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Abstract 

This work employs a micromechanical theory and kinematic relationships to describe the displacement field in 

individual unidirectional composite plies. The technique relies on an incremental approach where the 

misalignment angle of fibers is the main variable in the analysis. Upon convergence at a certain loading level, 

stresses and strains are evaluated in the fibers and matrix using micromechanics, and a specific failure criterion 

is applied. The Ramberg-Osgood relations are used to correct degraded mechanical properties of the resin in 

the nonlinear regime. The Hashin-Rotem failure criterion and experimental data obtained in the literature are 

used to validate the technique. It is observed that the numerical and experimental results obtained correlate 

well. 
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1. Introduction 

Unlike failure criteria for metallic materials, the composites failure criteria are rarely able to 

encompass the diversity of failure mechanisms involved. The inherent anisotropy of composites 

results in a complex behavior, particularly in the interface fiber-matrix. Thus, over time, researchers 

have proposed and developed different failure criteria, from the simplest to the most sophisticated 

ones. For instance, maximum stress criterion, maximum strain criterion, Tsai-Wu [1], Hashin-Rotem 

[2] and Dávila-Camanho [3] are very popular failure criteria. However, even with sound theories 

validated, certification of composite materials for aerospace applications still relies on testing due to 

the complex nature and variability of the material. According FAA requirement [4], the structural 

component must be subject to the ultimate load and must withstand that load for up to three seconds. 

Practice and commercial information involving important aircraft manufacturers show that, under 

certain circumstances, a composite structural component fails before the expected ultimate load. 

Failure under longitudinal compression in laminates with fiber misalignment, microbuckling or kink 

band formation (Fig. 1) may be the cause for these early failures, since these are often disregarded 

in the design and analysis phases. Aircraft structural components that may be prone to failure under 

longitudinal compression are wing upper panels, fuselage panels, rudders and control surfaces alike. 

 

 

Figure 1 – Kink band parameters [11]. 
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Rosen [5] was the first researcher to model fiber microbuckling. Two buckling modes were assessed: 

matrix under shear and matrix under compression. Matrix yielding was considered in order to model 

kink behavior in the investigations of Argon [6] and Budiansky [7]. Argon used a rigid perfectly plastic 

constitutive model, whereas Budiansky used an elastic perfectly plastic constitutive model. 

Budiansky and Fleck [8] proposed a generalized approach using the Ramberg-Osgood equation to 

define the matrix stress × strain relation and concluded that the elastic perfectly plastic constitutive 

model provided acceptable estimations. The importance of fiber misalignment was discussed by 

Wilhelmsson et al. [9], whereas aspects related to fiber curvature were addressed by Pimenta et al. 

[10]. 

In order to conduct research on failure mechanisms in composites experimental tests must be done 

and theoretical criteria must be proposed. Vogler and Kyriakides [11] investigated initiation and 

growth of kink bands in AS4/PEEK composites. The experimental procedure was carried out under 

compressive loading followed by incremental shear loading. Observation of kink band initiation was 

related to reduction in the shear stiffness and consequent drop in shear stress. As additional 

transverse displacement takes place, the kink band width increases. Vogler and Kyriakides found 

the parameters shown in Fig. 1: the band width “w” was around 25 times the fiber diameter, the kink 

band inclination “” of 12o remained constant throughout loading, and angle “” reached 

approximately 26o as the kink band evolved. 

Another representative test was made by Lee and Waas [12]. In their work, the mechanical properties 

of the fibers, fiber volume fraction and nonuniform fiber fabrication were considered in order to 

understand the failure mechanisms. Vinyl ester resin, glass fibers and carbon fibers with fiber volume 

fraction of 10% up to 60% were investigated. The finite element simulation for the carbon fiber with 

4o misalignment and fiber volume fraction of 30%-40% agreed with experimental results. 

