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Abstract

The time domain solution of a chaotic system governed by a set of nonlinear equations is computationally
expensive and ill suited for parametric searches. This work investigates the use of reduced order models
to distill, both from data and equations, an equivalent but more advantageous mathematical representation.
Two types of reduced order model are presented, data-driven, non-intrusive approaches and a model-derived,
intrusive alternative. Three test cases are used for assessing the predictive capability of the models: a) Lorenz
1963 model; b) Moehlis model; and c) Lorenz 1996 model. Various key performance indices are selected to
quantify the accuracy of the reduced order models, including over the short and long time scales. The small
size of the test cases, up to 220 states for Lorenz 1996 model, prevented us from executing a projection of
the reduced order models onto a smaller basis. Hence, the focus was on recovering the underlying governing
equations and on the reconstruction of the physical features. For each reduced order model, details concerning
the practical implementation and the model generation are also given.

Keywords: reduced-order modelling, machine learning, model-based method, system identification, non-
linear dynamical systems.

1. Introduction
Nonlinear dynamic phenomena are predominant across most aeronautical sciences, such as struc-
tural dynamics, unsteady flow structures or control systems. Nonlinear systems are typically difficult
to solve and frequently entail large computational resources to solve high-fidelity simulations, as is
the case with computational fluid-dynamics.
In a fast-moving world with high market demands, there is increasing urge for accelerating simulation
turnarounds to enable engineers rapid-decision making in industrial processes and higher quality
products. Hence there is an ever-growing interest in reduced order model (ROMs) to replace high-
fidelity, slow simulations.
Work on ROMs represent a well-known research field aimed at projecting the response of high-fidelity
models onto smaller mathematical spaces, allowing analysis of the system which is substantially
cheaper in computational terms and only marginally less accurate.
Multiple ROM approaches exist, depending on the type of application [1, 2, 3]. Traditionally, ROMs
may be classified in physics-derived or data-driven approaches, without being complementary. A
physics-derived framework transforms the equations governing a particular problem into a mathemat-
ical structure that is computationally less expensive to solve. By contrast, a data-driven framework
attempts to infer a mathematical representation from data (acquired through simulations or experi-
ments), often where the governing equations are unknown. Recent advances in machine learning,
particularly deep learning [4], are now at the forefront of the latter approach [5]. While the knowledge
of the governing equations traditionally results in more efficient models, data-driven techniques are
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more suited in experimental scenarios to investigate less characterised phenomena. However, their
applicability may overlap in simulation tasks, as well as hybrid approaches can be thought to boost
the modelling performance. As a result, we want to answer: what are the performance benefits and
detriments of each approach? Can we derive a set of recipes to help the engineering community
choose the best suited model for a given task?
In the present work, we propose novel ROMs belonging to the two mentioned frameworks and we
validate them in common complex nonlinear dynamical systems. We therefore aim to share the
experiences gained throughout the ROM generation process and in particular provide insight on their
suitability against the different tasks.
This paper continues with Section 2. to present the different ROMs developed, followed by a de-
scription of the underlying methodology in Section 3.and the selected validation cases in Section 4.
. Section 5.reports the results obtained with each ROM and finally, Section 6.provides crucial conclu-
sions extracted from our thorough investigation.

2. Reduced Order Models
In this Section, we introduce the ROM approaches we have developed for this study. We have chosen
two ROMs for the comparison: one is built solely using data; and one is obtained directly from the
governing equations after adequate assumptions are made.

2.1 Sparse System Identification
System identification is the approach to derive physical equations from gathered data. It is a central
task for scientists and engineers to derive governing equations from experimentation, where the
underlying physics are unknown or incomplete. Identification methods are more sophisticated than
classic regression techniques because the mathematical structure is discovered by the model itself,
rather than arbitrarily chosen beforehand. Such advantages, however, comes at the expense of a
larger computational burden. Thus, a balance between computing power and model complexity is
essential [6].
Recent advances in data-driven algorithms provide an excellent platform for complex identification
tasks. Herein, the idea is to construct a machine-learning algorithm which infers interpretable math-
ematical expressions that best fit the measured data. Furthermore, to alleviate the computational
burden, a plausible assumption is that most physics phenomena are described by compact expres-
sions. Compactness can be achieved by promoting sparsity amongst the term space. A model with
sparse mathematical form results in significant computational gains. The problem is that classic regu-
larisation techniques, such as the Lasso L1 [7, 8], are inadequate for identification purposes because
these tend to dampen the larger parameters, causing incorrect discovery and loss of physics repre-
sentation. A sparse machine-learning based identification method for non-linear dynamical systems
was presented by Brunton et al. [9, 10]. They developed an efficient technique but it does not scale
with dimensionality and is ill-suited to problems with multiple feasible solutions.
Herein, the first of the data-driven methods consists of a single-layer deep-learning framework, es-
pecially suited to high dimensionality and multiple solutions. Furthermore, we introduce a successful
sparsity technique: a threshold filter constraint is included during the optimisation, which allows the
optimiser to disable or enable each parameter at convenience.

2.2 Neural Networks for Spatio-Temporal Forecasting
A problem with the system identification approach is that it becomes impractical for systems of large
dimensionality, due to the large number of parameters to identify. This is the case for our third
validation problem, the Lorenz 1996 system. In such a scenario, it is more adequate to leverage more
sophisticated deep-learning techniques, i.e. neural networks, to generate a lower-order approximate
model. Neural networks are data-driven algorithms capable of predicting highly nonlinear systems at
large scale, such as fluid-flow analysis.
Although neural-networks are especially designed to reconstruct large systems, it is common in lit-
erature to validate the proposed architectures with validation cases such as the nonlinear systems
dealt in this paper, featuring a smaller-order form that replicate realistic flow phenomena. Zhang et
al. studied generalisation performance of two different fully-connected neural networks (FCNN) with
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small segments of the Lorenz solution [11]. Brajard et al. [12] proposed a convolutional neural net-
work (CNN) architecture for the prediction of the Lorenz 1996 system, featuring a bilinear layer to
include weighted quadratic terms and embedded in a data assimilation approach to account for noisy
and unevenly distributed data. Fukami et al. [13] proposed a system identification method to recon-
struct the Lorenz and Moehlis systems. Their method was subsequently embedded to a CNN-based
autoencoder to predict the unsteady wake of a two-dimensional cylinder.
For spatio-temporal forecasting problems, an adequate architecture is the convolutional-based long
short-term memory (Conv-LSTM). This is described in Section 3.2. The advantage of such architecture
lies on the deployment of convolutional operations, especially designed for spatial domains and the
time-series prediction of the long short-term memory (LSTM) recurrent approach. The Conv-LSTM
has successfully been adopted in other applications. For example, Mohan et al. [14] developed a
forecasting model based on such architecture for the prediction of 3D turbulence. Han et al. [15]
embedded a Conv-LSTM layer in a CNN-based autoencoder for the unsteady prediction of the wake
behind a 2D cylinder.
In the present study, we propose a Conv-LSTM based architecture for the forecasting of large-scale
nonlinear dynamical systems. This is the third case described in Section 4.3. To our knowledge, this
is the first time this architecture has been adopted to solve such a problem.

2.3 Intrusive Techniques
Intrusive techniques are ROM methodologies which involve manipulating the governing full order
equations into more compact and less computationally expensive systems. The approach is ad-
vantageous in that it produces a ROM which is guaranteed to be representative of the dynamics of
the original system. However, manipulating the governing equations is often a non-trivial task, and
furthermore, a closed access code will mean no ROM can be produced.
The intrusive technique used in this paper follows the approach in [1] which saw the formulation of a
systematic procedure able to produce linear and nonlinear reduced order models. This approach has
been used successfully to generate ROMs for flexible aircraft control design [16], and for gust load
analysis [17]. Here, the method is adapted to make use of automatic differentiation, which avoids the
round–off and truncation errors typical of finite–differencing and furthermore, enables generation of
the nonlinear terms such that their evaluation is parametric with respect to the system parameters.
The method works by projecting a Taylor expansion of the full order equations onto a reduced basis
of eigenvectors which are representative of the full-order dynamics. The method is referred to as the
Taylor-Projection Reduced Order Model (TPROM) from hereon. The workflow in Fig. 1 provides a
high-level overview of the TPROM methodology. It is important to stress that this high-level overview
does not describe many intricacies involved in each step.
The TPROM is advantageous as ROMs of an arbitrary order in the perturbation variables can be
generated by truncating the reduced basis up to a certain frequency content, in a similar manner
to what is commonly done in modal analysis of structures. The ability to generate a TPROM that
is parametric in one or more parameters is appealing as it provides a single model with the ability
to capture the effect of changes in system parameters at a substantially reduced cost. A further
advantage is that the approach does not require any data to be generated a–priori, bypassing the
enormous task to generate or collect a database for data-driven models. This second point also
means the method is not affected by noise, which any approach using a data-driven technique would
suffer from. However, it should be noted that the parameterisation as presented in this work assumes
a suitably rapid solution of the eigenvalue problem of the system Jacobian for any parameter change.
Furthermore, it assumes the rapid reevaluation of the nonlinear terms for any parameter change.
While the latter issue can be assisted through application of automatic differentiation, the former
issue is prohibitive for high–dimensional systems. These issues are discussed in due course.
The challenge of using this technique arises mostly in the integration with the full order model code.
Step 4.2 in Fig. 1 requires matrix-free finite differencing or automatic differentiation operations inte-
grated with the full order code which is non-trivial. Reference [16] describes the method with higher
order derivatives generated using matrix-free finite differencing. Here, these operations are replaced
with automatic differentiation, using the ADiGator MATLAB toolbox [18]. Similar toolboxes are avail-
able for a wide variety of languages. ADiGator also provides a convenient way to parameterise
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ROM terms through vectorised inputs to the derivative code.

