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Abstract 

Presented in this paper is a novel, set-based method for design coordination between coupled systems. The 

research is motivated by the limitations of current point-based and set-based coordination approaches used 

as enablers for collaborative and interactive design. The proposed method employs design space exploration 

and surrogate models to process each sub-system in parallel. A combinatorial design of experiment is then 

performed, using the surrogate models and fixed-point iterations to solve the coupled systems. The result is a 

set of consistent and feasible solutions. The proposed approach was evaluated with a realistic wing aero-

structural design problem. The result (a feasible set) is identical to the one produced by the benchmark studies, 

using the traditional monolithic setup. Compared with the latter, the proposed method enables distributed and 

parallel computation of the involved disciplines. Compared with the point-based approach, the proposed 

method shows to be more interactive and flexible by providing multiple promising design solutions. 

Keywords: Design Coordination, Set-based Design, Distributed Design Collaboration, Wing Aero-Structural 
Design, Surrogate Modelling 

 

1. Introduction 

Design of complex systems such as aircraft involves the integration of various disciplines such as 

aerodynamics, structures, propulsion, flight control, and so forth. Within each discipline, modelling 

and simulations (M&S) are widely used to perform analysis and support decision making. Ideally, if 

these models from different domains are connected as an automatic workflow, optimization could be 

applied to search for solutions, which are optimal in terms of performance while fulfilling all the design 

requirements. However, such an All-in-One (OIA) process is generally not applicable in practice, due 

to the following reasons: 

• The computational models of the different disciplines are normally hosted on distributed 

repositories, as these models may be created by designers/teams from separate 

departments or even distinct companies. Because of certain technical issues (e.g., automatic 

data exchange) or concerns about Intellectual Property (IP) protection, it can be very difficult 

to integrate all the models in one optimization problem. 

• The All-in-One optimization process leads to a high dimensional combinatorial design space, 

which makes it very difficult for the optimizer to effectively search for the optimal values of 

design variables. 

 

To overcome these challenges, various distributed architectures [1] have been developed within the 

context of Multi-disciplinary Design Optimization (MDO). These include Concurrent Subspace 

Optimization (CSSO) [2], Bi-level Integrated System Synthesis (BLISS) [3], Collaborative 

Optimization (CO) [4], Analytical Target Cascading (ATC) [5], etc. While the effectiveness of these 

design coordination methods has been proved in various applications [6–8], there are still limitations 

due to the Point-based Design (PDB) paradigm adopted in these optimization approaches: 
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• Inherent uncertainty associated with models, assumptions, and even requirements, 

especially at the early stage of design [9–11]. Therefore, the “optimal” solution may become 

less competitive or even infeasible at a later phase of the design process. This could result 

in compromised overall performance and/or costly re-design iterations.  

• Once the optimization problem is formulated, the searching process is relatively less 

interactive and provides only limited knowledge of the design space. For example, it is difficult 

to identify trends between variables or extract design rules, given only the “optimal” solution. 

 

For these reasons, the Set-based Design (SDB) paradigm has emerged as a result of research 

conducted in the last few decades  [12–21]. Instead of searching for an “optimal” solution (which may 

become invalid later), the philosophy of SDB is to delay critical decisions by maintaining a set of 

feasible (and promising) solutions. In case of changing/adding requirements or revision of any 

analysis results, the designer only needs to narrow down the selections by gradually discarding 

infeasible (and uncompetitive) solutions. It is claimed that this approach avoids expensive re-design 

iterations. 

In the multi-discipline context, design coordination is enabled by finding an intersection of feasible 

design spaces of different disciplines (sub-systems), as illustrated by Figure 1 (a). A more specific 

aircraft design example is shown in Figure 1 (b), where three constraints are specified on flyover 

noise, sideline noise, and NOx emission, respectively. Each constraint defines a feasible region in 

the design space of wing area and span. The intersection of these feasible regions is a common 

area of design points which satisfy constraints from all the disciplines (indicated by the white region). 

