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Abstract

The ability of multiple manned and unmanned aircraft systems to cooperatively engage and disable an aerial
threat plays a decisive role in modern warfare scenarios. In this paper, we apply key methods to enable
the so-called cooperative threat engagement capability among multiple networked agents, e.g., a swarm of
drones, with combat and communication capabilities. In particular, this research combines AI-based decision-
making and control techniques for a swarm of loyal wingman drones to coordinate efficient defense actions in
cooperative and autonomous manner. We apply these concepts in a defense scenario, modeled to analyze
the loyal wingman concept, which we consider an interesting testbed for cooperative decision-making as well
as low-level control techniques. The methodologies were merged with the creation of a 3D UAV simulator to
provide an application and evaluation of behavior strategies and control methods.

Keywords: Cooperative engagement capability; manned-unmanned teaming; loyal wingman UAV; decision-
making; sliding mode control.

1 Introduction

The cooperative engagement capability (CEC) is an emerging systems-of-systems capability in which
multiple systems coordinate their actions through a network to improve their abilities to effectively per-
form a given task [1]. The term was coined in the 90s in the Johns Hopkins University Applied Physics
Laboratory in an effort to enhance the United States Navy’s defense capability. The project aimed to
improve the situational awareness of a fleet by sharing tactical information among data link partici-
pants and speeding up the decision process regarding the interception, engaging, and neutralization
of a flying threat, e.g., a cruising missile or aircraft. With the recent advances in aerial robotics,
the CEC concept can be extended to unmanned flying platforms to promote group behavior towards
the achievement of a common purpose via a shared communication network. In this context, drone
swarms are of particular interest since they enable the use of several low-cost and even disposable
platforms in modern defense or surveillance applications.

In particular, manned-unmanned teaming is an essential component of the future unmanned aircraft
systems’ operational environment. It extends the CEC concept by promoting the seamless integration
of unmanned platforms, endowed with some level of autonomy, with manned ones. The unmanned
platforms aim to perform given tasks under the command of the manned ones. This integration com-
bines the inherent strengths of both platforms to achieve synergy not seen in single-agent systems,
thus enabling a higher degree of effectiveness for the team of networked agents. Specifically, the
MUM-T context includes the concept of the loyal wingman (LW), which is an unmanned aerial vehicle
(UAV) under the tactical command of a high-level manned or remotely controlled leader [2]. Recently,
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we have witnessed a rapid emergence of multirotor aerial vehicles (MAVs) [3] in either research and
industrial applications where aircraft size, weight, and cost play a critical role in their operation, ef-
fectiveness, or feasibility [4]. Therefore, we argue that low-cost experimental MAVs are a suitable
alternative to investigate the loyal wingman concept in MUM-T scenarios.

This paper studies the use of loyal-wingman MAVs with combat capabilities to cooperatively engage
and disable aerial explosive threats. In particular, we highlight that this work is an extension of a pre-
vious work [5], which evaluated a 2D defensive scenario where a MUM-T composed of loyal wingmen
protects a leader UAV and a critical infrastructure from aerial threats. Here, we study a more complex
version of the same scenario, considering a 3D environment and more realistic flight dynamics. In
this paper, the vehicles are modeled as fully actuated MAVs, which can perform independent attitude
and position tracking [6]. To tackle the design problems that arise from such context, we proposed
a problem breakdown that focuses on both the high-level decision-making tasks and the low-level
control aspects to enable the CEC among the leader and the loyal wingmen in a defense scenario.
The low-level control addresses the well-recognized robustness requirement for MAV flight control
systems against disturbances and uncertainties by designing a joint geometric attitude-position con-
trol law using a multi-input first-order sliding mode strategy. On the other hand, the autonomous
behavior of the MAVs is designed using state-of-art artificial intelligence (AI) techniques, by apply-
ing automated finite-state machines (FSMs) and behavior trees (BTs) decision-making algorithms to
select and execute modular behaviors for the loyal wingman and the aerial threats. To the best of
our knowledge the main contributions of this paper are 1) an extension of the defensive scenario
proposed in [5] considering a three-dimensional environment with realistic flight dynamics and 2) the
application of the multi-input sliding mode flight controller and AI-base decision-making techniques
with FSMs and BTs into the proposed scenario.

The remaining of this paper is organized as follows. Subsection 1.1 presents the notation used along
the paper. Section 2 presents the scenario of interest. Section 3 defines the problem. Section 4
presents the methodology. Section 5 shows the computational architecture used to simulate the
method. Section 6 evaluates the proposed method using computer simulations. Finally, Section 7
concludes the paper.