Figure 1 – TPROM workflow for dynamical systems.

3. Methodology
This Section provides the methodology and implementation details for the ROMs used in this work.

3.1 Data-Driven Machine-Learning Identification Model
We now introduce a data-driven and machine-learning technique to identify the terms governing
a non-linear dynamical system, which we will denote as Machine-Learning System Identification
(MLSI). A dynamical system can be expressed in the form:

d
dt

x(t) = f(x(t)) (1)

where x∈Rn are the n-dimensional system states and f(x)∈Rn are the governing equations that
describe the physics system. The system is subject to initial conditions x(0) = x0. The derivative
d
dt x(t) can also be expressed as ẋ(t).
When f(x) is unknown, a data-driven tasks consists of finding an approximative functional f̂(x) from
a dataset containing discrete m samples of the system’s states and the corresponding derivatives,
D ={xk, ẋk |k = 1, ...,m}. The idea is to leverage machine learning [19] to infer f̂(x) which best maps
between the sampled inputs, xk, and the corresponding outputs, ẋk. Such mapping is achieved via
minimisation of a loss function L , for example, the mean of the squared euclidean error of all sampled
points [20]:

min L =
1
m

m

∑
k=1

||f̂(xk)− ẋk||22 (2)

At this point, particular consideration must be taken on the form that f̂(x) should take. Indeed, no
a-priori knowledge of the underlying law f(x) mandates infinite combinations of terms composing the
approximate expression, but this is computationally prohibitive. To limit model size, it is reasonable
to consider that many known dynamical systems are typically described by few components. This
crucial assumption is achieved by promoting sparsity within the basis functions of our algorithm.
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A function emanated from a machine-learning algorithm is typically composed by a chain of linear and
non-linear functions, whose depth depends on the complexity of the architecture chosen. However,
for the identification of simple dynamical systems, a FIR linear regression [21] may be adopted:

f̂(x(t)) = WT x(t)+b (3)

Where x(t) is the state of the variables at the time step t, W is the matrix of weights or parameters
which creates the linear mapping between the input variables and the output functions f̂(x(t)), and b
are the constant terms.
Non-linear behavior in the FIR algorithm is introduced via term augmentation of the states x. For
example, adopting polynomial or trigonometric expansions. In the three-dimensional space n=3 with
state variables {x,y,z}, the synthetic augmentation can yield the following basis functions:

x = [x, y, z, x2, y2, z2, xy, xz, yz, x3, . . . , x2y, . . . , xn, . . . , sin(x), cos(x), x2 sin(x) . . .]T (4)

The dimension of the regression expression is still considerably large. Therefore, to reduce the
identification burden, an arbitrary choice of the basis functions can be introduced. With such choice,
there is increasing risk the model may fail to extract the correct governing equations.
We now describe the process adopted in our MLSI, schematised in Figure 2 Panel (a). System iden-
tification is adequate for describing experimental data of an unknown phenomenon. In the present
work, the source of the training dataset is from time integrating the governing equations of the three
test cases. The states at each time step were fed as inputs to the model to predict the resulting
time derivatives. The computational graph adopted for the linear regression is shown in Panel (b) of
Fig. 2. The first-order gradient-based algorithm Adam [22] was chosen to minimise the Huber loss
function [20]. As a result, back-propagation was used to compute the gradients of the cost function
with respect to the learnable weights [4, 19]. The inputs were normalised to enhance the training.
The model weights were subject to a high-pass filter to set to zero the least contributing terms and
promote sparsity. The machine-learning system was implemented in TensorFlow/Keras [23, 24],
an optimised deep-learning library in Python code developed by Google.

3.2 Convolutional Long Short-Term Memory
For the prediction of large and nonlinear dynamical systems, such as the Lorenz 1996 system (test
case 3), a convolutional-based long short-term memory (Conv-LSTM) model is used [25]. Figure 3
illustrates the schematics of the Conv-LSTM model framework. This model was validated with the
multi-scale Lorenz 1996 test case. Panel (a) shows the time-marching scheme adopted. The idea
is to arrange the input as a sequence of the states at the current steps and a chosen number of
time delays n. The machine-learning based model finds the best functional to predict the value of the
states at the next time step. The output is then used to update the input sequence to execute the
following prediction and step in time.
In the current work, the model comprises a Conv-LSTM [25]. Convolutional neural networks are
designed to analyse evenly discretised spatial domains, where the state at a given location is only
influenced by neighboring points. On the other side, LSTM layers are tailored to time-evolved predic-
tions [26]. LSTM is an advanced recurrent neural network, designed to execute sequential predictions
based on selected past history of the response. A recurrent layer takes as inputs a sequence of data
ordered in time and two additional states, the hidden state carrying the information from the previous
timestamp (short-term memory) and a cell stat carrying long-term information. Additionally, the layer
incorporates two gates to select or discard the memory from those states [27]. LSTMs are widely
used for time-series because of alleviating the numerical instabilities typical in standard recurrent
networks.
A problem with the standard LSTM is that they adopt fully-connected operators. As a result, they
are impractical in large spatial domains. Therefore, the combined Conv-LSTM architectures have
become especially adequate for spatio-temporal predictions [15].
The large-scale ODE system of the Lorenz 1996 study case, can be conceived as a discretised one-
dimensional space. As a result, we adopted one-dimensional convolutional-based LSTM (Conv1D-
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(a) Data-driven identification workflow.

(b) Computational graph adopted in the
machine-learning-based identification

algorithm.

Figure 2 – Machine-Learning System Identification workflow of dynamical systems.

LSTM) layers. In vector (1D) form, the discrete convolution operation is defined as [4]

1D convolution : ( f ⋆w)i
def
= ∑

p
f (xi+p) wp (5)

where x ∈ Rd, f (xi) is the value of the inputs at the position xi, and w denotes the kernel function or
filter of weights of the chosen size. The formulation for the embedded Conv-LSTM layer is provided
in Appendix A and the reader is referred to the original paper [25], as well as the original paper for
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the standard LSTM [26].
The architecture adopted to model large spatio-temporal systems is illustrated in Panel (b) of Figure 3.
The model takes a sequence of states of a chosen number of contiguous time steps. The inputs
are standardised using the average over the whole dataset and then normalised with the standard
deviation. Furthermore, a periodic padding is added at the extremes of the first sequence fed to
the first Conv1D-LSTM layer. The discrete convolution operation implies a loss of spatial resolution,
depending on the size of the filter. To avoid this, input-data sequences are extended at the extremes,
operation known as padding. In the present work, we propose a bespoke periodic padding before
the first layer, consisting of padding the data from the opposite extreme. Sufficient padding is added
initially so no additional padding is required on the rest of the network layers so the output spatial
dimension is the same as the original. Schematic examples of a periodic padding and a convolution
operation Eq. (5) are illustrated in Panel (c) of the same Figure.
The core of the model architecture comprises Conv1D-LSTM layers of different number of channels
(filters) in each layer. The hyperbolic tangential operation is adopted as activation at the output of all
the layers except the last one. In the last layer, the sequence is reduced to a single time step. The
output represents the values of the states at the next time step.
In the present work, we used TensorFlow/Keras*. The Huber was adopted as loss function [20]
and the Adam algorithm [22], as the gradient-descent optimiser.