 

 

Figure 1 – (a) Intersection of feasible design spaces from different disciplines [20]. (b) An aircraft 
set-based design examples (adapted from [21]) 

 

However, the intersection can only be applied if there are shared design variables between the 

involved disciplines. That is, the design space must be defined with a common set of design 

variables. In this context, there is a research gap regarding the application of set-based methods for 

coordination of implicitly related and directly coupled disciplines, respectively. The former case refers 

to collaborative design where there are no direct input/output relationship between the disciplines, 

but some of the variables are correlated through a third discipline. For instance, the design of a 

wing’s inner structure and high-lift movables can be implicitly linked by the actuation system located 

inside the wing structure. The latter case (coupled disciplines) refers to the design computation 

where feedback loops are formed between the inputs and outputs of different disciplines. A typical 

example is the wing aero-structural design problem where aerodynamic loads and structural 

deformation are dependent on each other in an iterative pattern.  

In both cases, the intersection strategy is not applicable. This is because the implicitly coupled 
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disciplines may not have any shared variables, while the coupled disciplines have an extra 

requirement on system consistency. That is, the values of each coupling variable should be identical 

in all the disciplines, or close enough (within a tolerance) for practical engineering implementation. 

Thus, a broader aim of the research presented here was to establish a general set-based framework 

to handle all these scenarios regarding design coordination. In this paper, the focus is particularly on 

coupled disciplines, while some initial research work for the general framework and implicitly related 

disciplines can be found in [19].  

The rest of the paper is structured as follows: Section 2 defines the general design coordination 

problem of coupled disciplines with the help of a specific wing aero-structural design problem as an 

example. It also further explains why the intersection strategy is not applicable in this scenario. 

Section 3 presents the proposed set-based approach for coordination of coupled disciplines. In 

Section 4, the methodology is evaluated by using the aero-structural design problem as a test-case. 

Finally, conclusions are drawn, and future work is outlined in Section 5. 

2. Problem Definition 

2.1 General Problem 

The general problem definition of horizontal design coordination is illustrated in Figure 2, where two 

disciplines (noted by subscript 1 and 2, respectively) are located at the same level in the product 

(discipline) decomposition hierarchy. Each discipline has some associated analysis models and local 

constraints, noted as functions 𝑓 and 𝑔, respectively. To avoid cluttering, only inequality constraints 

are shown (the equality constraints have the same format). It can also be noted that no objective 

functions are defined, since the set-based approach is adopted. However, if the designer wants to 

identify a set of “promising” solutions regarding certain performance variables, the objectives can be 

formulated as constraints, where a lower or upper bound of the corresponding performance is 

specified.  

The vectors of design variables are noted as 𝒙, while the vectors of performance outputs are noted 

as 𝒚. The variables can be divided into four categories: local design variables, shared design 

variables, implicitly related variables, and coupling variables. These categories are indicated by the 

superscript: 𝑙, 𝑠, 𝑖, and 𝑐, respectively. The local design variables are the inputs of only one discipline 

(indicated by the solid arrow in Figure 2) while the shared design variables are inputs of both 

disciplines (indicated by the dot-dashed arrow). The implicitly related variables may form some 

additional constraints beyond the scope of disciplines 1 & 2, as indicated by the dashed arrows. The 

focus of this research is the coupling variables. As indicated by the red double-dot-dashed arrows, 

𝒚1
(𝑐)

 and 𝒚2
(𝑐)

 are produced as outputs of discipline 1 and 2, and are fed into the other discipline as 

inputs, respectively.  
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Figure 2 – General Problem Definition 
 

Within this context, the aim of set-based horizontal design coordination is to identify a set of design 

solutions which fulfills the three requirements below: 

• Consistency: The values of each coupling variable (𝒚1
(𝑐)

 and 𝒚2
(𝑐)

) should be (ideally) identical 

in both disciplines, or close enough (within a tolerance) for engineering implementation. 

• Feasibility: All the local and global constraints should be satisfied. 

• Optimality: Ideally, the global optimal solution should be contained within the identified 

feasible region of design space. 

 

2.2 Wing Aero-structural Design Problem 

A typical example of coupled disciplines can be found in a wing aero-structural design problem, as 

illustrated in Figure 3 (a). Given a wing geometry, the aerodynamic model produces a vector of loads 

which are passed to the structural model. The latter computes the deformation of the wing structure 

which are then passed back to the aerodynamic model. As the deformation will change the wing 

geometry, the aerodynamic model has to be executed again, which provides a revised loads on the 

structure. Therefore, an iterative process is normally adopted to find a convergence point as 

illustrated in Figure 3 (b). 
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Figure 3 – (a) Coupling between aerodynamic and structural models. (b) Iterative process to solve 
the coupled systems 

 

In this case, simply finding an intersected region in the space of aerodynamic loads and structural 

deformation, is not sufficient to produce the set of feasible design solutions, because it does not 

guarantee the system consistency. Specifically, the structural deformation and aerodynamic loads 

should be identical in both (aero and structural) models, respectively. As illustrated in Figure 4, a 

series of structural deformations are used as inputs of the aerodynamic model, which will produce a 

range of resulted aerodynamic loads. These values are indicated by the blue intervals on both axes. 