Vogler et al. [13] used 2D and 3D numerical models to validate kink band initiation and growth in 

filament composites. The 2D model was idealized considering alternating layers of fibers and matrix 

consistent with the fiber volume fraction. On the other hand, the 3D model was idealized considering 

circular fibers distributed in a hexagonal arrangement over the matrix, where fiber spacing was 

consistent with the fiber volume fraction. The main conclusions were: (i) rupture is governed by the 

interaction of the nonlinear shear with small fiber misalignments, (ii) prediction of the kink band 

inclination requires matrix models that accurately capture its sensibility to pressure and its elasticity, 

(iii) kink band start off from a local imperfection, (iv) the elasto-plastic solid used to simulate the 

matrix was appropriate to predict failure initiation, and (v) the overall characteristics of the kink band 

in both 2D and 3D were similar. In Bogetti et al. [14], a nonlinear tridimensional model of maximum 

progressive deformation, based on laminate analyses, was used to predict 12 test cases 

representing failure envelopes and isotropic, unidirectional and multidirectional stress × strain 

curves. The analytical models developed by Chou et al. [15] and Bogetti et al. [16] were used to 

predict the effective stress × strain response of the laminate. The nonlinear lamina constitutive 

relations (stress × strain) along each one of the lamina principal directions were defined according 

to the Ramberg-Osgood [17] equation. The authors state that one significant limitation of their 

approach, based on the maximum strain failure criterion, is that it may be unable to model and predict 

damage propagation in composite laminates due to its reduced post-failure capabilities. 

In experimental and theoretical investigations, Matsuo and Kageyama [18] addressed composite 

thermoplastics. The study assumed that kink band rupture is produced by rupture under transverse 

traction, as well as shear and plastic deformation. In Fig. 2 the symbol  represents the external 

compressive stress, 0 is the initial misalignment fiber angle,  is the additional shear strain,  is the 

shear stress, T is the transverse traction stress on the kink band region and  is the kink band angle. 

In the work of Matsuo and Kageyama the predicted resistance to compression depends on the 

transverse elastic modulus under traction, the shear modulus in the fiber direction, parameters 

related to the Ramberg-Osgood curve, the initial fiber angle misalignment, two arbitrary points on 

the experimental shear stress × shear strain curve, the ultimate stress of transverse traction and the 

ultimate shear stress of the linear/nonlinear region. The initial fiber misalignment angle of the 

experimental sample, before compression, was 3o and the carbon fiber volume fraction was around 

50%. It was deemed that the proposed criterion accurately represents experimental data and 
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combined stresses. Moreover, it may be applicable to assess compressive strength of other 

composite materials, including multiaxial laminates. 

 

Figure 2 – Stresses in the kink band [18]. 

 

Recently, Vignoli et al. [19] analyzed several micromechanical models to estimate failure in 

laminates. The in-plane traction, compression and shear failure criteria analytically estimated were 

compared to experimental data available in the literature. For instance, regarding longitudinal 

compressive strength, 8 micromechanical models, including a new model to estimate misalignment 

effects, were compared against 61 experiments. The paper emphasizes that longitudinal 

compressive strength is highly influenced by fibers misalignment, inducing a large array of failure 

mechanisms, and that the material in-plane shear response is highly nonlinear. Concerning shear 

strength, the model of Zhang and Waas [20] presented a better estimate for failure initiation, whereas 

the model of Huang [21] presented a better estimate for rupture under shear. 

Based on the literature review, one may identify contributions in different and diverse topics. The 

importance of the fiber volume fraction and the characteristics of the resin material is very clear in 

all investigations. Besides, one observes that most investigations assume uniaxial loadings (axial or 

shear), usually disregarding multiaxial loadings. Therefore, the proposal of this work includes 

relations between micromechanics and macromechanics, obtained through the knowledge of 

deformations in the plane due to the multiaxial loading of the laminate. The Ramberg-Osgood curve 

is used to adjust for the resin material in the nonlinear regime. An innovative aspect of the proposed 

approach is that it exclusively considers the fiber angle misalignment increment as analysis variable 

to determine convergence. Once convergence is achieved, the fiber and matrix stresses are 

computed, and a specific failure criterion may be assessed. Particularly, the Hashin-Rotem failure 

criterion and experimental data provided by Matsuo [18] are used to validate the proposed technique. 

2. Analysis Technique 

Figure 3 illustrates a ply in the kink band region. Three reference systems are used: (i) the structural 
reference system XY, (ii) the principal reference system of the ply 12, and (iii) the reference system of 

misalignment xy. The conventional ply angle is 0, where the subscript '0' has been added to 

emphasize that this is a constant value. The initial misalignment angle (unloaded condition) is 0. The 

principal stresses of the lamina 1, 2, 12 are also shown. 
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Figure 3 – Representative volume in the kink-band region. 