3.3 Taylor-Series Projected ROM
Here the methodology for the TPROM approach is introduced. The TPROM is able to generate
a ROM of any dynamical system taking the form of a time–invariant, multi–input and multi–output,
nonlinear dynamical system. This is written in state–space form as{

ẋ = f(x(t))
y = LT x(t) (6)

with initial condition x(0) = x0. Here, t is the time variable, x(t) ∈ Rn is a state vector, f : Rn → Rn

is the state evolution function, and y ∈ Rq is the output vector. The matrix L ∈ Rn×q relates the
measurement outputs to the input vector. The symbol n is the state–space dimension, and p and q
are the number of inputs and outputs, respectively. In most practical cases, it can be assumed that p
and q are much smaller than n.
It is assumed that the nonlinear residual f is smooth, i.e. C ∞, and has an equilibrium at xeq, i.e.
f(xeq) = 0. Without loss of generality, the equilibrium is taken to be 0.
The desired attributes of reduced–order modelling of the nonlinear dynamical system (6) include
replacing the large–scale system by a system of the same type but with a much smaller state–space
dimension such that it has an admissible error between the full–order model and the reduced–order
model. Furthermore, the reduced–order model should also preserve essential properties of the full–
order system. Such a reduced–order model would let designers efficiently analyse and synthesize
the dynamical behaviour of the original system within a tight design cycle. Specifically, given the
nonlinear dynamical system of Eq. (6), a reduced–order nonlinear system of the form{

ż = fm (z(t))
ỹ = LT

m z(t) (7)

is desired to be found, where z(t) ∈ C m is the state vector of the reduced–order model, Lm ∈ C m×q,
and fm : C m → C m is an approximation to the nonlinear state evolution function. The state–space
dimension m should generally be much smaller than the state–space dimension n of Eq. (6), i.e.
m ≪ n.
It is now shown how to construct a reduced–order model of the nonlinear system (6) in the time
domain for transient analysis.

*https://www.tensorflow.org/
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(a) Time-marching scheme for data-driven spatio-temporal simulations.

(b) Conv-LSTM based model architecture.

(c) Periodic padding and discrete convolution operations.

Figure 3 – Convolutional-based LSTM framework for the spatio-temporal prediction of large
dynamical systems.
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3.3.1 How to Obtain a Reduced Basis
The large–order system is projected onto a subspace formed by a small number m of eigenvectors of
the Jacobian matrix evaluated at the equilibrium point. Given a Jacobian matrix A1 ∈ Rn×n, suitable
basis vectors are obtained by solving the right and left eigenvalue problems, respectively

Aφr = λr φr, AT
1 ψr = λr ψr for r = 1, . . . , n (8)

The eigenvalues of A are the same as the eigenvalues of AT , whereas the eigenvectors of A are
different from the eigenvectors of AT . If all eigenvalues are distinct, the right and left eigenvectors
corresponding to different eigenvalues are biorthogonal (ψ̄T

r φs = 0 for all r ̸= s). It is suggested to
construct these eigenvectors to satisfy the following biorthogonality conditions (see Appendix B)

φ̄ T
r φr = 1

ψ̄T
r φr = 1

ψ̄T
r φ̄r = 0

for r = 1, . . . , n (9)

If these properties are satisfied, then it can be viewed that the projection of the Jacobian matrix on
the left and right eigenvectors yields the following relations

ψ̄
T
r Aφr = λr, ψ̄

T
r A φ̄r = 0 for r = 1, . . . , n (10)

A rational choice to extract a small number m of basis vectors is to retain only the slow modes since
they are likely to dominate the system dynamics, with the exception of unstable fast modes leading to
the instability of the system. The diagonal matrix of eigenvalues, and the right and left modal matrices
are written

diag(λ ) =

λ1
. . .

λm

 , Φ =

 | |
φ1 . . . φm

| |

 , Ψ =

 | |
ψ1 . . . ψm

| |

 (11)

The r–th column of the matrices Φ and Ψ contains the right and left eigenvector, respectively, asso-
ciated with the eigenvalue λr.
It is important to note that for a purely real eigenvalue and its corresponding eigenvectors, the
biorthogonality conditions cannot be met. This is since φ = φ̄ . This requires the eigenvectors to
instead be scaled according to

ψ̄
T
r φr =

1
2

(12)

which then leads to the relation

ψ̄
T
r Aφr =

λr

2
(13)

The left and right modal matrices contain the desired information about the dynamics of the system.
An approximation of the state vector x(t) can be considered with another state vector, constrained to
stay in the subspace spanned by the columns of Φ,

x ≈ Φz + Φ̄ z̄ (14)

for some z(t) ∈ C m. The complex conjugate of z is denoted by z̄. Substituting the transformation
of coordinates (14) into the nonlinear large–order system (6) yields an over–determined system of
equations with respect to the state vector z{

Φ ż + Φ̄ ˙̄z = f(z(t))
ỹ = LT

(
Φz + Φ̄ z̄

) (15)

After left–multiplying the first equation by Ψ
T , we have{

Ψ
T

Φ ż + Ψ
T

Φ̄ ˙̄z = Ψ
T f(z(t))

ỹ = LT
(
Φz + Φ̄ z̄

) (16)

9
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Then, recalling the biorthogonality conditions (9), an m–th reduced–order model of the nonlinear
system in Eq. (6) in the time domain is defined as{

ż = fm (z(t))
ỹ = LT 2 (ℜ(Φ) ℜ(z) − ℑ(Φ) ℑ(z)) (17)

where fm = Ψ
T f. The symbols ℜ(•) and ℑ(•) represent the real and imaginary parts, respectively.

3.3.2 How to Retain Nonlinearities
We discuss here an approach to create an approximation of the nonlinear state evolution function.
The approach supposes that Taylor’s series expansion of f(x) about the equilibrium point 0 is written

f(x) = Ax + B(x,x) + C(x, x, x) + . . . (18)

where A ∈ Rn×n is the Jacobian or the first derivative matrix of f, and B ∈ Rn and C ∈ Rn are,
respectively, the second and third order expansion terms. Using Einstein notation, one has

B(x,x) =
1
2!

∂ 2 f
∂ xr ∂ xs

∣∣∣∣
0

xr xs =
1
2!

∂
x
rsf|0 xr xs (19)

and

C(x,x,x) =
1
3!

∂ 3 f
∂ xr ∂ xs ∂ xt

∣∣∣∣
0

xr xs xt =
1
3!

∂
x
rstf|0 xr xs xt (20)

where ∂ x
rsf ∈ Rn×n×n is the Hessian or the second derivative of f, and ∂ x

rstf ∈ Rn×n×n×n is the third
order derivative of f. The approximation of the large–scale nonlinear system, which retains the original
size, is obtained by using the expansion of f{

ẋ = Ax + B(x,x) + C(x, x, x)
ỹ = LT x(t) (21)

The reduced–order model is obtained by substituting the expansion of Eq. (18) into Eq. (17). It
is assumed herein that the eigenvectors are scaled according to Eq. (9). It can be immediately
observed that a linear reduced–order model is obtained by using only the first term of the expansion,
A1 x. This term is left–multiplied by Ψ

T and will generate a diagonal matrix with elements equal to the
eigenvalues, diag(λ ) ∈ C m, yielding a linear reduced–order model of the form

ż = diag(λ )z (22)

In the following, two approaches for the derivation of the nonlinear terms in the reduced–order model
that arise from the second and third order expansion terms, A2 and A3, respectively are discussed.
The first approach involves obtaining the second and third derivatives of f with respect to the state
vector x. Once the derivatives ∂ x

rs f and ∂ x
rst f are extracted, the state vector x is replaced by z via the

transformation of coordinates. Considering that the r–th element of x

xr = φr,: z + φ̄r,: z̄ (23)

where φr,: is the r–th row of Φ, the second and third order expansion terms are of the form

B(z,z) =
1
2!

∂ 2 f
∂ xr ∂ xs

∣∣∣∣
0

(
φr,: z + φ̄r,: z̄

) (
φs,: z + φ̄s,: z̄

)
(24)

and

C(z,z,z) =
1
3!

∂ 3 f
∂ xr ∂ xs ∂ xt

∣∣∣∣
0

(
φr,: z + φ̄r,: z̄

) (
φs,: z + φ̄s,: z̄

) (
φt,: z + φ̄t,: z̄

)
(25)

respectively. One critical issue associated with this approach is the rapid growth of the dimension of
the higher order derivatives of f. For example, the dimension of the second derivative ∂ x

rs f is O
(
n3
)

and the dimension of the third derivative ∂ x
rst f is O

(
n4
)
. However, these derivatives are symmetric

10



COMPARING REDUCED ORDER MODEL FORMS FOR NONLINEAR DYNAMICAL SYSTEMS

due to the equality of mixed partials and generally extremely sparse, so one can exploit these facts
and produce a useful reduced–order model

ż = diag(λ )z + Ψ̄
T
(A2 (z, z) + A3 (z, z, z)) (26)

The second approach is intended to explicitly incorporate the higher order derivatives of f with respect
to the state vector z into the construction of a nonlinear reduced order model. The second order
expansion term is

Bz (z, z) =
1
2!

(
∂ 2 f

∂ zr ∂ zs

∣∣∣∣
0

zr zs +
∂ 2 f

∂ z̄r ∂ zs

∣∣∣∣
0

z̄r zs +
∂ 2 f

∂ zr ∂ z̄s

∣∣∣∣
0

zr z̄s +
∂ 2 f

∂ z̄r ∂ z̄s

∣∣∣∣
0

z̄r z̄s

)
(27)

and the third order expansion term is written

Cz (z, z, z) =
1
3!