Similarly, a series of aerodynamic loads can be used as inputs to the structural model, which leads 

to a range of resulted structural deformations. These values are indicated by the red intervals on 

both axes. Although intersected intervals (indicated by green) can be found for both aerodynamic 

loads and structural deformations, all the solutions inside these intervals are actually invalid, except 

the convergence point. 

 

Figure 4 – Limitation of the intersection approach for coordination of coupled disciplines 

 

3. Proposed Method  

The proposed method is illustrated in Figure 5. The first step is to decouple the feedback loop by 

making a copy of the coupling variables in each discipline. As illustrated in Figure 6 (a), the copies 

of 𝒚𝟏 and 𝒚𝟐 in discipline 1 & 2 are noted as 𝒚1
(1)

, 𝒚2
(1)

 and 𝒚1
(2)

, 𝒚2
(2)

, respectively. Similar operation is 

also applied to produce the copies of the share design variables: 𝒙12
(1)

 and 𝒙12
(2)

. The implicitly related 

variables are not considered in this case, because they are out of the scope of this paper. 
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Figure 5 – Flowchart of the proposed method. 
 

After being decoupled, the two disciplines can be considered as separated design problems, with 

𝒙1
(𝑙), 𝒙12

(1)
, 𝒚2

(1)
 and 𝒙2

(𝑙), 𝒙12
(2)

, 𝒚2
(2)

 as their independent input variables, respectively. Step 2 is to perform 

a Design of Experiment (DoE) study for each discipline. For instance, in discipline 1, samples of 

𝒙1
(𝑙), 𝒙12

(1)
, 𝒚2

(1)
 are produced and the models 𝑓1, 𝑔1 are executed for each sample. The results are then 

used to construct a surrogate model for discipline 1 in step 3. Similar operations are performed for 

discipline 2 in parallel. 

In step 4, a combined DoE study is performed to produce samples of 𝒙1
(𝑙), 𝒙2

(𝑙), 𝒙12. In this step, there 

is no need to distinguish between 𝒙12
(1)

 and 𝒙12
(2)

, as they are shared in both disciplines. For each 

combination of  𝒙1
(𝑙)

, 𝒙2
(𝑙)

, and 𝒙12, fixed point iteration is then used to minimize the gap between 

copies of coupling variables in each discipline, as illustrated in Figure 6 (b). The local constraints 

also need to be evaluated with the surrogate models to ensure local feasibility.  
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Figure 6 – (a) Decoupling of the disciplines. (b) Fixed point iteration to converge the coupling 
variables 

 

After the DoE studies, a set of points should be produced in the design space of 𝒙1
(𝑙), 𝒙2

(𝑙), 𝒙12, 𝒚2
(1)

 

and 𝒚1
(2)

, which satisfied the consistency requirement (𝒚1
(1)

≈ 𝒚1
(2)

, 𝒚2
(1)

≈ 𝒚2
(2)

) and feasibility 

requirement (𝑔1, 𝑔2 ≤ 0), as discussed in Section 2. If there are no (or not enough) consistent and 

feasible solutions, step 2 should be repeated to further explore the design space.  As the results 

produced so far are based on surrogate models, the two requirements (consistency and feasibility) 

need to be validated by calling the original models in step 6. 

4. Evaluation 

The proposed method is evaluated using a wing aero-structural design problem adapted from [22], 

where the spanwise distributions of twist, thickness to chord ratio, spar thickness, and skin thickness 

were optimized for minimum fuel burn. Each distribution is defined by a spline line with six control 

points along the semi-span. In the original problem, the wing planform was fixed and based on the 

NASA Common Research Model [23]. This is slightly modified in the current case study where wing 

planform parameters and dihedral angles are also considered as design variables. Meanwhile, the 

spanwise thickness to chord ratio is fixed to maintain the problem scale. 