1.1 Notation
Matrices and algebraic vectors are denoted, respectively, by uppercase and lowercase boldface let-
ters, while geometric (Euclidian) vectors are denoted as a⃗. A Cartesian coordinate system (CCS) is
represented as Sb ≜ {B; x⃗b, y⃗b ,⃗zb}, with B denoting its origin, and x⃗b , y⃗b, and z⃗b representing the unit
geometric vectors along its orthogonal axes. The algebraic vectors corresponding to the projection
of an arbitrary physical vector a⃗ onto Sb and Sg are denoted by ab ∈R

3 and ag ∈R
3, respectively. The

relation between ag and ab is ab = Db/gag, where Db/g ∈ SO(3) is the attitude matrix of Sb relative to
Sg and SO(3) represents the special orthogonal group. The inverse of Db/g is equal to its transpose,
which is denoted by Dg/b. The identity matrix of order n ∈ Z>0 is denoted by In. Consider two ar-
bitrary algebraic vectors x = (x1, . . . ,xn) and y = (y1, . . . ,yn). The vector inequality x < y means that
xi < yi, ∀i ∈ {1, . . . ,n}. The standard basis vectors of R3 are denoted by e1 ≜ (1,0,0), e2 ≜ (0,1,0),
and e3 ≜ (0,0,1). Let a⃗ b/g represent an arbitrary physical quantity of Sb with respect to Sg; e.g., along
the paper, v⃗ b/g will denote the velocity of Sb relative to Sg. Finally, consider the Sg representations
ag ≜ (a1,a2,a3) and bg of a⃗ and b⃗, respectively. The vector product c⃗ = a⃗× b⃗ is represented in Sg by
cg = [ag×]bg, where [ag×] is the following skew-symmetric matrix:

[ag×]≜





0 −a3 a2

a3 0 −a1

−a2 a1 0



 .

2 Scenario of Interest

To address the concept of CEC among the loyal wingmen and the leader, we define a defense
scenario where there are two teams: a MUM-T composed of loyal wingman MAVs that fly in formation
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alongside, i.e., escorting the leader, and must defend him as well as a protected area from attacks of
an adversarial team, composed by a swarm of kamikaze threats, as depicted in Fig. 1. Therefore, the
MUM-T mission is considered to fail if the leader is hit by a single kamikaze, or the protected area is
hit by a fixed number of kamikazes. The protected area is equipped with ground assets that provide
aerial surveillance capability to the MUM-T members.

Ground Assets

Figure 1 – Scenario of interest where loyal wingman MAVs, highlighted in blue, supported by ground
assets, escort a leader MAV and engage kamikaze threats in order to defend a protected area.

The LW is autonomous and capable of making intelligent decisions based on the situational aware-
ness information provided by the ground assets considering they do not have onboard sensors to
obtain information about the threats, such as cameras or LIDAR. To be able to neutralize the threats,
the LW is equipped with two hypothetical types of weapons, a mid-range freezing gun and a short-
range vaporizer gun, both with a limited number of cartridges and a fixed cool-down time interval,
i.e., they become unavailable for a fixed time period after shooting. The vaporizer gun can neutralize
the threat, while the freezing gun slows down the threat by half of its maximum speed. The weapons’
model is simplified, being the hitting success calculated by a given probability. Note that, the freezing

gun is intended to make the decision space more complex, in practice, this type of weapon is infeasi-
ble given current technology, and the vaporizer gun is also an idealized weapon that uses energy to
destroy only the electronic components of the kamikaze.

The leader is remotely controlled by a human and it is in charge of the formation coordination, i.e., it is
capable of passing relative coordinate commands to the LW. As a matter of simplification, we assume
that the leader can only command the loyal wingmen to fly within one predefined formation pattern. In
this paper, we consider this unique pattern as a uniform-circular formation along the local horizontal
plane with a desired radius. We also assume that the leader is always capable to command the loyal
wingmen whenever required, i.e, it can override the decision-making commands of a specific LW in
the MUM-T, either by enforcing the loyal wingmen to return to the formation, or selecting an LW to
engage or shoot a specific threat.

On the other hand, the kamikaze MAVs are assumed to explode as soon as they collide with either
the leader, an LW, or the protected area. When the explosion is triggered, its effect destroys the
target vehicle or damages the protected area. Additionally, once a kamikaze selects a target, it
will chase this target until the kamikaze explodes itself or is hit by a vaporizer gun. The number
of kamikazes is fixed in the simulated scenario, they immediately respawn after being neutralized,
keeping a steady stream of attacks. The kamikazes have a simplified AI but are assumed to be
faster and more numerous than the MUM-T, thus forcing the MUM-T to cooperatively work in order to
effectively neutralize the kamikazes.