(
∂ 3 f

∂ zr ∂ zs ∂ zt

∣∣∣∣
0

zr zs zt +
∂ 3 f

∂ zr ∂ zs ∂ z̄t

∣∣∣∣
0

zr zs z̄t +
∂ 3 f

∂ zr ∂ z̄s ∂ zt

∣∣∣∣
0

zr z̄s zt +
∂ 3 f

∂ z̄r ∂ zs ∂ zt

∣∣∣∣
0

z̄r zs zt +

∂ 3 f
∂ zr ∂ z̄s ∂ z̄t

∣∣∣∣
0

zr z̄s z̄t +
∂ 3 f

∂ z̄r ∂ z̄s ∂ zt

∣∣∣∣
0

z̄r z̄s zt +
∂ 3 f

∂ z̄r ∂ zs ∂ z̄t

∣∣∣∣
0

z̄r zs z̄t +
∂ 3 f

∂ z̄r ∂ z̄s ∂ z̄t

∣∣∣∣
0

z̄r z̄s z̄t

)
(28)

Then, a nonlinear reduced–order model is written in state–space form

ż = diag(λ )z + Ψ̄
T
(Bz (z, z) + Cz (z, z, z)) (29)

with initial condition z(0) = Ψ̄
T x0. An advantage of this approach is the reduced dimension of the

higher order derivatives of f. For example, ∂ z
rs f has dimension O

(
nm2

)
and ∂

z
rst f has dimension

O
(
nm3

)
which are significantly smaller than O

(
n3
)

and O
(
n4
)

for the second and third order deriva-
tives of f in x, respectively, if m ≪ n as assumed initially.

3.3.3 Implementation Challenges
Accurate approximations of the higher order derivatives of f that are included in the terms B and
C appearing in Eqs. (24) and (25), respectively (and in terms Bz and Cz, in Eqs. (27) and (28),
respectively) are needed.
Derivative approximation techniques fall into three categories: numerical approximation, symbolic
differentiation, and automatic differentiation. Numerical approximation techniques include the classi-
cal methods of finite–differencing (forward and central differencing) and the complex–step derivative
approximation. In the case of finite–differencing, the derivative is replaced by a computation where
the function is evaluated at two neighbouring values of the ordinate and the difference between these
function values is divided by the difference in the ordinate values. Unfortunately, finite–differencing
suffers from round–off and truncation errors, often with catastrophic cancellation of the numerator
of the approximation. The use of extended order arithmetic is an alternative that finds use only for
small–scale problems.
A second differentiation approach that is available as part of a more general computer algebra sys-
tem, is symbolic differentiation. Symbolic differentiation is performed using symbolic representations
of the actual quantities or variables being manipulated. Symbolic differentiation is most often imple-
mented by accumulating the function into a single expression and differentiating the expression using
defined rules of algebra and calculus. While symbolic differentiation is appealing, it can become
computationally difficult for very large problems due to the possible explosion in expression size that
can arise when computing the derivatives of a complicated function.
The third approach uses automatic differentiation to obtain machine precision accuracy derivatives
in a computationally efficient manner. Automatic differentiation exploits the fact that a computer code
that implements a general function ẏ = f(x) can be decomposed into a sequence of elementary
function operations. The derivative is then obtained by applying the standard differentiation rules
(e.g., product, quotient, and chain rules). Here the ADiGator MATLAB toolbox is used [18].
The numerical implementation of the nonlinear reduced–order model, Eq. (29), requires calculating
high order derivatives with respect to a complex variable. This is not a trivial task, but fortunately

11
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it may be carried out recursively by application of a fundamental relationship. To start a concise
notation is chosen, denoting the complex variable z ∈ C as

z = ℜ(z) + iℑ(z) = zRe + i zIm (30)

The complex derivatives of a real function, f : R → R, with respect to z may be written in the form:

∂ f
∂ z

=
1
2

(
∂ f

∂ zRe

∣∣∣∣
zIm

− i
∂ f

∂ zIm

∣∣∣∣
zRe

)
(31)

and
∂ f
∂ z̄

=
1
2

(
∂ f

∂ zRe

∣∣∣∣
zIm

+ i
∂ f

∂ zIm

∣∣∣∣
zRe

)
(32)

The calculation of any higher order derivative is facilitated by recursive application of Eqs. (31)
and (32). Hereafter, it is implicitly understood that the partial derivative is obtained keeping all other
variables constant. For example, second order derivatives with respect to z and z̄ are:

∂ 2 f
∂ z∂ z

=
1
4

(
∂ 2 f

∂ zRe ∂ zRe
− i

∂ 2 f
∂ zRe ∂ zIm

− i
∂ 2 f

∂ zIm ∂ zRe
− ∂ 2 f

∂ zIm ∂ zIm

)
(33)

∂ 2 f
∂ z∂ z̄

=
1
4

(
∂ 2 f

∂ zRe ∂ zRe
+ i

∂ 2 f
∂ zRe ∂ zIm

− i
∂ 2 f

∂ zIm ∂ zRe
+

∂ 2 f
∂ zIm ∂ zIm

)
(34)

∂ 2 f
∂ z̄∂ z

=
1
4

(
∂ 2 f

∂ zRe ∂ zRe
− i

∂ 2 f
∂ zRe ∂ zIm

+ i
∂ 2 f

∂ zIm ∂ zRe
+

∂ 2 f
∂ zIm ∂ zIm

)
(35)

∂ 2 f
∂ z̄∂ z̄

=
1
4

(
∂ 2 f

∂ zRe ∂ zRe
+ i

∂ 2 f
∂ zRe ∂ zIm

+ i
∂ 2 f

∂ zIm ∂ zRe
− ∂ 2 f

∂ zIm ∂ zIm

)
(36)

For brevity, the third order terms are left as an exercise for the reader.
There is a final sophistication to mention before deploying any automatic differentiation toolbox. One
observes that while the system dynamics f is defined for real variables (recall, for example, Eq. (6)),
the above derivatives are taken with respect to a complex variable, z. This situation can be dealt with
using the transformation of coordinates, Eq. (14). It is recommended to create a wrapper file for the
system dynamics, as illustrated in Appendix C for a simple dynamical system.
The higher order terms appearing in the nonlinear reduced–order model are formed by combinations
of simple derivatives. For example, the second order term can be expressed as

Bz =
∂ 2 f
∂ z2 z2 +

∂ 2 f
∂ z∂ z̄

z z̄ +
∂ 2 f
∂ z̄∂

z̄ z +
∂ 2 f
∂ z̄2 z̄2 (37)

An additional advantage of using the ADiGator automatic differentiation package is that ROMs can be
generated which are parametric with respect to the coefficients of the governing full order dynamical
equations. This can be achieved by passing the function coefficients as an auxiliary variable of
differentiation into the derivative generation code. This allows a single ROM to be generated which is
valid for any coefficient input. This however requires the eigenvalue problem of the Jacobian matrix
to be recomputed as the Jacobian will change based on any coefficients of the full–order equations.

4. Validation Cases
To validate the developed ROMs, complex non-linear dynamical systems have been carefully se-
lected, which emulate flow phenomena present in many fluid problems. Test cases in analytical form
were selected to facilitate the validation amongst the different ROMs. The conclusions drawn from
this study should be applicable to other less known systems.
This work sees the stated methods applied to three test cases:

• Lorenz 1963 model [28].

• Moehlis low–dimensional model for turbulent shear flows [29].

• Lorenz 1996 model [30].

12
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(a) ρ = 22.5. Stable case.
(b) The solution gradually converges to a single

attractor and eventually stops.

(c) ρ = 28. Chaotic case, widely studied in literature.
(d) The solution keeps on switching from one

attractor to the other endlessly.

Figure 4 – Lorenz 1963 model: in Panels (a) and (b), deterministic response; in Panels (c) and (d),
chaotic response. Right-hand side panels are colored by velocity magnitude.

4.1 Lorenz 1963 System
The Lorenz 1963 system was formulated by Edward Lorenz in 1963 [31]. The system takes the form
of three nonlinear ordinary differential equations (ODEs):

ẋ = σ (y− x)
ẏ = x(ρ − z)− y
ż = xy−β z

(38)

This system is particularly challenging since the solution changes radically depending on the coef-
ficients chosen [32, 33]. Figure 4 shows the Lorenz solution for two different ρ values in temporal
evolution (left column) and spatial coordinates (righ column). Indeed, the most interesting form takes
[σ =10, ρ =28, β =8/3] and initial conditions [x0,y0,z0]= [−8,8,27], shown in the bottom row. The so-
lution emulates the chaotic behavior of turbulent flows. Hence why it is widely studied for ROM
investigation [9, 11].
In the present work we extend the investigation to address the stable case ρ =22.5, first row in Fig. 4.
The verification on such contrasted behaviors but with similar governing parameters is the ideal sce-
nario to assess the robustness of the developed methods.