 

Once loading starts the misalignment angle evolves to  + 0 and Fig. 4 shows the deformed 
configuration. 

 

Figure 4 – Deformed configuration. 

 

Triangle PAPBPC allows one to write the simple geometric relationship 

Df sin( + 0) = tm sin (1) 

A similar relationship can be written referring to the undeformed configuration, 

Df sin0 = tm sin0
 (2) 

The position of an arbitrary point in the xy reference system before and after deformation is initially 

determined using the non-orthogonal coordinates  and  indicated in Fig. 4, where the  axis is 

parallel to x and the  axis is parallel to PAPB. Before deformation the coordinates of a point are x0, y0 
and, after deformation, x, y, with 

x0 =  +  sin(0 + 0)         y0 =  cos(0 + 0)
 (3) 
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x =  +  sin( + 0 + )         y =  cos( + 0 + ) (4) 

Transformation to the 12 reference system yields, 

x120 = x0 cos0  y0 sin0       y120 = x0 sin0 + y0 cos0
 (5) 

x12 = x cos( + 0)  y sin( + 0)         y12 = x sin( + 0) + y cos( + 0)
 (6) 

Equations (3) and (5) can be combined to yield, 
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Similarly, Eqs. (4) and (6) can be combined to yield 
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Substitution of Eq. (7) into (8) leads to 
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Equation (9) is the mapping of positions. It gives the current coordinates of an arbitrary point as a 
function of its initial position. The displacements can therefore be computed: 
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It follows that the displacement derivatives are 
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and the linear strains in the matrix are 

1
)cos(

sinsincos)cos(

00

000

120

12
1 
















x

u mL

m
 (16) 

1
)cos(

)sin(sincoscos

00

000

120

12
2 
















y

v mL

m
 (17) 

)cos(

)sin()sin(

)cos(

cossincos)sin()cos(sinsincos

00

000

00

000000

120

12

120

12
12































x

v

y

u mmL

m

 (18) 

Notice that the displacement derivatives in Eqs. (12)-(15) and the linear strains in Eqs. (16)-(18) are 

constant within the matrix and they are all computed in terms of . For small angles, 
12𝑚
𝐿     0 +  + 

0  0 =   0 + , and Eqs. (1) and (2) reduce to   Df( + 0)/tm and 0  Df0/tm. Moreover, since Df/tm 

= f/(1  f), then 
12𝑚
𝐿   /(1  f), where f is the fiber volume fraction. This last expression is precisely the 

one derived in Gutkin et al. [22]. 

The angle  may not be small, particularly when one considers the possibility of damage propagation. 
Therefore, the fully nonlinear strains should be used: 
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Angle  is restricted to vary in an admissible range where lock-in has not occurred. The upper limit 

for  may be determined by the condition that two consecutive fibers come in contact. According to 

Fig. 4, mathematically this condition is reached when /2    
0
   = 0. Substituting this condition 

into Eq. (1), and recalling that Df/tm = f/(1  f), one concludes that tan( + 0) = (1  f)/f. 

The lower limit for  may be determined, again, by condition that two consecutive fibers come in 

contact but for negative values of . According to Fig. 4, mathematically this condition is reached 

when /2    
0
   = . Substituting this condition into Eq. (1) one concludes that tan( + 0) = (f  

1)/f. However, negative values of  will arise only when there is longitudinal traction and, in this case, 

the reasonable assumption is that  + 0 = 0. Hence, in practice, it is expected that 0 ≤  ≤ tan[(1  

f)/f]  0. 

In order to perceive how the strains vary with  realistic values can be assumed. Taking 0 = 3o and f 

= 0.5 the practical range is 3o ≤  ≤ 42o. Figure 3 shows the linear, nonlinear and total strains. It is 

clear that the nonlinear strains are very relevant and should be considered. The exception is perhaps 

12m for angles up to 15o. 
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Figure 5 – Nonlinear matrix strain variations. 