The ground assets have a limited detection range and share situational awareness with the MUM-T,
i.e., a vector with the state (position, attitude, and linear velocity) of all entities. To simplify the scope
of this work, we assume the ground assets to be perfect radars, and that the communication among
the MUM-T is perfect, with no delays, packet loss, or bandwidth limitation.
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3 Problem Breakdown

In this section, we introduce a problem breakdown according to the scenario of interest. A common
approach in robotic cognition involves decomposing the agent into software layers, such as world
modeling, decision-making, and control. Figure 2 shows a representation of the software layers
present at the ith MAV. In this paper, we use a similar breakdown and focus on both the high-level
decision-making tasks and the low-level control aspects, abstracting the world modeling layer repre-
sented by the blue block in Figure 2.

i

Figure 2 – Problem breakdown indicating the main software layers at the ith MAV.

The high-level decision-making layer receives state information from the world model containing the
pose and linear velocity of each object of interest in a global coordinate system. Once this information
is received, the high-level layer process the states using AI-based decision-making algorithms that
outputs action commands. There are two types of action commands: rotational and translational
movement commands and commands regarding the use of weapons. The low-level control, on one
hand, translates the movement actions into appropriate state commands that are used to calculate
the control input to the MAV, and, on the other hand, allocates the weapon actions using the available
resources. Moreover, the MAV module contains the rotational and translational dynamics of the
vehicle, the control allocator that translates the control input into actuator commands, the actuator
model, and the weapons model. Note that, the weapons’ model is simplified, i.e., the aiming and
projectile dynamics are abstracted, being the hitting success calculated by a configurable probability.
Lastly, we also assume that the MAVs share an internal model of the world in the sense that they are
aware of the same threats and other agents state due to the ground-assets radars.

3.1 Low-level Control Problem
This subsection defines the problem of the low-level control layer. To this end, we briefly present the
rotational and translational dynamic modeling of a general fully actuated MAV with fixed rotors and
define the commanded variables. For a more detailed dynamic modeling please see [7–10].

Consider a ground reference CCS Sg ≜ {G; x⃗g, y⃗g ,⃗zg} located at a known point G on the ground, with z⃗g

oriented upwards, parallel to the local vertical. In addition, considering that in the proposed scenario
there is a total of N MAVs, we can define a body-fixed CCS Si ≜ {Bi; x⃗i, y⃗i ,⃗zi} tied to the ith MAV
airframe, with Bi coinciding with its center of mass, as depicted in Figure 3.

..
.

...

Figure 3 – Schematic representation of a general fully actuated MAV with nr ∈ Z>0 fixed rotors along
with the used CCSs.
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The translational kinematics and dynamics of Si w.r.t. Sg are, respectively, described by

ṙ i/g
g = v

i/g
g , (1)

v̇ i/g
g =−ge3 +

1

mi

f c,i
g +

1

mi

f d,i
g , (2)

where r
i/g
g ∈R

3, v
i/g
g ∈R

3, and mi ∈R are, respectively, the ith MAV position, velocity, and mass; g ∈R

is the gravity acceleration magnitude; and f c,i
g ∈ R

3 and f d,i
g ∈ R

3 are, respectively, the control and
disturbance forces of the ith MAV.

On the other hand, the rotational kinematics and dynamics of Si w.r.t. Sg are, respectively, repre-
sented by [11]

Ḋ
i/g

=−
[

ω
i/g

i ×
]

D i/g, (3)

ω̇
i/g

i = (Ji)
−1
[

Jiω
i/g

i ×
]

ω
i/g

i +(Ji)
−1
(

τ
c,i
i + τ

d,i
i

)

, (4)

where D i/g ∈ SO(3) is the attitude, ω
i/g

i ∈ R
3 is the angular velocity, Ji ∈ R

3×3 is the inertia tensor
calculated w.r.t. Si, τ

c,i
i ∈ R

3 is the control torque, and τ
d,i
i ∈ R

3 is the disturbance torque acting on
the ith MAV.

Let us denote a command with an overbar in the corresponding variable. Particularly r̄
i/g
g and D̄

i/g

denote, respectively, the position and attitude commands.

The main problem of the low-level control is now defined.

Problem 1. The low-level control problem is to design a joint attitude-position control law to make the

plant described by (1)– (4) robustly track the commands r̄
i/g
g and D̄

i/g
with respect to the disturbance

force and torque.

To tackle the above problem, we design the joint attitude-position control law using a first-order sliding
mode approach (SMC) [12]. It uses a high-frequency switching control to drive the plant output to
the so-called sliding manifold, where the plant ideally becomes insensitive to bounded disturbances
of the matched type.

3.2 High-Level Decision-Making Problem
In this section, the problem to be solved by the decision-making of LW agents will be described.

The main objective of the LW agents’ mission is to defend both the protected area and the remotely-
controlled leading drone against multiple incursions from a swarm of kamikaze drones. Therefore,
an LW must effectively engage and disable threats to ensure the safety of both. Furthermore, for
this mission to be successful, LW MAVs are expected to have the ability to make intelligent decisions
autonomously. Thus, we can define necessary capabilities for this agent, such as the ability to fly in
formation with cohesion, and the ability to engage and neutralize imminent threats to guarantee the
defense of both the protected area and the leader. To effectively achieve neutralization, agents must
have the capability to use embedded weaponry, i.e, use weapons intelligently and strategically, and
even in extreme cases, sacrifice themselves to ensure the mission’s success.