4.2 Low–dimensional model for turbulent shear flows
The low–dimensional model for turbulent shear flows formulated by Moehlis [29], henceforth referred
to as the Moehlis model, describes a flow with fluid between two free–slip walls experiencing a si-
nusoidal body force. The velocity field can be expressed as a superposition of temporal amplitude
coefficients with nine Fourier modes such that

u(x, t) =
9

∑
j=1

a j(t)u j(x) (39)
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where a j represents the j-th temporal amplitude coefficient and u j the j-th Fourier mode. The varia-
tion of the amplitude coefficients with respect to time can be determined using a series of nine ODEs
which are:

ȧ1 =
β 2

Re
− β 2

Re
a1 −

√
3
2

βγ

καβγ

a6a8 +

√
3
2

βγ

κβγ

a2a3, (40)

ȧ2 =−
(

4β 2

3
+ γ

2
)

a2

Re
+

5
√

2
3
√

3
γ2

καγ

a4a6 −
γ2

√
6καγ

a5a7

− αβγ√
6καγκαβγ

a5a8 −
√

3
2

βγ

κβγ

a1a3 −
√

3
2

βγ

κβγ

a3a9,

(41)

ȧ3 =− β 2 + γ2

Re
a3 +

2√
6

αβγ

καγκβγ

(a4a7 +a5a6)

+
β 2
(
3α2 + γ2

)
−3γ2

(
α2 + γ2

)
√

6καγκβγκαβγ

a4a8,

(42)

ȧ4 =− 3α2 +4β 2

3Re
a4 −

α√
6

a1a5 −
10

3
√

6
α2

καγ

a2a6

−
√

3
2

αβγ

καγκβγ

a3a7 −
√

3
2

α2β 2

καγκβγκαβγ

a3a8 −
α√

6
a5a9

(43)

ȧ5 =− α2 +β 2

Re
a5 +

α√
6

a1a4 +
α2

√
6καγ

a2a7

− αβγ√
6καγκαβγ

a2a8 +
α√

6
a4a9 +

2√
6

αβγ

καγκβγ

a3a6

(44)

ȧ6 =− 3α2 +4β 2 +3γ2

3Re
a6 +

α√
6

a1a7 +

√
3
2

βγ

καβγ

a1a8

+
10

3
√

6
α2 − γ2

καγ

a2a4 −2

√
2
3

αβγ

καγκβγ

a3a5 +
α√

6
a7a9

+

√
3
2

βγ

καβγ

a8a9

(45)

ȧ7 =− α2 +β 2 + γ2

Re
a7 −

α√
6
(a1a6 +a6a9)

+
1√
6

γ2 −α2

καγ

a2a5 +
1√
6

αβγ

καγκβγ

a3a4

(46)

ȧ8 =− α2 +β 2 + γ2

Re
a8 +

2√
6

αβγ

καγκαβγ

a2a5

+
γ2
(
3α2 −β 2 +3γ2

)
√

6καγκβγκαβγ

a3a4

(47)

ȧ9 =−9β 2

Re
a9 +

√
3
2

βγ

κβγ

a2a3 −
√

3
2

βγ

καβγ

a6a8 (48)

The constant terms are such that, καγ =
√

α2 + γ2, κβγ =
√

β 2 + γ2 and καβγ =
√

α2 +β 2 + γ2, where
α = 2π/Lx, β = π/2 and γ = 2π/Lz. The terms Lx and Lz denote the size of the domain, where
0 ≤ x ≤ Lx and 0 ≤ z ≤ Lz. Re is the Reynolds number. The reader is referred to [29] for the formulation
of the Fourier modes.
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Figure 5 – Representation of the multi-scale Lorenz 1996 system as two one-dimensional rings.

The solutions of the set of equations are dependent on the size of the domain and the Reynolds
number. Similarly to the Lorenz 1963 system, the Moehlis model can exhibit both chaotic and de-
terministic behaviour depending on the aforementioned parameters. Moehlis studies a system with
domain size Lx = 4π and Lz = 2π at Re = 400. This results in transient chaotic behaviour, where the
system has irregular, non–periodic oscillations that decay to a laminar steady state over time. The
parameters mentioned are used for the ROM investigation in this paper.

4.3 Lorenz 1996 system
In 1996, Lorenz developed a multi-scale ODE system to study forecasting [34]. It features a multi-
scale coupling of slow and fast variables similar to what is observed in weather and climate pheno-
mena [35]. It is also being used to study chaotic behaviors as it replicates turbulent flow. In its
original form, it consists of two-tier equations, comprising a coupled set of K low time-scale variables
xk, for k = 1,2, . . . , K, each of which is also coupled to J fast variables y j,k, for j = 1,2, . . . , J, with the
governing equations [30]:{

ẋk = − xk−1 (xk−2 − xk+1) − xk + f − hc
b ∑

J
j=1 y j,k

ẏ j,k = − by j+1,k (y j+2,k − y j−1,k) − y j,k + h
j xk

(49)

where h determines the strength of the coupling between the two systems, b controls the amplitude of
the nonlinear interactions, c controls the damping speed of the fast variables relative to the slow and
f is a force term that influences the chaoticity of the response. These parameters are fine tuned so
that the slow variables oscillate with large amplitude and the fast variables contain a high-frequency
range with low amplitude.
From the equations, we observe that the system describes a set of states that evolve in a circle.
A visual representation of the multi-scale coupling of the system is provided in Figure 5. Each tier
of variables are arranged in separate one-dimensional rings. The arrows indicate the directional
influence among the variables. Note how on the outer ring, formed by the small-scale variables, only
a small subset influences the corresponding large-scale variable.
From such interaction we realise that each subset of low-scale variables just acts to add high-
frequency to the respective primary state. As a result, Lorenz 1996 can be seen as a dynamical
system discretised in the one-dimensional space, xk(t). This motivates the use of the data-driven
Conv-LSTM model in a spatio-temporal prediction scheme, described in Section 3.2.
To our knowledge, this technique is unique in the prediction of this study case, even though this
large-order system is widely used in literature to validate new data-driven approaches. For example,
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Chattopadhyay et al. [36] proposed a reservoir-computing echo stat network and compared it to a
standard neural network and a standard LSTM model. However, they used a disproportionate dataset
size of a hundred million samples to generate their models. Their work expanded from the paper by
Dueben et al. [37], which investigated local and global neural-network based models. Last, Brajard
et al. [12] and Pawar et al. [38] used this multi-scale system to validate their respective LSTM-based
models embedded in a data-assimilation scheme.
In the present work, we opted for K=20 slow states and J=10 fast states. The coupling parameters
were set to h=1, the force term F=10 and the remaining coefficients were chosen as b=c=10. This
parameter choice was arbitrary but it follows general practice in literature [39, 35, 36].
At this point, we reflect on the number of parameters and model size involved with the data-driven
identification method proposed in Section 3.1for each validation case. In Table 1, we report the num-
ber of ODE coefficients for the first two test cases and the total number of parameters involved in
their identification using a second-order polynomial basis function. The original Lorenz 1963 system
comprises just 3 equations with 3 coefficients each, except the last one. A 2nd-order identification
comprises 10 parameters per equation. The 9-equation system proposed by Moehlis takes an aver-
age of 5 coefficients and 55 candidate parameters to include in the identification per equation. Last,
the chosen Lorenz 1996 system of 20 fast and 10 slow modes, results in 11 equations per large-scale
state, with 54 ODE coefficients and 1,044 model parameters per state. Furthermore, the sparsity ra-
tio (ratio between the two values) becomes worse with the system size, which adds further difficulty
for the identification approach.

Table 1 – Number of coefficients involved in each validation case for the identification method to find,
considering just a second-order polynomial from.

Case States ODE coefficients SI Parameters Sparsity Ratio
Lorenz 3 7 30 0.233
Moehlis 9 44 495 0.089
Lorenz’96 220 1080 20880 0.045

We conclude that for a single-scale system of n states, the number of parameters involved in a
second-order identification grows to the order of O(∼ n (n+2)(n+1)

2 ). The number of parameters to
consider on the Lorenz 1996 system is disproportioned, even if constrained to a quadratic basis
function. Consequently, a complete identification method, such as the first of the techniques adopted
here (Section 3.1), becomes computationally impractical. This justifies the adoption of a data-driven
regression approach instead, i.e. the convolutional-based LSTM method in Section 3.2.
In addition, for the data-driven prediction, the order (number of states) of the system is reduced by
excluding the high-frequency variables y j,k and only considering the slow xk. Such strategy is also
motivated by the fact that fast variables are typically not observable and only the low-frequency infor-
mation is available from the gathered data. As such, this strategy represents a crucial dimensionality
reduction of the system. More details are provided in Section 5.3.1.

5. Results
This section presents the results obtained from the set of ROMs built for this work, as discussed in
Sections 2.and 3..
The underlying idea is to cross-check the ability of each framework to recover the basic physics of
complex nonlinear systems. We will address the following questions: a) when will each ROM depart
from the analytical solution? b) what algorithm provides better computational advantage? c) is the
model easy to implement and/or generate? For an exhaustive comparison amongst the different
frameworks, we propose the following performance indicators:

• Computational cost to generate the model.