 

The methodology to compute angle  is described next. The starting point is the consideration that 

the lamina homogenized strains (1, 2, 12) in the 12 reference system are available. This is a 

reasonable assumption since the problem is formulated in the structural reference system XY (see 

Fig. 3) and strain transformations based on angle 0 are straightforward, i.e., 
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It is straightforward to see that, provided 0 = 0 = 0, Eqs. (19)-(21) reduce to 1m = 2m = 0 and 12m = 

sin( + ). This goes to show that the kinematic behavior represented in Fig. 4 results chiefly in shear 
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strain, and consequently shear stress. From the theory of micromechanics one can write xym = xy = 

xyf or Gmxym = G12xy = Gfxyf. The homogenized lamina shear modulus G12 may be computed using 
the classic micromechanics relation 
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Equations (27) and (30) can be used with Eqs. (12)-(15) and (19)-(21) to compute . Once  is 

available the matrix strains 1m, 2m, 12m are calculated with the bilinear traction-separation law or the 

Ramberg-Osgood model. Moreover, the matrix stresses xm, ym, xym can be evaluated using the 
constitutive relations 
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ym = Gmm
 (34) 

The fiber strains xf, yf, xyf can be evaluated using basic micromechanics 

xf = xm
 (35) 

Gfxyf = xyf = xym = Gmxym
 (36) 
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 (37) 

3. Application and Theoretical Validation 
Figures 6 and 7a-b show a flowchart of the technique herein proposed whose intention is to help 

understanding the development procedure. As per Fig. 6, in addition to the fibers and resin 

properties, information about the Ramberg-Osgood (R&O) curve and allowable stresses are 

necessary in order to apply the failure criterion selected. Information on the R&O curve are referred 

to Travis [14]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 – Input to the calculation procedure. 
 

In Fig. 7a one may see that the input data are relative to the laminate, i.e., the strains 1, 2 and 12 
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incremental angle  is achieved for a given load level, then, in Fig. 7b, the values of the strains and 
stresses in the matrix and fibers are computed for subsequent application of the selected failure 
criterion. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7a – Flowchart to compute  
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Figure 7b – Flowchart to evaluate failure criterion 

 

In order to validate the technique the experimental results of Matsuo [18] are used. Accordingly, the 
dimensions of the specimen for the compression test, over the center region, are 10 mm width by 2 

mm thick, and the initial misalignment 0 is 3º, consistent with results obtained through tridimensional 
X-ray reported in Matsuo [24], as illustrated in Fig. 8. The value of stress for failure under compression 
of the laminate with unidirectional fibers experimentally obtained was 437 MPa, at 25º C. 
 

 
 

Figure 8 – Maximum initial misalignment of 3.2º [24]. 
 
In order to compare the present technique against experimental results obtained by Matsuo [18], 
Tab. 1 shows the values contained in Fig. 6 required for the numerical analysis. 
 

Table 1 – Fibers, resin, R&O curve and stress allowables. 

Fiber 
Ef [MPa] Gf [MPa] f Vf 

Resin 
Gm [MPa] m 

10500 1520 0.59 0.50 1520 0.34 

Ref. [25] [18] [25] [18] Ref. [18] [19] 
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R&O 
n E0 [MPa] 0 [MPa] G0 [MPa] 0 [MPa] 

3.68 105000 20.1 1520 12.5 

Ref. [18] [25] [18] [18] [18] 

 

Hashin-Rotem 

ult

xf  [MPa] 
ult

ym  [MPa] 
ult

xym  [MPa] 

437 20.1 12.5 

Ref. [18] [18] [18] 

 

Determination of angle  in the present technique begins with the knowledge of the strains 1, 2, 12. 

These may be obtained from laminate strains x, y, xy using CLT, where the following relations are 
well-known: 
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The strains 1, 2, 12 in Fig. 7a are computed according to the assumptions: (a) unidirectional laminate 
with 15 layers (t = 2.0 mm) whose ply properties are given in Tab. 2, and (b) the load Nx, in Eq. (38), 

is the experimental compressive failure stress of 437 MPa, referred in Matsuo [18], and assumed load 
per unit thickness. As consequence, the strain values are those shown in Tab. 3. 
 

Table 2 – Ply properties. 

Ply 

properties 

E1 [MPa] E2 [MPa] G12 [MPa] 12 tnom [mm] 

105000 4780 1520 0.26 0.133 

Ref. [25] [18] [18] [25] [18] 

 

Table 3 – Strains for the ultimate compressive load. 

Nx [N/mm] 1 2 12 

4370 2.0862×102 5.4240×103 0.0 

 
In order to make clearer the procedure depicted in Figs. 7a-b one can, for instance, compute angle 

 for half the load Nx in Tab. 3. Table 4 shows the result 
 

Table 4 – Strains for half the load Nx. 