4.1 Decoupled Formulation 

The aerodynamics and structural analysis are performed with an open-source tool named 

OpenAeroStruct (OAS) [22,24]. It should be noted that OAS itself has a built-in solver to handle the 

coupling between the two disciplines. In this evaluation, this solver is deliberately by-passed and the 

aero and structural analysis are wrapped into two separated models to demonstrate the distributed 

context.  

Because of this separation, the coupling variables are converted into additional inputs and outputs 

for each discipline, respectively. For the aerodynamics model, the additional input is a matrix (𝑫) of 

displacement at each mesh nodes. Due to the high dimension of this matrix (corresponding to the 

spanwise nodes, chordwise nodes, and x, y, z directions), it is reformulated using a baseline (𝑫𝑩) 

and a series of scale factors (𝑲𝑫). The former is defined with an existing design point, for which the 

displacement matrix is already known. The scale factors are defined for the x, y, and z directions at 

6 spanwise locations on the leading and trailing edges of the wing, respectively. A matrix of scale 

factors is defined as:  
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𝑲𝑫 =

[
 
 
 
 
 
 
 
𝑘𝑥𝐿𝐸1

, 𝑘𝑥𝐿𝐸2
, … , 𝑘𝑥𝐿𝐸6

𝑘𝑦𝐿𝐸1
, 𝑘𝑦𝐿𝐸2

, … , 𝑘𝑦𝐿𝐸6

𝑘𝑧𝐿𝐸1
, 𝑘𝑧𝐿𝐸2

, … , 𝑘𝑧𝐿𝐸6

𝑘𝑥𝑇𝐸1
, 𝑘𝑥𝑇𝐸2

, … , 𝑘𝑥𝑇𝐸6

𝑘𝑦𝑇𝐸1
, 𝑘𝑦𝑇𝐸2

, … , 𝑘𝑦𝑇𝐸6

𝑘𝑧𝑇𝐸1
, 𝑘𝑧𝑇𝐸2

, … , 𝑘𝑧𝑇𝐸6 ]
 
 
 
 
 
 
 

 

( 1 ) 

 

Figure 7 (a) illustrates the spline lines of scale factors for deformation in the z (vertical) direction 

along the leading and trailing edges. The other scale factors are not plotted to avoid cluttering. The 

baseline and scaled deformations of the wing are shown in Figure 7 (b). It should be noted that the 

scale values in this figure are arbitrarily selected for illustration purposes only. 

 

Figure 7 – Scaling of a baseline displacement matrix 

 

The original coupling output from the aerodynamics model is a load matrix (𝑳), corresponding to the 

spanwise finite element nodes and 6 forces/moments along each axis (𝑭𝒙, 𝑭𝒚, 𝑭𝒛,𝑴𝒙,𝑴𝒚,𝑴𝒛). This 

matrix is also represented by a baseline and 6 scale factors for each of the 6 load dimensions. 

 

 

𝑲𝑳 =

[
 
 
 
 
 
 
 
𝑘𝑥𝐿𝐸1

, 𝑘𝑥𝐿𝐸2
, … , 𝑘𝑥𝐿𝐸6

𝑘𝑦𝐿𝐸1
, 𝑘𝑦𝐿𝐸2

, … , 𝑘𝑦𝐿𝐸6

𝑘𝑧𝐿𝐸1
, 𝑘𝑧𝐿𝐸2

, … , 𝑘𝑧𝐿𝐸6

𝑘𝑥𝑇𝐸1
, 𝑘𝑥𝑇𝐸2

, … , 𝑘𝑥𝑇𝐸6

𝑘𝑦𝑇𝐸1
, 𝑘𝑦𝑇𝐸2

, … , 𝑘𝑦𝑇𝐸6

𝑘𝑧𝑇𝐸1
, 𝑘𝑧𝑇𝐸2

, … , 𝑘𝑧𝑇𝐸6 ]
 
 
 
 
 
 
 

 

( 2 ) 

 

Similar formulations are also applied for the decoupled structural model, but with a inversed setup 

for the loads and displacement matrices. The decoupled models are illustrated in Figure 8 and 

summarized in Table 1. 
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Figure 8 – Schematic view of the (decoupled) aero-structural design problem 

 

Table 1 – Summary of the aerodynamic design problem 

Category Variable Name [Unit] Symbol DoE 
Range/Constraint 

Shared Design 
Variables 

Aspect Ratio 𝐴𝑅 [8.50, 9.50] 
Taper Ratio 𝜆 [0.25, 0.30] 
Quarter Line Sweep [degree] Λ [33.00, 37.00] 
Spanwise Location of the kink 𝜂𝑘 [0.36, 0.38] 
Dihedral Angle 𝜃 [0.00, 3.00] 
Vector of Twist [degree] 𝝎 [2.0, 9.0] 