The main problem in high-level decision-making can now be defined.

Problem 2. The problem is to develop an autonomous intelligence module for the LW MAV, in which
we need to model basic behaviors and design a decision-making architecture to successfully achieve
the mission objective, aiming at the smallest loss of LW agents during the maneuvers of attack and
defense, thus ensuring the security of the protected area and the manned leader.
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4 Methodology

This section presents the methods used for addressing Problems 1–2. Subsection 4.1 describes
the method used to solve Problem 1. Subsection 4.2 describes the methods used to solve Problem
2.

4.1 Low-level Control Methodology
To design the controller, we first obtain the equations describing the error kinematics and dynamics.
To this end, define a command-related CCS Sī ≜ {B̄i; x⃗ī, y⃗ī ,⃗zī} representing the commanded position
and orientation for the ith MAV body-fixed frame Si. The attitude and angular velocity control errors
can be defined, respectively, as [11]

D̃
i
≜ Di/ī ≡ D i/g

(

D̄
i/g
)T

∈ SO(3), (5)

ω̃
i ≜ ω

i/ī

i ≡ ω
i/g

i − D̃
i
ω̄

i/g

i ∈ R
3, (6)

where D̄
i/g

≜ Dī/g and ω̄
i/g

i ≜ ω
ī/g

ī
are, respectively, the ith MAV attitude and angular velocity com-

mands.

Similarly, let us define the position and linear velocity errors, respectively, as

r̃ i
≜ r

i/g
g − r̄

i/g
g , (7)

ṽ i
≜ v

i/g
g − v̄

i/g
g , (8)

where r̄
i/g
g ∈ R

3 and v̄
i/g
g ∈ R

3 are, respectively, the position and velocity commands of the ith MAV.

The time derivatives of (5)–(8) can put into the following state-space model:

ẋi
1 = f i

1

(

xi
1,x

i
2

)

,

ẋi
2 = f i

2

(

xi
1,x

i
2

)

+Biui +Bidi, (9)

where xi
1 ≜ (r̃i, g̃i), with g̃i ∈ R

3 being the Gibbs vector representing D̃
i/g

, and xi
2 ≜ (ṽi, ω̃ i) are the

states, ui ≜ (f c,i
g ,τc,i

i ), di ≜ (f d,i
g ,τ d,i

i ),

Bi ≜

[

I3/mi 03×3

03×3 (Ji)
−1

]

,

f i
1

(

xi
1,x

i
2

)

≜

[

ṽi

1
2

(

g̃i
(

g̃i
)T

+
[

g̃i×
]

+ I3

)

ω̃
i

]

, (10)

f i
2

(

xi
1,x

i
2

)

≜

[

− ˙̄v
i/g
g −ge3

(Ji)
−1
[

Jiω
i/g

i ×
]

ω
i/g

i − D̃
i ˙̄ω

i/g

i +
[

ω̃
i×
]

D̃
i
ω̄

i/g

i

]

.

From (9), it can be immediately seen that the term di is of the matched type, i.e., it belongs to the
span of the input matrix Bi. Consequently, a first-order sliding mode control (SMC) law is able to
guarantee the robustness (or invariance) of the closed-loop system with respect to di [13].

Assume that the disturbance input di is unknown, but it is bounded according to |di| ≤ di,max, where
di,max ∈ R

6 is a vector with positive components.

Now, define the sliding variable s ∈ R
6 as

si ≜ Cixi
1 + fi

1(x
i
1,x

i
2),

where Ci ∈ R
6×6 is a design parameter matrix.

Note that in the sliding manifold si = 06, the system dynamics are reduced to ẋi
1 =−Cxi

1. Therefore, by
choosing Ci as a positive-definite diagonal matrix, the point (xi

1, ẋ
i
1) = (06,06) is made asymptotically
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stable. Inspecting (10), we can see that fi
1(06,x

i
2) = 06 if xi

2 = 06. Then, since (xi
1, ẋ

i
1)→ (06,06), it also

holds that xi
2 → 06, and consequently the point (xi

1,x
i
2) = (06,06) is asymptotically stable. Therefore,

the tracking objective of Problem 1 is accomplished by robustly keeping the system states on the
sliding manifold si = 06. To this end, we adopt a first-order SMC, which steers si to zero in finite time.