Nx [N/mm] 1 2 12 

2185 1.0431×102 2.7120×103 0.0 

 

In this case, for  = 0, the values are those presented in Tab. 5. 
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Table 5 – Results for half the load Nx: angle  not converged 

  Eq. 

19 

Eq. 

20 

Eq. 

21 

Eq. 

25 

Eq. 

26 

Eq. 

27 

Eq. 

30 

R&O R&O Eq. 

31 
xym = 

xy 

0  1m 2m 12m x y xy xym Em Gm G12 xym 

deg. deg. [] [] [] ×103 ×103 ×103 [] MPa MPa MPa ×103 

3.0 0.0 0.0 0.0 0.0 10.39 2.676 1.4 0.0 105000 1520 1520 1.4 

 

  Eq. 

28 

Eq. 

29 

Eq. 

32 

Eq. 

33 

Eq. 

34 

Eq. 

37 

Eq. 

37 

Eq. 

36 

analysis analysis criterion 

0  xm ym xm ym xym xf yf xyf fiber matrix R&H 

[deg.] [deg.] [] [] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]   F.I. 

3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 unloaded unloaded 0.0 

 

Observe that xym obtained by Eq. (30) is different from xym obtained by imposition of xym = xy. Thus, 

in the flowchart of Fig. 7a, the path to be taken is arrow “2”, indicating that the value of  must be 

incremented by  in order to satisfy the equality. One may also observe in Tab. 5 that both fibers 

and matrix are unloaded since this is not the true situation because  is not converged. 

On the other hand, the value of  that satisfies the condition shown in Fig. 7a, whose path is arrow 

“3”, is shown in Tab. 6. Notice that xym obtained by Eq. (30) is the same as xym obtained through 

imposition of xym = xy. From Tab. 6 it can be seen that both fibers and matrix are unloaded under 
compression with a failure index of 0.72 according to Hashin-Rotem criterion. 
 

Table 6 – Results for half the load Nx: angle  converged. 

  Eq. 
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26 
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Eq. 
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R&O R&O Eq. 

31 
xym = 

xy 

0  1m 2m 12m x y xy xym Em Gm G12 xym 

deg. deg. ×106 ×106 ×103 ×103 ×103 ×103 ×103 MPa MPa MPa ×103 

3.0 0.0 72.51 72.51 1.4 10.39 2.675 1.4 1.4 101366 1517 1520 1.4 

 

  Eq. 

28 

Eq. 

29 

Eq. 

32 

Eq. 

33 

Eq. 

34 

Eq. 

37 

Eq. 

37 

Eq. 

36 

analysis analysis criterion 

0  xm ym xm ym xym xf yf xyf fiber matrix R&H 

deg. deg. ×106 ×106 MPa MPa MPa MPa MPa MPa   F.I. 

3.0 0.0 0.9519 146.0 5.58 16.69 2.09 13.72 23.42 2.09 () () 0.72 

 

The full load Nx of Tab. 3 corresponds to failure. In this case, for  = 0, the values computed are 
those presented in Tab. 7. 
 

Table 7 – Results for full load Nx: angle  not converged. 
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31 
xym = 

xy 

0  1m 2m 12m x y xy xym Em Gm G12 xym 

deg. deg. [] [] [] ×103 ×103 ×103 [] MPa MPa MPa ×103 

3.0 0.0 0.0 0.0 0.0 20.79 5.352 2.7 0.0 105000 1520 1520 2.7 
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29 
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Eq. 

34 

Eq. 

37 

Eq. 

37 

Eq. 

36 

analysis analysis criterion 

0  xm ym xm ym xym xf yf xyf fiber matrix R&H 

[deg.] [deg.] [] [] [MPa] [MPa] [MPa] [MPa] [MPa] [MPa]   F.I. 

3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 unloaded unloaded 0.0 

 

The results for failure condition, presented in Matsuo [18] with 0 = 3o, are shown in Tab. 8, along with 

the value of  that satisfies the condition of the flowchart in Fig. 7a and accompanying stresses and 
strains. 
 