• Amount of high-fidelity data required.

• Ability to reconstruct the real physics.
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(a) Discovered coefficients for the chaotic Lorenz case. The actual equations are on the left block.

(b) Discovered coefficients for the deterministic Lorenz case. The actual equations are on the left block.

Figure 6 – System identification results for the two Lorenz study cases.

• Implementation complexity.

• Computing time.

• ROM ability to predict for cases other than those it was generated from.

The results for each test-case and corresponding discussion are now presented.

5.1 Lorenz 1963 Model
Results for the Lorenz 1963 system are based on two forms of the governing equations, these being
the chaotic and deterministic solutions. As seen in Section 4.1, this change in behaviour comes from
the variation of the parameter ρ.

5.1.1 Machine-Learning System Identification
First, we perform the system identification using our MLSI method, which outputs the coefficients of
the mathematical expression for each state. The benchmark data was obtained via time-integration of
the Lorenz equations (38) using a 4th-order Runge-Kutta scheme [40] with a time step of dt=0.001 s
and a total simulation time of 40 s. Therefore, the dataset consists of 40,000 samples.
Figure 6 shows how the equation terms were predicted for each Lorenz form, just using the data from
the real response, without any knowledge of the underlying equations. As can be seen, the MLSI
model correctly found the coefficients of the equations in both cases, albeit with a rounding error. As
a result, our proposed MLSI method proved successful for the discovery of this nonlinear dynamical
system.
It was found that that the deterministic case proved more complicated to predict, evidenced by the
slightly worse decimal precision on the identified coefficients. The reason for the case with ρ =28.0
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Figure 7 – High–level overview of the TPROM approach applied to the Lorenz 1963 system to
generate ROMs about different equilibrium points.

being easier to model is likely due to the large variability of the data, a key aspect to enhanced
machine-learning performance. By contrast, the case with ρ =22.5 resembles a damped harmonic
oscillator. This type of signal can be well represented with a simpler mathematical formulation, albeit
it derives from the Lorenz 1963 model. Despite this, the proposed method successfully found the
correct forms.

5.1.2 Taylor-Series Projected ROM
Since the Lorenz 1963 system is already low-dimensional, the application of the TPROM is to demon-
strate the full order dynamics can be recovered providing that all of the system’s modes are retained.
A high–level overview showing the application of the TPROM to the Lorenz 1963 system is given
in Figure 7. The reader is reminded that the TPROM approach is based on the full–order system
being projected onto a subspace of eigenvectors of the Jacobian matrix evaluated at an equilibrium
point. The Lorenz 1963 system has three equilibrium points, as noted in Figure 7. These exist
at O = (0,0,0) (black circle) and at C± = (±

√
β (ρ −1),±

√
β (ρ −1),ρ − 1) (red triangle and green

square). To demonstrate the TPROM method recovers the correct dynamical behaviour irrespective
of the chosen equilibrium point, two TPROMs are generated, one about O and the other about C+.
It is worth noting the difference in the eigenvalue composition of the equilibrium points. At O the
eigenvalues are purely real while at C+ there is a single purely real eigenvalue and a complex conju-
gate pair. The result of this is shown in Figure 7 with both TPROMs recovering the same dynamical
properties.

5.1.3 Comparison
A comparison of the time-integrated responses from both the MLSI and TPROM methods against the
full-order solution can be seen in Figure 8, for the two Lorenz cases respectively. As can be seen in
Panel (a), the solutions bifurcate after a certain time step, with the MLSI response diverging earlier
than the TPROM solution. This is caused by numerical error propagation in a system chaotically
evolving around two attractors. A comparison of the propagated error is shown in Panel (b), which is
significantly lower on the TPROM up to where both methods bifurcate. The TPROM method results
in a more accurate model thanks to addressing the reconstruction from the full-order equations. A
similar result was obtained for the deterministic case shown in Panel (c). In this case, however, both
methods matched the full-order response remarkably well. MLSI consistently showed larger error as
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(a) System state response for the chaotic case. (b) Normalised error from each ROM result
against the ground truth, chaotic case.

(c) System state response for the deterministic
case.

(d) Normalised error from each ROM result
against the ground truth, deterministic case.

Figure 8 – Comparison of MLSI (blue) and TPROM (green) solutions against the ground truth (red)
for the two Lorenz 1963 forms.

seen in Panel (d). This method is inevitably more liable to suffer from numerical error as it constructs
the model from data, without any knowledge of the full-order representation.
As noted in Section 3.3, the TPROM approach can be used to generate parametric ROMs. Here the
model can be parameterised with respect to the Lorenz coefficients, σ , ρ and β . This results in a
single TPROM generation that can be used to capture both the chaotic and deterministic regimes of
the Lorenz 1963 system. The TPROM results in Figure 8 representing the chaotic and deterministic
dynamics were formed using a single TPROM generation.

5.2 Low–dimensional turbulent shear flow results
The methods are here applied to the time evolution of the Moehlis model. The velocity field is reco-
vered by multiplication of the coefficient with the corresponding mode. For each ROM, the process of
generation and application follows what was previously presented for the Lorenz 1963 system.
To obtain the ground-truth data and generate the system identification, the Moehlis equations (40)
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Table 2 – Number of coefficients involved in each validation case for the identification method to find,
considering just a second-order polynomial from.

Case Model Parameters Training [CPU-h]
Lorenz ρ =28.0 30 0.35
Lorenz ρ =22.5 30 0.45
Moehlis 495 3.20

to (48) were integrated with a 4th-order Runge-Kutta scheme with a time step dt = 0.1 s for a total
simulation of 1000 s. The dataset contains 10,000 samples.

5.2.1 Machine-Learning System Identification
The number of parameters involved in the 2nd-order MLSI of this system is 495, as we reported in
Table 1. We now report in Table 2 the computational cost to identify the model, compared to the
cost for the Lorenz 1963 model. This estimation is not straightforward as it comprises combined
CPU and GPU usage. Regarding the Lorenz 1963 system, we found that the chaotic case could be
correctly identified with a shorter dataset. The reason is because the data variability was already
contained from the initial time steps. By contrast, a longer dataset was required for the deterministic
case to include the convergence towards the equilibrium in the training data. This explains why the
CPU hours required to generate the chaotic Lorenz is lower. In addition, the cost to identify the
Moehlis system is ∼8 times larger. It appears that with increasing dimension of the model to identify,
the MLSI loses attractiveness due to the higher identification costs. This justifies the switch to the
second data-driven method (from Section 3.2) for the last validation case.

5.2.2 Taylor-Series Projected ROM
With respect to the TPROM method, an equilibrium point is required about which the system Jacobian
is formed. This equilibrium point is taken as a1 = 1 and a2 = a3 = ...a9 = 0 which corresponds to
the laminar state of the system and is linearly stable for all values of Re. The generation of the
TPROM nonlinear terms are also parameterised for the domain of the system, Lx and Lz, the system
Reynolds number, Re, and the reduced basis. The strength of this parameterisation is that with the
single generation, the TPROM nonlinear terms can be evaluated for varying domain sizes and varying
values of Re at a significantly smaller cost than would otherwise be needed to regenerate the term.
Likewise this parameterisation captures the correct dynamics of the turbulent and laminar states of
the system. This has value for implementation with significantly larger systems, in CFD for example,
where it may otherwise be necessary to generate many ROMs and interpolate between them.

5.2.3 Comparison
The results in Figures 9 and 10 have been generated using domain size Lx = 4π, Lz = 2π and Re =
400. An initial condition a0 = [1.0,0.07066,−0.07076,0.0,0.0,0.0,0.0,0.0,0.0], with a perturbation of
magnitude 1.e− 6 to a4 is used, which is a similar initial condition to that used in [13]. From these
results it is clear that both the MLSI and TPROM approaches are equally successful in reconstructing
the dynamics of the system. Both methods correctly capture the transient chaotic behaviour of the
full order model, where the system exhibits non-periodic oscillations which then appear to decay into
a laminar state. According to 10, both methods have low errors throughout the period of integration,
though the TPROM maintains a consistently lower error. It is worth noting that the error is bounded
for the entire duration of the analysis, indicating the good ability of the ROMs over long periods of
time. As the system decays into the laminar state it is expected that these errors will settle.
Figure 11 demonstrates the parametric capability of the TPROM applied to the Moehlis model. Using
a single TPROM generation, Panel (a) shows the flow field of the FOM and TPROM at 400 seconds
for Lx = 1.7π, Lz = 1.2π and Re = 400, and Panel (b) the flow fields at 400 seconds for Lx = 6π, Lz = 4π

and Re = 300. In both cases it can be seen that the mean velocity profiles (upper panel) of the FOM
and TPROM are identical and that the flow–fields, downstream vortices (central panel) and midplane
flow (lower panel), are likewise identical.
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Figure 9 – Comparison of the prediction from the system identification (dashed blue) and the
Taylor-projection ROM (dot-dashed green) against the true solution (solid red) of the Moehlis

system.

