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Abstract  

This paper presents the capabilities of a Simcenter-based simulation framework to validate automated flight 

functions (AFF) for eVTOL aircraft systems. This is accomplished by coupling the modelled aircraft subsystems 

and sensors in Simcenter Amesim and Simcenter Prescan with external functionalities available in Robot 

Operating System (ROS). In particular, the Detect and Avoid (DAA) PX4-Avoidance algorithm and the 

simultaneous localization and mapping (SLAM) LeGO-LOAM algorithm are tested within the proposed 

framework. Simulations evaluate the performance of the implemented algorithms in urban scenarios.  
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1. Introduction  

The introduction of autonomous urban air mobility vehicles is expected to revolutionize urban 

mobility. To ensure the safe operation of these autonomous vehicles, the flight management system 

needs to be extensively validated for diverse flight scenarios and operational conditions. Simulation 

models of the aircraft, sensors and environment are required to develop and validate the flight 

management system. Therefore, a digital twin is highly valuable as part of an efficient development 

process that ensures a safe product. 

This study investigated and demonstrated a simulation framework based on Siemens Simcenter 

software that can be used to evaluate automated flight functions. Simcenter Amesim was used to 

model the flight dynamics together with propulsion systems and the navigation control loops. While 

Simcenter Prescan was used to create the simulation environment and model the LiDAR sensors 

used to detect features from the environment. 

In this work, a Simcenter native solution made use of the C++ APIs of Simcenter Prescan and 

Simcenter Amesim to couple with ROS [1], enabling the usage of various open-source ROS 

packages. 

2. C++ Coupling of Simcenter Prescan and Amesim  

This first stage to create a flexible simulation using the Simcenter APIs involves creating the coupling 
between Simcenter Prescan and Amesim. In Figure 1, the framework architecture can be seen with 
the C++ executable performing the connection between both software. This shown setup can be used 
to evaluate the air vehicle system or sensor performance for scenarios with specified flight trajectories. 

On the Simcenter Amesim side, a .dll import method was utilized. On compilation, the Amesim model 
generates a .dll library, which has its inputs and outputs predefined. This .dll file is then imported in 
C++ using the API functions available by Simcenter Amesim, which enables setting solver 
configuration parameters, calling simulation steps, assigning inputs and accessing outputs. 

The Simcenter Prescan API allows setting up a master simulation model class. The simulation model 
class gives access to the simulation step and to the states of the simulated models. In this way, sensor 
information can be accessed, and the states of the air vehicle updated. 
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Figure 1 – C++ Simcenter framework architecture. 

The Amesim .dll functions have been implemented inside the Simcenter Prescan master simulation 
model class, giving access to the drone’s state computations from the Simcenter Prescan simulation 
step. In the simulation step function, the current waypoint coming from Simcenter Prescan is set as a 
Simcenter Amesim input and after that, a computation step is called. The new drone state is then read 
from the Amesim model, after which the Simcenter Prescan actor is updated. 

This C++ framework has been extended to be compatible with external DAA and SLAM algorithms. 
To accomplish this, the mentioned API was integrated with ROS. Widely used in the field of robotics, 
ROS is an open-source software communication framework with a collection of tools, libraries, and 
conventions that aim to simplify the task of creating complex and robust robotic software across a 
wide variety of robotic platforms [2]. 

The implementation of ROS in the framework enhanced the simulation capabilities, introducing the 
possibility to validate avoidance and localization and mapping algorithms. The sensor models in 
Simcenter Prescan will provide the information of the environment required for the computation of 
these algorithms. 

 
Figure 2 – Simulation framework architecture. 

In Figure 2, a diagram of the Simcenter-ROS framework architecture can be seen. The simulation 
framework is executed in a Windows computer running Ubuntu in a virtual machine. In this manner, 
the full functionality of the ROS algorithms can be exploited within the Simcenter simulation. On the 
left part in Figure 2 resides the Windows operating system, with the Simcenter software and the ROS 
Master. In this side runs the ROS-core, a collection of nodes and programs required for a ROS-based 
system. On the right part, the Ubuntu operating system with the algorithms to be executed during the 
simulation is represented. 

The ROS Master manages the data flow between all the processes. Once the simulation is started, it 
provides the configuration values to PX4 [3], which comprise the desired waypoints and parameter 
values for the DAA algorithm. It forwards to the algorithms the required state of the aircraft, being its 
position, velocity, acceleration and attitude. From Simcenter Prescan it receives the sensor output, 
which is also redirected to the Ubuntu side for the DAA and SLAM algorithms. Thereafter, it obtains 
the calculated safe waypoint from PX4 and the estimated location from the SLAM algorithm. The next 
safe waypoint to fly to is passed to Simcenter Amesim, which computes the state of the air vehicle 
and sends it to Simcenter Prescan. 
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3. Simulation Components  

This chapter presents the different algorithms, LiDAR sensor and air vehicle models used in the 
presented simulation framework. First an overview of the aircraft model and the Simcenter Amesim 
block for the cosimulation will be shown. After that, a description of the LiDAR sensor characteristics 
will be detailed. Finally, both DAA and SLAM algorithms will be presented with its implementation 
architecture. 