Table 8 – Results for full load Nx: angle  converged. 
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31 
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0  1m 2m 12m x y xy xym Em Gm G12 xym 

deg. deg. ×104 ×104 ×103 ×103 ×103 ×103 ×103 MPa MPa MPa ×103 

3.0 0.08 1.482 1.482 2.835 20.79 5.348 2.8 2.8 69106 1482 1520 2.8 
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Eq. 
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Eq. 
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Eq. 
37 

Eq. 
36 

analysis analysis criterion 

0  xm ym xm ym xym xf yf xyf fiber matrix R&H 

deg. deg. ×106 ×106 MPa MPa MPa MPa MPa MPa   F.I. 

3.0 0.08 3.974 300.3 7.67 23.36 4.18 27.90 47.99 4.18 () () 1.46 

 
Considering that the matrix is under compression, as observed in Tab. 8, application of the Hashin-
Rotem failure criterion yields 
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where the allowable stresses of 20.1 MPa and 12.5 MPa are reported in Tab. 1. Notice that the term 
responsible for failure is due to matrix compression and that the final compressive stress value used 
is 20.1 MPa. This value corresponds to the matrix failure stress under traction according to Matsuo 
[18]. Since the matrix compressive stress is higher than the matrix traction stress, the real value of 
the failure index must be lower than the one (1.46) just computed using the Hashin-Rotem criterion. 
An estimation of this real value can be made based in the work of Chao Zhao et al. [26]. In their work, 
the properties of the epoxy resin EPR-L20 were experimentally measured, and the values of strength 
under traction and compression are respectively 56.2 MPa and 99.1 MPa. Hence, based on these 
values, it is reasonable to assume that the compressive stress value for the resin might be 35.44 
MPa, which is calculated assuming the simple proportional relationship 20.1 × 56.2 / 99.1 = 35.44. 
Therefore, 
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4. Comments and Conclusions 

This work proposes a technique to investigate longitudinal failure under compression in laminates 
with initial fiber misalignment. Despite using micromechanics as other works developed did, the 

greatest innovation here is the use of one single variable (increment of angle ) to determine the 
problem solution. 

As a partial validation, comparison against the experimental work of Matsuo [18] proved to be 
encouraging. It is important to highlight that the results could have been improved provided the true 
resin and fiber mechanical properties were available. The values of failure index computed would 
possibly be in the range 0.54 to 1.46. Another point to be underlined is that the final angle of 
approximately 3.1o adheres well to the value shown in Fig. 8. 

As future work, a finite element model will be implemented to predict strains in laminates with initial 
misalignment, as opposed to the strains obtained by CLT where a laminate without initial 
misalignment is considered. Another significant step forward is the extension to 3D cases where two 
sequential rotations are involved in order to determine initial fiber misalignment. 

5. Contact Author Email Address 

Author email address arfaria@ccm-ita.org.br 

6. Copyright Statement 

The author confirms that they, and/or their company or organization, hold copyright on all of the original material 

included in this paper. The author also confirms that they have obtained permission, from the copyright holder 

of any third party material included in this paper, to publish it as part of their paper. The author confirms that 

they give permission, or have obtained permission from the copyright holder of this paper, for the publication 

and distribution of this paper as part of the ICAS proceedings or as individual off-prints from the proceedings. 

References 

[1] Tsai SW, Wu EM. A general theory of strength for anisotropic materials. Journal of Composite Materials, 
Vol .5, pp 58-80, 1971. 

[2] Hashin Z, Rotem A. A fatigue failure criterion for fibre reinforced materials. Journal of Composite 



UD FAILURE UNDER LONGITUDINAL COMPRESSION 

15 

 

 

Materials, Vol. 7, pp 448-464, 1973. 

[3] Dávila CG, Camanho PP, Rose CA. Failure criteria for FRP laminates. Journal of Composite Materials, 
Vol. 39, No. 4, pp 323-345, 2005. 

[4] Federal Aviation Administration. CFR Part 25 airworthiness standards: transport category airplanes, § 
25.305 Strength and deformation. April 1970. 

[5] Rosen VW. Mechanics of composite strengthening: fibre composite materials. Metals Park, OH: 
American Society of Materials, 1965. 

[6] Argon AS. Fracture of composites, treatise on materials science and technology. New York: Academy 
Press, 1972. 

[7] Budiansky B. Micromechanics. Computers & Structures, Vol. 16, No. 1-4, pp 3-12, 1983. 