Decoupled Input Matrix of Displacement Scale 
Factors 

𝑲𝑫  

Decoupled Output Matrix of Load Scale Factors 𝑲𝑳  

Aerodynamic Local 
Performance 

Lift Coefficient 𝐶𝐿 0.48 ≤ 𝐶𝐿 ≤ 0.52 

Drag Coefficient 𝐶𝐷  

 

Table 2 – Summary of the structural design problem 

Category Variable Name [Unit] Symbol Range/Value 

Shared Design 
Variables 

Aspect Ratio 𝐴𝑅 [8.50, 9.50] 
Taper Ratio 𝜆 [0.25, 0.30] 
Quarter Line Sweep [degree] Λ [33.00, 37.00] 
Spanwise Location of the kink 𝜂𝑘 [0.36, 0.38] 
Dihedral Angle 𝜃 [0.00, 3.00] 
Vector of Twist [degree] 𝝎 [2.0, 9.0] 

Local Design 
Variables 

Vector of Spar thickness [m] 𝝉𝒔𝒑𝒂𝒓 [0.003, 0.03] 

Vector of Skin thickness [m] 𝝉𝑺𝒌𝒊𝒏 [0.003, 0.03] 
Decoupled Input Matrix of Load Scale Factors 𝑲𝑳  

Decoupled Output Matrix of Displacement Scale 
Factors 

𝑲𝑫  

Structural Local 
Performance 

Failure Index 𝐹 𝐹 ≤ 0 

Wing Structural Mass [kg] 𝑊  

 

4.2 Design of Experiment 

With the two decoupled models, a Design of Experiment (DoE) study was performed for each 

discipline, respectively. The DoE results were then utilized to construct surrogate models as 

discussed in Section 3. In this case study, Artificial Neural Network (ANN) was selected due to its 

flexibility in handling high-dimensional nonlinear problems [25]. Specifically, Multi-layer Perceptron 
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(MLP) architecture with one hidden layer was adopted. 

With the surrogate models, a DoE study was then performed within the combinatorial design space 

of shared and local design variables from both two disciplines. For each design points, the 

aerodynamic and structural surrogate models were employed to perform the fixed-point iteration.  

4.2.1 Results Validation and Accuracy 

Two benchmark studies were used to evaluate the proposed approach. The first benchmark DoE 

study was conducted by evaluating the same set of design points using the original models in a 

monolithic setup. The difference between the predicted values (𝑦𝑝𝑟𝑒𝑑) and reference values (𝑦𝑟𝑒𝑓) 

are measured by the Mean Relative Errors (MRE) and Weighted Mean Absolute Percentage Error 

(WMAPE) as defined in equations ( 3 ) and ( 4 ), respectively, where 𝑛 is the number of design points 

and 𝑖 is the index. The computed values of MRE and WMAPE for each output variables are shown 

in Figure 9 (a) and (b), respectively. 

 

 

𝑀𝑅𝐸 =
1

𝑛
∑

|𝑦𝑖𝑝𝑟𝑒𝑑
− 𝑦𝑖𝑟𝑒𝑓|

|𝑦𝑖𝑟𝑒𝑓|

𝑛

𝑖=1

 

( 3 ) 

 

𝑊𝑀𝐴𝑃𝐸 =
∑ |𝑦𝑖𝑝𝑟𝑒𝑑

− 𝑦𝑖𝑟𝑒𝑓|
𝑛
𝑖=1

∑ |𝑦𝑖𝑟𝑒𝑓|
𝑛
𝑖=1

 

( 4 ) 

 

 

Figure 9 – Error for each output 

 

In this case study, the error of each output is composed of three portions. The first portion is 

introduced by the surrogate models, and its magnitude is influenced by the number of training 

samples and specific setup of the surrogates. The second portion is caused by the scaling factors 

and spline lines for approximation of the load and displacement distributions, as discussed in Section 

4.1. The last portion of error is due to the fixed-point iteration process, where the first two portions of 

error may be accumulated and amplified.  