 

3.1 Aircraft Model 

The framework was tested with an air taxi model based on the CityAirbus [4][5] as shown in Figure 3. 
The CityAirbus is an all-electric, four-seater, octocopter with 4 sets of 2 ducted counter-rotating 
propellers with each propeller coupled with an electric motor of 200kW. The system and flight 
dynamics model is shown in Figure 4. 

 
Figure 3 – CityAirbus air taxi model. 

 

Figure 4 – Air taxi model in Simcenter Amesim. 
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The computed state of the aircraft will be passed to Simcenter Prescan and the ROS side to 
compute the obstacle avoidance and localization and mapping of the environment. On the left side 
of the cosimulation block, information of the position, velocity, acceleration, orientation, angular 
acceleration and thrust of each motor is given. Is important to notice that, the position shown at the 
top of the block will be used as ground truth to compare the pose estimation of the SLAM algorithm. 

 

3.2 LiDAR Model 

The LiDAR sensor from Simcenter Prescan models the operation of a real LiDAR sensor. Additionally, 
it offers the possibility to add configuration parameters to match the desired behaviour. In this case, 
featuring the VLP-16 LiDAR characteristics, it was specified a maximum and minimum vertical angle 
of 15 degrees and a sensor range of 100 meters. The scan pattern created 16 horizontal rings with a 
total number of 28928 points every 0.1 seconds. 

During simulation, the selected sensor uses ray-tracing techniques to simulate the propagation of a 
beam through the simulated environment. Even though a physics-based LiDAR model was used, a 
sensor sub-model has been used that does not compute multi-bounce effects in order to increase the 
simulation speed, while maintaining an acceptable level of sensor fidelity. 

 

3.3 PX4-Avoidance 

The PX4-Avoidance algorithm [6] was selected as detection and avoidance algorithm for testing. The 
PX4-Avoidance is based on the 3DVFH+ algorithm [7], which is a 3D obstacle avoidance algorithm 
that uses an octomap internal data structure to represent the three-dimensional environment. The 
object avoidance module of the PX4-Autopilot is also available as a ROS node, allowing it to be 
implemented on a ROS framework. The PX4-Avoidance algorithm is part of the open source PX4-
Autopilot [6] platform, a very popular autopilot compatible with multiple vehicle types including multi-
copters, fixed-wing and VTOL aircraft. 

 
Figure 5 – PX4-Avoidance section of the ROS graph in the Simcenter-ROS framework.  

In Figure 5, a more detailed ROS network graph of the Simcenter-ROS framework is shown including 
all the relevant ROS topics that are used between the master and the PX4-Avoidance node. A ROS 
framework can contain multiple nodes communicating data using the so-called publishers and 
subscribers. A ROS node, which is a process that performs computation, can send or receive data of 
a specific type to or from a ROS topic. There are three main nodes within the framework. The so 
called preameros_node, enables the communication between the Simcenter software and its coupling 
with ROS.  The node in charge of computing the localization and mapping in the simulation is the 
lego_loam_bor and finally, the local_planner_node, executes one of the three object avoidance types 
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that are supported by the PX4-Avoidance package.  

The preameros_node employs both the Simcenter Amesim and Simcenter Prescan APIs and 
publishes to a number of ROS topics the expected data by the local_planner_node. These topics are 
mavros/local_position/pose, mavros/local_position/velocity, camera/depth/points and 
input/goal_position corresponding to drone position and attitude, drone velocity, LiDAR output and 
desired waypoint respectively. 

Note that several topics are named with “/mavros”. This relates to the fact that the supported 
simulation setup of PX4-Avoidance ROS node is using the PX4-Autopilot firmware in the loop. This 
would mean that the autopilot firmware handles the control loops and path following of the waypoints 
and eventually outputs the thrust control signals. The PX4-Autopilot firmware however is not a ROS 
node or package but operates using a different communication framework called MAVLink. MAVLink 
is a lightweight messaging protocol for communication with drones, both with ground control stations 
and between drone hardware components. It also follows a publisher subscriber design pattern similar 
to ROS. MAVROS is a ROS package that acts as a wrapper for MAVLink communication, essentially 
allowing MAVLink communication over a ROS network, which explains the expected ROS topic 
naming. 

In the case of this study, it has been chosen to only use the PX4-Avoidance module and not the PX4-
Autopilot firmware, whose tasks are being accomplished by the PID control loops build into the air taxi 
Simcenter Amesim model. In this manner, a major function of the preameros_node node is to emulate 
the presence of the PX4-Autopilot. That includes sending connection state messages, which happens 
over the mavros/state topic, as well as providing the PX4 configuration parameters that normally come 
from the firmware. This is accomplished by including a ROS parameter server on the topic 
mavros/param/get which on callback from the PX4-Avoidance node provides the settings of the 
autopilot. Examples of these parameters are the desired cruise speed or the maximum horizontal 
acceleration of the air vehicle. 

