there require several
iterations to achieve the additional sampling for optimization solving possible.

In this research, multi-additional sampling (MAs) for single-objective optimization is applied to solve
three airfoil design problems, the sub-iteration is added to the EGO process (see Figure [5[b)). An
acquired additional sample via iteration is added to update the surrogate model; by adopting the
predicted point of (x,$(x)) that represents a temporal function value. Then, the acquisition of one
more additional sample using EI maximization is done.

Figure 6| shows a schematic diagram of an additional sampling process with MAs. The initial process
starts with the acquisition of xg;mqx1 Via EI maximization on the Kriging model and evaluation of the
predicted value $,1 from xg;maxi- USING Xgrmari,Ja1 generates a temporary model. El maximizes
XErmax1 10 find another additional point as xgmax2 Ut x£7rmax1 Should not be greater than xg; max.
Subsequently, the precise value of y,1,v.,... can be obtained by calculation via parallel evaluation
for XEImax1,XEI,max2y - - - -

Finally, the value from additional sampling has to be put in the data set to improve the model. In sub-
iteration, there must be y(x) values whose prediction is done by the Kriging model. Therefore, multiple
additional samples are able to obtain rapidly. In the main iteration, the precise value for additional
samples can be calculated via parallel evaluation. Using the EGO method uses less design time than
the original iteration.
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Figure 6 — Flowchart of parallel computing Multi-Additional Sampling Multi-Fidelity EGO [2].

3. Airfoil design problem

In this research, the objective for airfoil design is to maximize the proportion of lift coefficient (C))
to drag coefficient (C4) at Reynolds number at 1,000,000 with NACA 4-digit airfoil design variable.
NACA 4-digit design variable range:

» Percent of maximum camber at 0% to 5% of chord length.

+ Percent of maximum camber position at 10% to 50% of chord length.
» Percent of maximum airfoil thickness at 5% to 15% of chord length.

* Operate at Reynolds number at 1,000,000

Objective: Maximize C/Cqy at C; = 0.5 The number of initial samplings is set to 10 and the number
of additional samplings is set to 10. The number of additional sampling in each sub-iterations is
set to 2, for example, two additional samples are acquired for evaluation in each main iteration.
For aerodynamic evaluation, numerical methods such as the Computational Fluid Dynamics (CFD)
method from CFD FLUENT as high-fidelity data and the higher panel method theory from Xfoil are
both applied for evaluation in the specified condition.
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4. Results and Discussion

4.1 Results

From the multi-additional sampling multi-fidelity EGO and aerodynamic evaluation, an acquired airfoil
high-fidelity data in each sampling number of airfoils is shown in Table[f] From this table, the optimum
design is found at sampling number 17 (the fourth iteration of optimization process) that can be
obtained the maximum C;/Cy4 =47.1985. Figure[8|represents comparison between additional sampling
from entire iterations and maximum C;/Cy of its initial sampling at sampling number 8 with a percent
of improvement maximum C;/Cyq compared with maximum C;/Cq of its initial sampling at sampling
number 8 is 2.08%. Figure [9|represents an example of initial sampling airfoil shape (sampling number
8) and optimized maximum C;/Cy airfoil shape (sampling number 17).

The result in term of NACA-4 digit design variables:

* Percent of maximum camber is 4.33% of chord length.

+ Percent of maximum camber position is 33.49% of chord length.

» Percent of maximum airfoil thickness is 5.08% of chord length.

The optimal airfoil shape can be written as NACA 4305 for sampling number 17.

Table 1 — C/Cy4 data for each airfoil sampling

Sampling Number | AoA (Degree) G Cq C/Cq

1 0.298949 0.5 0.012026 | 41.577152 | Initial Sampling
2 4.459174 0.5 0.013170 | 37.964314

3 1.138359 0.5 0.012355 | 40.468320

4 1.735795 0.5 0.010822 | 46.202022

5 2.320809 0.5 0.013073 | 38.245968

6 1.122159 0.5 0.011850 | 42.195507

7 1.137866 0.5 0.011045 | 45.269603

8 0.034318 0.5 0.010814 | 46.237073

9 0.570750 0.5 0.012301 | 40.648612

10 1.682119 0.5 0.011931 | 41.907643

11 0.682811 0.5 0.010815 | 46.231721 lteration 1
12 0.563810 0.5 0.010751 | 46.507499

13 0.399619 0.5 0.010873 | 45.987061 lteration 2
14 0.388202 0.5 0.010867 | 46.009433

15 0.663188 0.5 0.010639 | 46.998930 lteration 3
16 2.102273 0.5 0.010662 | 46.893715

17 0.553333 0.5 0.010594 | 47.198504 lteration 4
18 0.467619 0.5 0.010607 | 47.139892

19 0.915640 0.5 0.010650 | 46.947706 lteration 5
20 0.821632 0.5 0.010707 | 46.697346

The C/Cq4 results of the optimization process in Table [{|can be shown in the Figure[7]
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Figure 7 — C;/Cq4 convergence for all sampling.
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Figure 8 — C;/Cq4 in each additional sampling from 5 iterations compared with
the maximum C;/Cy of initial sampling (Number 8, Dashed line).
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Figure 9 — Airfoil shape comparing between initial sampling (Number 8, Dotted line)
and maximum C;/Cq sampling (Number 17, Solid line).

4.2 Discussion

According to the results from the optimization process, Table [1| demonstrates the results of Cj/Cqy
for all sampling. From the additional sampling number, 11 to 20 represent the optimal range C/Cy
is between 45.9871 to 47.1985. Figure [/| illustrates the C;/Cq convergence value for all sampling
in the optimization process. This result shows that the multi-additional sampling multi-fidelity EGO
is applicable to finding the optimal airfoil design. Figure [9] represents the optimal airfoil shape, the
result shows a comparison of the shape between initial sampling (Number 8) and additional sampling
(Number 17) is a slightly different shape.

5. Conclusion

This paper studied applying Efficient Global Optimization (EGO) with parallel computing multi-additional
sampling multi-fidelity for a single objective, this method can apply to finding the optimal NACA 4-digit
airfoil design at maximum C;/Cy4 at C; = 0.5 with operating at Reynolds number at 1,000,000.

The development of the proposed method was achieved by incorporating sub-iterations to obtain
multiple additional samples that can be used to improve the surrogate model.

The result in Figure [9] shows that the optimum shape design geometry is NACA 4305. The shape can
be decreased slightly from its initial sampling shape at number 8 and the maximum C/Cy is approxi-
mately 47.20 at an approximate 0.55 degree of angle of attack with a 2.08% improvement compared
with the maximum C;/Cy of initial samplings.
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