According to Figure 9, the error of bending moment along the z axis (𝑀𝑧), leading-edge deformation 

along the x axis (∆𝑥𝐿𝐸), and trailing-edge deformation along the y axis (∆𝑦𝑇𝐸) are relatively higher 

than the other outputs. These errors are due to the nonlinearity of these output variables and error 

accumulation as discussed above. 

It should be emphasized that the values of MRE can be misleading in this case study, because the 

denominator (𝑦𝑟𝑒𝑓) in equation ( 3 ) is very close to zero at some design points, which increases the 

MRE of the entire set of samples. This problem is mitigated by the formulation of WMAPE as defined 
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in equation ( 4 ), and the latter is a more appropriate measurement of errors for such conditions. As 

illustrated in Figure 9 (b), the WMAPE of all the output variables are below 10%. 

The DoE results from the proposed approach and benchmark study are visualised using the parallel 

coordinate plot [26] as shown in Figure 10, where each vertical coordinate is a dimension in the 

combinatorial design and performance space, while each polyline represents a design solution. In 

Figure 10, the feasible design solutions obtained from the benchmark study are marked in blue, while 

those obtained by the proposed approach are marked in green. The blue and green polylines are 

essentially overlapping in the design space, which indicates that the proposed approach has 

produced almost identical set of feasible solutions compared to the benchmark study. There are 

some slight differences in the performance space due to numerical errors as discussed above. 

 

Figure 10 – DoE study using the original monolithic setup (blue) and distributed surrogate models 
(green). 

4.2.2 Optimality and Flexibility 

In the second benchmark study, a gradient-based optimization was performed to minimize the wing 

structure mass divided by the lift over drag. In Figure 11, the optimal solution is indicated by the 

magenta polyline and the feasible solutions produced by the proposed approach are marked in 

green.  

In Figure 11 (a), the feasible solutions are based on a DoE study of 300 points and the optimum is 

outside the currently identified feasible region in the design space. An additional DoE study was then 

performed using 600 design points and the optimum is covered within the identified feasible region 

as shown in Figure 11 (b). In practice, as the optimal solution cannot be known a priori, it is not 

guaranteed to be included in the feasible design set. However, once the surrogate models have been 

constructed, the design space could be further explored without much additional computational cost. 

This would allow the feasible design set to expand gradually towards of the global optimum. 
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Figure 11 – Optimal solution from the second benchmark study in comparison with the feasible 
solutions from the proposed approach using (a) 300 design points, (b) 600 design points 

 

The benefit of using set-based design approach is reflected on the flexibility for conducting trade-off 

studies. For instance, considering the uncertainty in the stress computation, a more stringent failure 

constraint could be defined as 𝐹 ≤ −0.35, instead of 𝐹 ≤ 0. In this scenario, the current optimum will 

become invalid, while the feasible design set could be reduced further according to the new 

constraint. Additional constraints can also be applied interactively on the drag coefficient and 

structural mass to filter out the non-promising solutions, as indicated in Figure 12.   

 

 

Figure 12 – Trade-off study with modified and additional constraints 
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4.2.3 Computational Cost 

The computational cost is measured by the number of original model evaluations, and is largely 

dependent on the specific problem definition. The computation costs of the proposed approach and 

the two benchmark studies can be estimated using equations ( 5 ), ( 6 ), and ( 7 ), respectively. The 

specific numbers involved in this case study are summarized in Table 3. 

 

 𝑁𝑃 = 𝑁𝐴𝑒𝑟𝑜𝑇𝑟𝑎𝑖𝑛 + 𝑁𝑆𝑡𝑟𝑢𝑐𝑡𝑇𝑟𝑎𝑖𝑛 + 2 ∙ 𝑁𝐷𝑜𝐸 ( 5 ) 

 𝑁1 ≈ 2 ∙ 𝑁𝐷𝑜𝐸 ∙ 𝑁𝐹𝑃𝐼 ( 6 ) 

 𝑁2 ≈ 2 ∙ 𝑁𝑂𝐼 ∙ (1 + 𝑁𝐹𝐷) ∙ 𝑁𝐹𝑃𝐼 ( 7 ) 