By choosing the control law

ui =−

(

∂ f i
1

∂xi
2

Bi

)−1(

Cfi
1 +

∂ f i
1

∂xi
1

f i
1 +

∂ f i
1

∂xi
2

f i
2 +Kisign

(

si
)

)

,

where Ki ∈ R
6×6 is a constant diagonal matrix satisfying

K16 = di,max + ε,

with ε ∈R
6 being a vector with positive components, si → 06 in finite time, thus completing the objec-

tive of Problem 1. The proof is omitted here but is analogous to the one presented in Section 3.1 of
Reference [14].

4.2 High-level Decision-Making Methodology
In this section, we discuss the methodology used to address Problem 2. For that, we focus on the
artificial intelligence of both types of agents present in the scenario of interest. The development of
the decision-making architectures of the agents described is based on our previous work [5], where
a prototype of the scenario was developed, in order to have an initial decision architecture of the LW
and kamikaze agents.

Many approaches have been devised for robotic decision-making, in modern applications such as
autonomous cars, the agents are highly deliberative [15]. In these complex scenarios, the decision-
making is further broken down into modules tailored to solve sub-tasks, called behaviors [16]. Once
this decomposition is performed, we need to orchestrate the execution of these behaviors. Many
behavior selection mechanisms exist, with finite-state machines (FSMs) for decision-making [17] and
behavior trees (BTs) [18] being the most popular techniques. The design of these mechanisms is
empirical and is mainly based on intuition, creativity, experience, and good practices [17]. Further-
more, this process is iterative, with the agent performance being evaluated by an expert or through
statistics, in order to select the best agent architecture [18]. On the other hand, optimization meth-
ods and machine learning techniques may be employed to tune decision parameters [5] or to learn
complete behaviors with no prior knowledge [19].

To begin to address the solution of Problem 2, we need the kamikaze agents to be functional through
simplified but effective AI. Consequently, we selected the finite state machine (FSM) technique to
develop the decision-making module for the kamikaze. The FSMs are the most common model
of computation for modeling decision-making architectures for simple AI [18, 20], due to its easy
implementation and intuitive structure. In this technique, a state represents a behavior for the agent.
An FSM can switch between behaviors in response to events. In Fig. 4, we present the decision-
making developed for the kamikaze MAV, note that each MAV contains an identical decision module.

LW Swarm 
Destroyed,p4:0.5

LW Swarm 
Destroyed,p4:0.5

Attack 
Loyal Wingman 

StateLeader Destroyed

Attack Leader 
State

Area Destroyed 

Attack Protected 
Area State

t1,p2,LW>0

IdleState

t1,p1,Leader:True
t2=1[s]

t1,p3,PA:True

Figure 4 – Decision-Making module for a kamikaze MAV using FSM.
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The kamikaze has four behaviors, the initial behavior is IdleState, where the agent is idle for t1 sec-
onds and then selects a target to attack based on the probabilities p1, p2 and p3, in this work equally
distributed probabilities were used for each target type. Once a target is selected, the FSM will tran-
sition to the representative state of the selected target and will remain in that state until the agent
is destroyed. The exception is Attack Loyal Wingman, this behavior targets the closest LW, and will
select the closest LW every t2 = 1 [s], to avoid frequent target switching. Once there are no more LW,
the FSM transitions to attack the leader or the protected area, with a probability of 50% each.

In contrast, the behaviors to be executed by the LW MAV are more complex given their desired capa-
bilities, consequently, its AI architecture requires further elaboration. To effectively solve Problem 2,
we implement its decision-making module using the behavior tree (BT) technique, due to its inherent
advantages in comparison to FSMs, such as behaviors that are highly modular, reactive, and flexible
to changes [18, 21]. We briefly present the basic BT framework used, but keep in mind that alterna-
tives commonly employ extensions [21, 22]. A BT is composed by nodes of two types: composite or

leaf. Composite nodes controls the BT logic, while leaf nodes execute the behavior modules or con-
dition checks. When executed, each node returns one of the following execution statuses: Success,

Failure, or Running. Table 1 presents the return status logic of each node type.

Table 1 – Node types of a BT.

Node

type
Success Failure Running

Selector
If one child
succeeds

If all children
fail

If one child returns
running

Sequence
If all children

succeeds
If one child

fails
If one child returns

running

Parallel
If N children

succeeds
If M-N children

fail
If all children return

running

Action Upon completion
When impossible

to complete
During completion

Condition If true If false Never
Inverter (Decorator) If Failure If Success -

Therefore, based on Problem 2 description, we can identify the modular behaviors for the decision-
making of a LW, in Table 2. We present three movement behaviors: Chase Threat, Go To formation,
and Approach Formation, and three offensive behaviors: Vaporize Threat, Freeze Threat, and Sacri-

fice Attack.

Table 2 – Behavior description for a Loyal Wingman MAV.

Behavior Description

Chase Threat
The loyal wingman leaves the formation to pursue

a threat in order to neutralize it.
Go To Formation The loyal wingman returns to formation.