5.3 Lorenz 1996 Model
The Lorenz 1996 test case is a system of larger dimension than those previously discussed. The test
case consists of 20 large–scale states, with 10 fast states for each large–scale state. This results in
a system of dimension 220.
As in the previous cases, the true data is generated via time-integration with a 4th-order Runge-Kutta
solver, using a time step of dt = 0.001 time units for a total simulation time of 100 units. As a result, the
total dataset size is of 100,000 samples. This is three orders of magnitude smaller than the dataset
used in [36] for their data-driven study of the same system.

5.3.1 Convolutional Long Short-Term Memory Model
In this section we provide the challenges addressed with the data-driven prediction of the Lorenz 1996
system as well as details on the final architecture and hyperparameters adopted for the Conv-LSTM
neural network.
As part of the challenges, we reflect on the strategy to consider only the large-scale states xk on the
prediction. Despite each state being influenced by their respective subset of fast states y j,k, Equa-
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Figure 10 – Normalised error from the two models on the Moehlis system. Errors taken from the
results illustrated in Fig. 9.

tion (49), the latter are typically difficult to measure because of their reduced scale and higher fre-
quency content. By excluding the fast variables from the prediction, the dynamical system effectively
undergoes a modal truncation. Indeed, the Lorenz formulation in two tiers allows for a dimensionality
reduction of the system without having to resort to classical compression techniques, such as the
proper orthogonal decomposition [41] or the autoencoder [42].
In Appendix D we provide a summary of the sensitivity study to fine tune the neural network. Following
this study, the final model configuration chosen is reported in Table 3, based on the architecture from
Figure 3. The dimension column refers to the tensor size at the output of the corresponding layer.
The tensor dimension is arranged in (m samples × n time delays × k spatial dimension × c channels).
The periodic padding is called at the beginning of the network, with the adeuate size so no additional
padding is necessary through the remaining of the network. Three Conv1D-LSTM layers were chosen
as they were found sufficient to correctly capture the dynamics of the system. A convolutional kernel
(or filter) of size 5 was chosen for all three layers. The first two layers were assigned to 35 filters
(channels). In the last layer, the filters and the time sequence are reduced to a single output of the
same spatial dimension as the input. This amounts to a model size of 75,204 trainable weights, as
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(a) Lx = 1.7π, Lz = 1.2π and Re = 400 at 400 seconds.

(b) Lx = 6π, Lz = 4π and Re = 300 at 400 seconds.

Figure 11 – FOM (left) and TPROM (right) flow field comparison of the Moehlis low-order turbulent
shear flow system. Upper, central and lower plots in each panel represent mean velocity profile,

downstream vortices and midplane flow, respectively.
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reported in Table 4. In this table we also report crucial hyperparameters that complete the whole
machine-learning framework.

Layer Dimension Kernel Channels Padding
Input m×3×20×1
Padding m×3×32×1 Periodic
Conv1D-LSTM 1 m×3×28×35 5 35 −
Tanh
Conv1D-LSTM 2 m×3×24×35 5 35 −
Tanh
Conv1D-LSTM 3 m×1×20×1 5 1 −
Output m×20

Table 3 – Layer information of the final Conv-LSTM model. Refer to Fig. 3 for the diagram of this NN
architecture.

Parameter Value
Trainable parameters 75,204
Sequence time steps n 3
Simulation dt 0.005
Dataset samples 20,000
Training set (70%) 14,000
Batch size 1,000
Training epochs 250
Loss function Huber
Optimiser Adam
Learning rate 0.0025

Table 4 – Hyperparameter choice of the definitive Conv-LSTM model.

In this table we also report crucial hyperparameters that complete the whole machine-learning frame-
work. The time sequence for the LSTM operations was chosen as n=3, which means that the network
predicts the next state xk(t + dt) from the previous three steps. In some tasks, this could be incon-
venient because in a time-marching simulation, n time steps are required as initial conditions, rather
than the usual single condition.
The simulation step was coarsened to dt =0.005 time units as it was found sufficient to capture the
dynamics and boosted both training (thanks to a smaller dataset) and simulation speeds. Morever,
from the resulting dataset size of 20,000 time-steps, 70% were used for the training. Last, we chose
the Huber loss function [20] for the minimisation problem, although no significant difference was
observed when comparing to the mean-squared error function. See Appendix D.

5.3.2 Taylor-Series Projected ROM
Regarding the TPROM method, the exact same process can be applied as that used for the smaller
dimension systems. More specifically, the definition of the system equilibrium point and then, the
generation of the TPROM about this point. A further intricacy is the introduction of the constant forc-
ing term, F , as seen in Eq. 49. This acts as a control parameter for the system. For the Lorenz 1996
parameters given, the system can be defined about the equilibrium where F = 10. To demonstrate
the TPROMs ability to function with control parameters, the equilibrium point has been instead de-
fined about F = −1, and then, a control perturbation dF = 11 is added and maintained for the time
integration. This results in the expected dynamical behaviour.
The TPROM now presented is generated without modal truncation. This has resulted in an exact
reconstruction of the system and its dynamics. Differences in the integrated solution over time, as
seen in Figure 12c, are due to differences in the way the TPROM code is assembled compared to the
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original FOM code. For highly coupled and chaotic systems, such as the Lorenz 1996 system, these
differences are enough to cause eventual divergence from the FOM in the time integrated solution,
though it is stressed that the dynamical behaviour remains accurate. Not performing modal trunca-
tion has however created a system of impractical size and dimension. The non–truncated TPROM
matrices are dense and contain a total of nearly 13,000,000 elements. This results in substantial com-
putational cost when performing time integration. For demonstrative purposes a truncated TPROM is
generated. In this case, the truncation is performed by removing the 70 fastest modes of the system,
thus using only 51 of the original system’s 121 unique modes. This truncated TPROM is 18% of the
size of the non–truncated TPROM and contains only 2,300,000 elements. The size and performance
metrics of the TPROM are reported in more detail in Table 6.

5.3.3 Comparison
The results are presented for the Conv–LSTM (Section 3.2) and TPROM (Section 3.3) approaches.
Figure 12 illustrates the results of the Lorenz 1996 in spatio-temporal evolution. Panel (a) shows
the true solution; Panel (b) and (c) the results from the Conv-LSTM model and the non–truncated
TPROM, respectively. With the data-driven model, Panel (b), the solution remains very accurate
up to t = 1 s. After that, the solutions differ but the dynamics are well captured nonetheless. It is
important to remember that the data-driven model was generated without using the the small-scale
variables y j,k and only considering the large scale states xk, effectively undergoing a modal reduction.
This is an exemplary situation because the variables y j,k influence the large-scale variables but are
unmeasurable from the data. On the other hand, it is observed that the TPROM, Panel (c), produces
a result accurate to the true solution for a longer period of time, up to around t = 2 s. After that,
differences appear due to the chaotic nature of the system. A further observation is that for the
TPROM, error appears to propagate from the lower system states to the higher system states over
time, with visible errors appearing at t=2 s for the lowest index states and t=4 s for the highest index
states.

5.3.4 Statistical and Performance Analysis
This section presents a comparison of the statistical and performance metrics of the TPROM and
Conv–LSTM methods applied to the Lorenz 1996 system. Figure 13 shows the probability density
functions (PDFs) of the time integrated solutions of the various model types. It can be seen that the
PDFs of the Conv–LSTM and non–truncated TPROM closely match the PDF of the true solution.
The truncated TPROM however has a narrower PDF with two distinct peaks forming. These peaks
occur since the truncated TPROM has resulted in periodic rather than chaotic dynamics. The peaks
indicate the maxima and minima of the periodic oscillations.
Table 5 provides further statistical measures of the system. Here it can be observed that the statistical
metrics of the Conv–LSTM and non–truncated TPROM are close to those of the true solution, which
indicates their dynamical properties are correct. The variance of the truncated TPROM is however
much smaller than the variances of the true solution and other ROM methods. As identified from
the PDF, this is due to the truncated TPROM exhibiting different dynamical behaviour and having a
tighter grouping of data points.
To complete the analysis of the different modelling approaches, we provide a summary of computing
costs involved. The essential costs considered here are the computing burden to generate (or train)
the models, the cost to complete the time-marching simulation of t =20 time units and the storage
memory requirements. Reporting CPU-hour requirements to train the neural network is non triv-
ial because TensorFlow performs optimised management of simultaneous CPU and GPU usage.
Nevertheless, we found that the simulation cost is significantly lower with the data-driven than with the
intrusive approaches. This advantage is at the expense of loss of instantaneous accuracy, despite
the statistics being well captured. A noteworthy point is the generation-cost improvement against the
identification approach used in the previous cases, which was reported in Table 2, especially as we
are now dealing with a system an order of magnitude larger.
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(a) True solution of the Lorenz 1996.