Table 3 – Specific numbers of involved in this case study 

Number of Points in Symbols Values  

Training aerodynamic surrogate 𝑁𝐴𝑒𝑟𝑜𝑇𝑟𝑎𝑖𝑛 1000 

Training structural surrogate 𝑁𝑆𝑡𝑟𝑢𝑐𝑡𝑇𝑟𝑎𝑖𝑛 1000 

Combinatorial Design of Experiment 𝑁𝐷𝑜𝐸 300 600 

Fixed Point Iteration 𝑁𝐹𝑃𝐼 10~30 

Optimization Iteration 𝑁𝑂𝐼 3 

Finite Differencing for Computing the Gradients 𝑁𝐹𝐷 14 

Total Number of Model Evaluations 

Proposed Approach 𝑁𝑃 2600 3000 

Benchmark 1: Monolithic Design of Experiment* 𝑁1 6564 13244 

Benchmark 2: Monolithic Optimization 𝑁2 785 

 
* The numbers are corresponding to two DoE studies with 300 and 600 design points, respectively. 

 

The computational cost of the proposed approach is mainly dependent on the number of samples 

used for training the surrogate models. In the combinatorial DoE study, fixed point iterations are 

performed with the surrogates. However, after convergence of each design point, the original models 

need to be invoked once again (without iterations) to validate the results, which leads to additional 

2𝑁𝐷𝑜𝐸 model evaluations (for aero and structural analysis).  

In the first benchmark study (monolithic design of experiment), the computational cost is equal to the 

number of design points in the outer DoE loop, multiplied by the number of fixed-point iterations in 

the inner loop. For most design points, the inner loop requires 10~30 iterations for convergences.  

In the second benchmark study, the inner loop is still for fixed-point iterations, while the outer loop is 

used for searching the design space and computing the gradients (e.g. using finite differencing). In 

the current case study, the optimization stopped within only three 3 iterations, however, the gradient 

computation caused more model evaluations due to the high dimension of the design space. It should 

be mentioned that in the original setup of OpenAeroStruct, the gradients are computed in a more 

efficient way which can largely reduce the computational cost. This is currently beyond the scope of 

this paper, which considers a more general case, where the models are provided as black boxes.  

5. Summary and Conclusions 

Presented in this paper is a novel set-based method for (computational) design coordination of 

coupled systems. Although various monolithic and distributed architectures have been developed in 

the MDO context, the point-based optimization approaches are less flexible and non-interactive, thus 

not suited to handle early-stage design collaboration. On the other hand, the set-based coordination 

approaches rely heavily on design space intersection which is not applicable in the case of coupled 

disciplines. The proposed method aims to overcome of these limitations. 

Specifically, the disciplines are first decoupled by making copies of the coupling and shared variables 

in each discipline (sub-problem). Then design space explorations are performed in parallel for each 

discipline. The results are used to construct surrogate models, which are later employed in a 

combinatorial design of experiment. The overall result is a set of consistent and feasible solutions. 
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The proposed approach was evaluated with a representative wing aero-structural design problem. 

The result (a feasible set) is virtually identical to the one produced by the benchmark study using the 

traditional monolithic setup. Compared with the monolithic set-based approach, the proposed 

approach enables distributed and parallel computation of the constituent disciplines. Compared with 

the point-based approach, the proposed approach enables flexible constraint allocation and iterative 

down selection of the design solutions. In this specific case study, the computational cost of the 

proposed approach is lower than the benchmark DoE study. This advantage will be more 

pronounced if extra design points are required for exploring the design space. 

Some important (provisional) findings of this applied research are related to the use and reliance on 

the surrogate models in practice. Specifically: 

• the numerical errors introduced by the surrogates accumulate in the iteration process.  

• in this specific case study, the spline lines caused additional errors in the representation of 

the load and displacement distributions.  

• in the monolithic setup, the values of the coupled variables are computed from iterations. 

However, after decoupling, the initial ranges of these coupled variables need to be assumed 

in each discipline.  These assumed ranges will determine the training samples and could 

have a significant impact on the accuracy of surrogate models. Therefore, these assumptions 

need to be made with caution and require a substantial level of domain knowledge and 

experience. 

Considering the above findings, future work includes three research directions. The first one is to 

explore other surrogate modeling techniques allowing to reduce the numerical errors. The second 

direction is to address the optimality requirement as specified in Section 2, which is currently not 

guaranteed in the proposed approach. The third direction is to develop a more adaptive method to 

identify the boundary between feasible and infeasible solutions.  

Finally, a broader aim of our future work is to establish a general set-based design coordination 

framework to handle other generic scenarios, for instance, coordination of implicitly related 

disciplines and disciplines formed from different (product) decomposition levels. 
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