Approach Formation
The loyal wingman approaches the leader from a safe

distance from the formation.
Vaporize Threat Performs an attack using the vaporizer gun.
Freeze Threat Slows down a kamikaze for a limited period of time.

Sacrifice Attack
When there is no ammunition left, the LW will disable

the threat by sacrificing itself as a weapon of last resort.

Figure 5 presents the behavior tree for an LW MAV using the behaviors described in Table 2. Note
that every LW has an identical and independent copy of this decision-making module.

This decision-making module will run by default the Go To Formation behavior, where the LW
keeps a flying formation surrounding the leading drone while there are no threats identified. When-
ever a kamikaze drone crosses the engagement range, the LW enters into the Chase Threat be-
havior, for which the vaporizer weapon must be available. In this case, the agent leaves formation
to pursue the threat and tries to neutralize it using available weapons. Once a kamikaze is in range
of use of the weapons, the LW selects a neutralization method. The selected method may be the
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?

ThreatInWeaponsRange?

ThreatInEngagementRange
and VaporizerAvailable?

Chase Threat

Go To
Formation

?

ThreatInVaporizerGunRange and
VaporizerAvailable? VaporizeThreat

ThreatInFreezingGunRange and 
 FreezingAvailable? FreezeThreat 

OutOfAmmunition? SacrificeAttack

Legend

Condition

Sequence ? Selector

Behavior Inverter

Approach
Formation

PermissionToJoinFormation
and InRangeToRejoin?

?

Figure 5 – Behavior tree for a loyal-wingman MAV.

vaporizer gun, the freezing gun or by sacrifice as last resort (no ammo left). A weapon is available

if there is still ammunition and if it is not cooling down after being fired. Note that the engagement
distance and the range of use of both weapons are decision-making parameters, with the latter being
less or equal than the nominal range of the weapons, thus leaving the use of weapons as a criterion
of strategy, not necessarily equal to the nominal range of the weapon.

The neutralization strategy embedded in this BT is to first select the closest threat within range of
his freezing gun (mid-range) and then try to freeze it. Once the threat is slower, it is safer to ap-
proach it, then the LW uses its vaporizer gun (short-range) to eliminate the threat. Note that the
freezing and vaporizer gun must be available at the time that the weapons need to be used. The
SacrificeAttack behavior is executed when there are no ammunition left in both weapons, it
causes the LW to collide with an imminent threat, thus using its body-frame as a protective weapon.
Immediately after the threat is eliminated or becomes out of range, the LW returns to formation, thus
ensuring the protection of the leader.

In order to rejoin the formation, the LW must first approach the formation from a safe distance and
send a request to the leader asking for permission to rejoin. the leader receives and processes the
request, allowing or not the entry into formation. The LW waits for the permission to be granted and
for the coordinates in the formation. The leader can arbitrarily refuse the request, so the LW will
remain at a safe distance from the formation. The safe distance is also a parameter in the decision
module.

Note that the decision-making modules described in this section will make decisions based only on its
internal state and the states of the other agents present in the scenario, which are received through
messages from the ground assets. Also, it is important to reiterate that the leader is capable of
override the decisions made by the module of a specific LW, by either enforcing the loyal wingmen to
return to formation, or selecting an LW to engage a selected kamikaze.

5 Computational Architecture

This section describes the computational architecture used to implement the proposed scenario. A
simulation framework is built as a proof of concept for the development of the proposed techniques.
The infrastructure is divided into two PCs, as seen in Figure 6. The first is responsible to compute
the low-level control, physics, 3D visualization, and interface with the human pilot through a joystick.
The second one is responsible to run the high-level decision-making modules of the agents being
simulated. The computers communicate on a local network using the Robot Operating System 2
(ROS 2) middleware which is built on an open-source data distribution standard (DDS) middleware
that provides features such as discovery, serialization, and transportation1.

The low-level control, physics, and interface with the human pilot through a joystick are coded in
MATLAB. The 3D simulator was developed using the Unity engine to allow a proper evaluation of the

1ROS2 Documentation: https://www.ros.org
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Figure 6 – Diagram of the computational implementation.

used methods. On the other hand, the decision-making algorithms were implemented in the Python
programming language, due to its large community, support, and availability of libraries of AI and
machine learning algorithms.

The data communication interface between the high-level decision-making layer and the low-level
control layer is implemented using the framework provided by ROS 2 [23]. It is based on topics
used to publish and receive customized messages in a publish-subscribe pattern that allows the
layers to share important information asynchronously. The customized messages contain information
regarding the action commands from the high-level decision-making module and the status update
of the vehicles calculated by the low-level control and simulation sub-module, as described in Tab.
3. For ease of implementation, each vehicle is identified by a unique ID. The low-level control and
simulation sub-module also sends unidirectional information containing the pose of the vehicles via
socket to the 3D simulator that works as a visual feedback to the pilot.