(b) Prediction and error from the data-driven Conv-LSTM model. As a
reminder, only the large-scale variables xk are involved. The fast variables

y j,k are excluded as part of the model reduction.

(c) Prediction and error from the TPROM.

Figure 12 – Spatio-temporal comparison of the two ROMs against the true Lorenz 1996 solution.
Error denotes the delta between prediction and the ground truth.

26



COMPARING REDUCED ORDER MODEL FORMS FOR NONLINEAR DYNAMICAL SYSTEMS

Figure 13 – Probability density functions of the integrated solutions of the various ROM types of true
solution.

Table 5 – Performance analysis against the benchmark solution for the various reduced order models.

Model Mean Variance Skewness Kurtosis
True Solution 2.66 13.48 -0.01 2.35
Conv-LSTM 2.79 15.13 -0.05 2.49
TPROM: Non–truncated 2.81 14.03 -0.03 2.49
TPROM: Truncated 2.54 8.79 -0.05 2.58

6. Conclusions
This paper presents three novel reduced-order model techniques based on distinct methods. One
method is a data-driven identification which reduces the model order with a fully-integrated spar-
sity promotion technique. A second method is a data-driven regression especially suited for spatio-
temporal prediction of large systems. Further model reduction is achieved by involving only the large-
scale states in the prediction. The third technique is a model-derived method adopting a reduced-
basis Taylor expansion of the full-order equations leveraging on auto-differentiation. This model was
also created with nonlinear terms that are parametric with respect to the system parameters and
basis. The extent to which the technique is fully parametric however is limited by the speed that the
eigenvalue problem of the system Jacobian can be solved. This is as the Jacobian changes with
varying system parameters. For the system sizes considered here, the speed at which the eigen-
value problem can be solved is in the order of milliseconds for a standard desktop computer. For
much larger systems the solution time may quickly become prohibitive for example where real–time
parameter variation is necessary.
The reduced order models were tested on three systems of increasing complexity and presenting a
chaotic nature. The test cases were the Lorenz 1963 model, a low–dimensional model for turbulent
shear flows, and the Lorenz 1996 model. A set of key performance indices were used to quantify the
accuracy and robustness of the reduced order models. In this work, the focus was on distilling the
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Table 6 – Computing cost analysis for the various reduced order models.

Generation Cost Simulation Cost Model Size
Model [CPU-h] [CPU-h] [MB]
Conv-LSTM (GPU) 1.00 0.81 1.2
TPROM: Non–truncated 0.89 9.89 200.0
TPROM: Truncated 0.21 2.00 89.0

equations governing the test cases, which are of relatively small size.
We accomplished the task related to assessing the predictive capability of data-driven and physics-
derived models. It was found that both approaches performed well in the short and long time scales
compared to the ground truth. It is worth noting that each approach has disadvantages, notably: for
the data-driven methods, the cost to generate a sufficient and dynamically–rich training dataset; and
for the physics-derived model, the loss of sparsity of the operators in the projected space. We will
consider next test cases of larger size that require reduction onto a smaller basis to gain a deeper
understanding of the advantages and disadvantages of the two approaches.
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Appendices

A Convolutional Long Short-Term Memory Formulation
In this Appendix we report the formulation for the Convolutional LSTM operation. This is extracted
from the original paper by Shi et al. [25].
LSTM has become the state-of-the-art recurrent-neural-network (RNN) approach for prediction of
sequential data such as time series [26]. RNNs are designed to embed past-history information (carry
memory over) to the next prediction. A well known problem of standard RNN is the numerical instabi-
lity due to vanishing gradients for long-sequence predictions. LSTM solves this issue by incorporating
two states: a hidden state Ht , which corresponding to the short-term memory or the output from the
previous time step; and a cell state Ct , carrying over the long-term memory. The philosophy behind
the LSTM is to introduce three weighted gates: the input/update gate it , the forget gate ft and the
output gate ot . In brief, the forget gate decides whether to keep the information from the previous
timestamps in the longer term†. The input gate is used to weight the information coming from the
input. Last, the output gate filters the information to output.
In the standard LSTM formulation, all the gates and states calculations involve weighted fully-connected
operators. While this has proven very powerful for temporal predictions, the standard fully-connected
layers have the known problem of redundancy and scalability in spatial domains. To this aim, the
Convolutional-based LSTM introduces a variation of the LSTM adapted to spatial data. The idea is
to replace the fully-connected operators for discrete convolutions, Equation (5).
As a result, the Convolutional-LSTM operator is defined as:

it = σ (Wxi ⋆Xt +Whi ⋆Ht−1 +Wci ◦Ct−1 +bi)

ft = σ
(
Wx f ⋆Xt +Wh f ⋆Ht−1 +Wc f ◦Ct−1 +b f

)
Ct = ft ◦Ct−1 + it ◦ tanh(Wxc ⋆Xt +Whc ⋆Ht−1 +bc)

ot = σ (Wxo ⋆Xt +Who ⋆Ht−1 +Wco ◦Ct +bo)

Ht = ot ◦ tanh(Ct)

(50)

The various W represent the convolutional filters, b are learnable constant terms, ⋆ denotes the
convolution operator Eq. (5), ◦ is the Hadamart (element-wise) product and σ(x)= 1

1+e−x is the sigmoid
function. Subscripts t and t−1 correspond to the current and previous time steps.
To understand better the formulation, Figure 14 provides an intuitive diagram of the complete opera-
tions involved in the convolutional-based LSTM unit.

Figure 14 – Diagram of the Convolutional-LSTM operator.

†https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm/
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B TPROM: Eigenvector Scaling
Matlab scales its eigenvectors such that the norm of each eigenvector is 1. Satisfying the normali-
sation conditions given in Eq. 9 requires a new normalisation routine. This routine could follow the
Matlab code given below:

function [ ps i ] = e igvec_sca l ing ( phi , ps i )

mrom = size ( phi , 2 ) ;

% scale basis f o r p r o j e c t i o n
for i 1 = 1 :mrom

% f i n d c o e f f i c i e n t
C = 1 . / ( ps i ( : , i 1 ) ’ * ph i ( : , i 1 ) ) ;

% resca le ps i
ps i ( : , i 1 ) = conj (C) * ps i ( : , i 1 ) ;

end

end

As the φ̄ T
r φr = 1 condition is already satisfied by Matlab, this code only scales to satisfy the condition

ψ̄T
r φr = 1.

C TPROM: Function Wrapper

function [ Xdot ] = func_wrapper ( zr , z i , U, func_params , ph i )

% coord ina te t rans fo rma t i on
z = zr + 1 i * z i ;
X = ph i * z + conj ( ph i ) * conj ( z ) ;

% force r e a l values
X = rea l (X ) ;

% note : f i r s t i npu t to dynamics f u n c t i o n ( t ) se t to 0
[ Xdot ] = dynamics_funct ion (0 , X, U, func_params ) ;

end

D Conv-LSTM Validation Study
This appendix expands on the justification for the final choice of architecture and hyperparameters
reported in Section 5.3.1. A validation study was addressed to determine the best suited model for the
prediction of the Lorenz 1996 system. In Table 7 we provide a summary of the most relevant tests.
Mean and variance columns correspond to the statistics extracted from the respective probability
density function for each case, with all modes merged together. The pointwise mean absolute error
(MAE) agains the ground truth is also compared. The cost for training the NN model and for a time-
marching simulation of t=20 time units is also reported. In the first two rows we report the values for
the reference ODE solution and the final data-driven model chosen. The rows underneath provide the
results for the parameter change with respect to the chosen model of the second row. As a reminder,
the complete configuration of the definitive model was provided in Tables 3 and 4.
We observe that there are no significant differences among the different configurations. Alternative
valid candidates were the shorter dataset time and the kernel size. The shorter dataset option would
be computationally more attractive but we could not verify whether the time-marching simulation
could be extended beyond the final time of the training dataset. Thus, we opted for the safer option.
With regards to the kernel size, both options resulted equally valid but the larger kernel size was
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Table 7 – Summary of the validation study on the Conv-LSTM model.

Model Training Simulation
Change Mean Variance MAE [CPU-h] [CPU-h]
True solution 2.66 13.48 - - -
Final Conv-LSTM 2.78 15.13 3.82 1.00 0.81
Conv-LSTM layers: 3 → 5 2.69 19.75 4.64 1.81 1.19
Kernel size: 5 → 3 2.68 12.68 3.78 0.97 0.91
Channels: 35 → 45 2.42 9.07 4.00 1.10 0.82
Dataset time: 100 → 50 s 2.86 13.42 4.15 0.55 0.83
Epochs: 250 → 500 2.84 13.95 4.42 2.02 0.89
Loss function: Huber→MSE 2.32 12.30 4.89 1.03 0.85

chosen as it was thought to provide further influence from neighboring states in space. On the
contrary, the options involving the number of layers, channels and epochs implied an increase of
model size without a clear performance advantage. Thus, such changes were unattractive. Last, the
loss-function change resulted insensitive too.
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