[8] Budiansky B, Fleck NA. Compressive failure of fibre composite. Journal of the Mechanics and Physics of 
Solids, Vol. 4, No. 1, pp 183-211, 1993. 

[9] Wilhelmsson D, Talreja R, Gutkin R, Asp LE. Compressive strength assessment of fibre composites 
based on a defect severity model. Composites Science and Technology, Vol. 181, No. 8, 107685, 2019. 

[10]  Pimenta S, Gutkin R, Pinho ST, Robinson P. A micromechanical model for kink band formation: part II – 
analytical modelling. Composites Science and Technology, Vol. 69, No. 7-8, pp 956-964, 2009. 

[11]  Vogler TJ, Kyriakides S. On the initiation and growth of kink bands in fiber composites: Part I. 
experiments. International Journal of Solids and Structures, Vol. 38, No. 15, pp 2639-2651, 2001. 

[12]  Lee SH, Waas AM. Compressive response and failure of fiber reinforced unidirectional composites. 
International Journal of Fracture, Vol. 100, No. 3, pp 275-306, 1999. 

[13]  Vogler TJ, Hsu S-Y, Kyriakides S. On the initiation and growth of kink bands in fiber composites. Part II: 
analysis. International Journal of Solids and Structures, Vol. 38, No. 15, pp. 2653-2682, 2001. 

[14]  Bogetti TA, Staniszewski J, Burns BP, Hoppel CPR, Gillespie Jr JW, Tierney J. Predicting the nonlinear 
response and progressive failure of composite laminates under tri-axial loading. Journal of Composite 
Materials, Vol. 46, No. 19-20, pp 2443-2459, 2012. 

[15]  Chou PC, Carleone J, Hsu CM. Elastic constants of layered media. Journal of Composite Materials. Vol. 
6, No. 1, pp 80–93, 1972. 

[16]  Bogetti TA, Hoppel CPR, Drysdale WH. Three-dimensional effective property and strength prediction of 
thick laminated composite media. ARL-TR-911, U.S. Army Research Laboratory, Aberdeen Proving 
Ground, MD, October 1995. 

[17]  Richard RM, Blacklock JR. Finite element analysis of inelastic structures. AIAA Journal, Vol. 7, No. 3, pp 
432–438, 1969. 

[18]  Matsuo T, Kageyama, K. Compressive failure mechanism and strength of unidirectional thermoplastic 
composites based on modified kink band model. Composites: Part A, Vol. 93, pp 117-125, 2017. 

[19]  Vignoli LL, Savi MA, Pacheco PMCL, Kalamkarov AL. Micromechanical analysis of longitudinal and 
shear strength of composite laminae. Journal of Composite Materials, Vol. 54, No. 30, pp 4853-4873, 
2020. 

[20]  Zhang D, Waas AM. A micromechanics based multiscale model for nonlinear composites. Acta 
Mechanica, Vol. 225, pp 1391-1417, 2014. 

[21]  Huang ZM. Micromechanical prediction of ultimate strength of transversely isotropic fibrous composites. 
International Journal of Solids and Structures, Vol. 38, No. 22-23, pp 4147-4172, 2001. 

[22]  Gutkin R, Pinho ST, Robinson P, Curtis PT. A finite fracture mechanics formulation to predict fibre 
kinking and splitting in CFRP under combined longitudinal compression and in-plane shear. Mechanics 
of Materials, Vol. 43, No. 11, pp 730-739, 2011. 

[23]  Ramberg W, Osgood WR. Description of stress-strain curves by three parameters. Technical Note No. 
902, National Advisory Committee for Aeronautics, Washington DC, 1943. 

[24]  Matsuo T, Kageyama K. Investigation about temperature dependence of unidirectional compressive 
strength of carbon fiber reinforced thermoplastic composites. Proceedings of ICCM-20 Conference. 
Copenhagen, July 2015. 



UD FAILURE UNDER LONGITUDINAL COMPRESSION 

16 

 

 

[25]  Matsuo T, Kageyama K. Design and manufacture of anisotropic hollow beam using thermoplastic 
composites. Proceeding of the 19th International Conference on Composite Materials, Montreal, 28th 
July - 2nd August 2013. 

[26]  Zhao C, Huang Y, Chen Z, Ha SK. Progressive failure prediction of a landing gear structure of braided 
composites. Composite Structures, Vol. 161, No. 1, pp 407-418, 2017. 