Table 3 – Table of commands.

Type of command Command Parameters

cmd_movement
GO_TO_POSE Target position and attitude.

SET_FORMATION_POSE Leader ID and relative position and attitude w.r.t. to the leader.
CHASE Threat ID to be pursued and neutralized.

cmd_weapon SHOOT Orders the firing of a specified gun on a desired target

6 Scenario Simulation and Results

In this section, we describe the experiment conducted using the proposed computational architecture
for a use-case with 4 LW against 2 kamikazes. The results described can also be seen on this video2.
The simulation objective is to test the effectiveness of the proposed low-level control method and the
LW BT architecture. Moreover, the simulation is used to empirically find an effective LW decision-
making architecture, while developing the behaviors and tuning the decision-making parameters. To
this simulation, we consider that the vehicles are equal and modelled as non-planar fully actuated
octocopters, as depicted in Figure 1. All the MAVs have a total mass of 1kg, arm length of 0.5 m,
and inertia matrix equal to diag(0.015,0.015,0.015) kgm2. The MAVs are subject to sinusoidal force
disturbances with the same amplitude of 0.6 N but with different phase shifts, and to sinusoidal torque
disturbances with the same amplitude of 0.05 Nm but also with different phase shifts.

Table 4 shows the maximum velocities of the MUM-T and kamikazes, the control parameters of all
MAVs, the weapon parameters of the loyal wingmen, and the parameters of the decision-making
algorithm.

The low-level control and simulation, coded in MATLAB, use the Euler integration method, runs with
a frequency of 100 Hz, and sends the updated data to the 3D simulator with a frequency of 20 Hz.
The actuator dynamics are modeled by first-order differential equations with a time constant of 0.01 s

2https://youtu.be/YQjDRBW-0nk
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Table 4 – Maximum velocities of the MUM-T and kamikazes, control parameters of all MAVs, weapon
parameters of the loyal wingmen, and parameters of the decision-making algorithm.

MAV Parameters Weapon Parameters Decision Parameters

Description Value Description Value Description Value

MUM-T maximum velocity 2.0 m/s Vaporizer gun nominal range 10 m Engagement distance 8 m
Kamikazes maximum velocity 3.0 m/s Vaporizer gun cooldown time 1 s Formation radius 3 m

Vaporizer gun ammo 20 Decision frequency 5 Hz
Control Parameters Freezing gun nominal range 20 m Vaporizer distance threshold 5 m

Description Value Freezing gun cooldown time 2 s Freezing distance threshold 6 m
Controller gain matrix diag(1.44,1.44,1.44,1.5,1.5,3) Freezing gun ammo 20 Kamikaze IdleState t1 Time 3 s

Sliding variable coeff. matrix 0.5I6 Weapons hitting probability 90 %

Since the MAVs use the same controller, we choose to evaluate the tracking performance of the low-
level control method by plotting the tracking errors for the LW 1. A simulation of this flight can be seen
in this video 3. To better illustrate the proposed control method, we performed a formation flight test
with four loyal wingmen following the controlled leader. In this sense, Fig. 7 shows the position and
velocity tracking performance of the LW 1. The references are the leader position and velocity. In plot
(a) it can be seen that the vehicle performs an accurate position tracking, while in plot (b) it can also
be seen an accurate velocity tracking but in this case the chattering becomes more evident.

Figure 7 – Position and velocity tracking performance of the LW 1.

Figure 8 shows the attitude and angular velocity tracking performance of the LW 1. In plot (a) it can
be seen that the attitude presents chattering, i.e., oscillations of the system motion around the sliding
surface, with a magnitude smaller than two degrees in each attitude parameterization component.
This is mainly caused by the presence of unmodeled actuator dynamics. Also, note that at the time
instant 5.6 s the vehicle is called to formation, i.e., it receives the leader attitude and angular velocity
references, and consequently it starts amplifying the leader chattering. In plot (b) we observe the
same described behavior, and additionally, it can be that the components of the angular velocity have
high-frequency profiles due to the presence of chattering.

Subsequently, we demonstrate operating sequences found during the execution of the scenario. First,
in Fig. 9, we see the simulation result of a case where a kamikaze threat is identified and neutralized.
Initially, in frame (a) we see the MUM-T in formation and an identified kamikaze threat in red. The
LW MAV closest to the threat leaves the formation and chases the kamikaze by executing the chase

threat behavior. As a result, all remaining LW MAV members in formation will readjust to new
positions defined by the leader, so no gaps for attacks are present.

Consequently, in frame (b), we have the LW that left the formation attacking the kamikaze with the
freezing gun, this strategy aims to facilitate the approach for neutralization since this weapon con-
siderably reduces the kamikaze’s speed. Now in frame (c) the LW gets even closer to the frozen
kamikaze and uses his vaporizer gun to effectively destroy it. Consequently, we see in frame (d)

3https://youtube.com/clip/UgkxHcMf1eOj0JNFoK2u1dw6rOV6R38m f Es

11

https://youtube.com/clip/UgkxHcMf1eOj0JNFoK2u1dw6rOV_6R38mfEs


COOPERATIVE THREAT ENGAGEMENT WITH HETEROGENEOUS DRONE SWARMS

Figure 8 – Attitude and angular velocity tracking performance of the LW 1. The symbol α1/g contains
the Euler angles in the 1-2-3 sequence corresponding to D1/g.

Figure 9 – Demonstration sequence of engagement to a kamikaze threat, in red. The leader is seen
in the center, in green, and four loyal wingman in blue.

that the kamikaze is destroyed and the LW returns to formation, initially the LW must approach the
formation from a safe distance executing the approach formation and request re-entry for the
leader, who must allow its entry and readjust the formation with the addition of this agent. In frame
(e) we see the LW successfully re-entering the formation and sequentially executing the behavior go
to formation. Finally, in frame (f) we see all the agents keeping formation after the success of the
mission.

Furthermore, in Fig. 10, we observe two sequences of cooperative neutralization that emerged
during the simulations, where two loyal wingmen performed tasks together to neutralize kamikazes.
In the first sequence, frames (a)-(c), we have LW1 freezing the kamikaze from a longer distance,
consequently, we observe LW2 in (b), which also identified the same threat, neutralizing it with the
use of its vaporizer gun. In the second sequence, frames (d)-(f), we see a similar case from a
different view. In both cases, the participating LW1 and LW2 take complementary actions to eliminate
a common threat.

Now we present the sequence leading to the sacrifice of an LW, in Fig. 11. The case begins in (a)
with three loyal wingmen in formation, after LW4 is destroyed. In (b), we observe the LW1, which
only contains one cartridge remaining in its weapons, engaging two kamikazes, note that after the
neutralization of the first kamikaze, it collides with the other one present in the attack, thus eliminating
two threats. In frame (d) we have LW1 out of ammo and starting his sacrifice attack after a new threat
enters the area. In (e) we have the successful elimination of the kamikaze, and consequently, the
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Figure 10 – Demonstration of a cooperative neutralization sequence. In this simulation, the leader is
in seen in black. The LW1 are represented in the blue circle, LW2 in the yellow circle and the

kamikazes in red.

Figure 11 – Demonstration of the sacrifice neutralization sequence. In this simulation, the leader is
in seen in black. The LW are represented in white and the kamikazes in red.

leader readjusts the formation of LW2. Finally, in (f) we have the MUM-T with only LW2 and LW3
remaining in its new formation.

Unexpected behaviors emerge, as illustrated in Fig. 12, we observe two kamikazes heading toward
the leader, in frame (a). So, in frame (b), we have LW1 identifying and freezing the closest threat
K1. As a consequence, we observe that K1 collides with K2, since K1 has been frozen and K2 which
is closely following K1 cannot avoid the collision in time. In this way, we can highlight this emergent
behavior as an indirect neutralization method.

Figure 12 – Freezing attack being used as a neutralization method. In this simulation, the leader is
seen in black. The LW1 in white and the kamikazes K1 and K2 in red.
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7 Conclusions

This paper evaluated the concept of CEC applied to MUM-T. To this end, we proposed a defensive
scenario where loyal wingman MAVs cooperate to defend a manned leader and protect a critical
infrastructure from a swarm of kamikazes with explosive capabilities. To deal with such threats the
loyal wingmen have the capability to engage and neutralize the threats, using two idealized weapons,
a vaporizer gun representing a short-range weapon capable of neutralizing a threat with a single
shot, and a freezing gun, a non-lethal weapon of mid-range, capable of slowing down the threat. To
reduce the complexity of this problem, all the vehicles are modeled as fully actuated MAVs, and the
problem is broken down into two parts, one involving a low-level control layer, and another involving
a high-level layer of intelligent software capable of making autonomous and decentralized decisions.
The low-level control designs a joint attitude-position control law using the first-order sliding mode
control that guarantees the closed-loop system robustness with respect to model uncertainties and
disturbances. On the other hand, the decision-making for loyal wingman agents was developed using
the behavior tree technique and reduced to modular behaviors, such as: chasing a threat, remaining
in protective formation, approaching formation to initiate rejoin procedure, and attack behaviors using
the available weapons or using the sacrifice attack in the extreme case where there are no more
weapons available. The method is analyzed using a high-fidelity 3D simulator and shows to be
effective. In future works, we plan to increase the complexity of the kamikazes’ behaviors to improve
the difficulty of the proposed scenario. We also plan the development of consensus algorithms and
task allocation using a world model that is not synchronized among the MUM-T agents. Moreover,
more complex scenarios can be defined involving different types of threats and drones.
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