The preameros_tf_node provides a ROS reference frame transform broadcaster on the ROS network. 
The PX4-Avoidance node expects to receive reference frame transformations from a ROS tf instance. 
The ROS tf package is used to keep track of multiple coordinate frames organized in a tree shape. It 
provides transformation matrices between any two defined reference frames. 

The reference frames that are defined inside the tf broadcaster are the LiDAR sensor position, the 
inertial frame and the body frame. The first two frames are static transformations as the LiDAR sensor 
positions can be statically defined inside the body frame of the vehicle. The body frame itself has to 
be updated every iteration which is why the preameros_tf_node is also subscribed to the 
mavros/local_position/pose topic. 

 

3.4 LeGO-LOAM SLAM 

As an extension to the object avoidance, an optimized version of the LeGO-LOAM [8] algorithm has 
been employed in this study as a localization and mapping algorithm. It combines LiDAR sensor 
information together with odometry to perform mapping and pose estimation, capable of to achieve 
real-time estimations on low-powered embedded systems. 

 
Figure 6 – SLAM section of the ROS graph in the Simcenter-ROS framework. 

LeGO-LOAM is developed based on the presence of a ground plane in its segmentation and 
optimization steps. First, a point cloud segmentation is applied to filter out noise, then a feature 
extraction obtains distinctive planar and edge features. A two-step Levenberg-Marquardt optimization 
method uses the planar and edge features to solve different components of the six degree-of-freedom 
transformation across consecutive sensor scans [9]. 

More precisely, the algorithm takes point cloud data from a Velodyne VLP-16 LiDAR in a horizontal 
position and IMU (Inertial Measurement Unit) data as inputs. This is provided following the same 
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procedure as previously explained for the avoidance algorithm. In this case, the output of the LiDAR 
sensor will be passed through the /velodyne_points topic and the simulated IMU through the /imu/data 
topic as shown in Figure 6. The pose estimation of the air vehicle is given through the 
/key_pose_origin, used to plot the estimated trajectory along the computed map of the environment. 
The remaining topics are required for the mapping computation and visualization. 

4. Simulation Results  

The results of the simulations focused mainly on demonstrating the abilities of the framework, not as 
an extensive validation of the containing models or algorithms. 

 

4.1 PX4 Avoidance Algorithm 

Multiple scenarios were created, progressing from simple to more complex situations for the object 
avoidance algorithm. The reference flight trajectory of the vehicle will be specified by a series of 
waypoints. The flight sequence starts with a vertical take-off until the altitude of the first waypoint has 
been achieved. After that, it will transition to forward flight until reaching the goal waypoint, marked in 
the figures as a yellow dot. When the final position has been reached, the aircraft will finally descend 
vertically. 

 
Figure 7 – First simple Simcenter Prescan scenario and trajectory result plot. 

 
Figure 8 – Second simple Simcenter Prescan scenario and trajectory result plot. 

In Figure 7 and Figure 8 are shown the results for the first test scenarios. On the left, the visualization 
in Simcenter Prescan and on the right, the plots show the predefined trajectory as a blue dashed line, 
while the red line shows the path the vehicle followed. From both simple situations, it can be seen 
how the air vehicle was able to detect the obstacles along its trajectory, compute and travel an 
avoidance maneuver to finally reach the goal position. 

The next scenario shown in Figure 9 presented additional obstacles, what implies a higher demand 
for the computation of the avoidance trajectory. The avoidance path fulfilled the evasion of the 
obstacles and reached the final commanded waypoint. Nevertheless, in order to compute such 
trajectory, the velocity needed to be limited to 5 m/s. Otherwise, the algorithm did not calculate an 
avoidance trajectory on time to ensure the safety of the vehicle. 
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Figure 9 – Complex Simcenter Prescan scenario and trajectory result plot. 

 
Figure 10 – Moving obstacle Simcenter Prescan scenario and trajectory result plot. 

The final scenario shown in Figure 10 contains a moving obstacle, in this case a similar air taxi drone, 
flying in a straight line. The maximum horizontal speed was again set to 5m/s to ensure the avoidance 
path calculation. As it can be seen, the collision with the moving drone was avoided by an aggressive 
right turn. 

 

4.2 SLAM Algorithm 

The SLAM algorithm, regardless of not being specifically developed for aerial vehicles, performed well 
in the simulations. Nevertheless, if the flight altitude was set too high, where the ground could not be 
detected by the LiDAR sensor, the localization did not perform as expected. 

 
Figure 11 – Simcenter Prescan urban scenario and SLAM point cloud map plot. 
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In Figure 11 it is shown on the left the urban scenario used to test the localization and mapping 
algorithm. In this case, the commanded path to the air vehicle encountered no obstacles. In this 
manner, the computation of avoidance trajectory will not be triggered, which would influence the 
performance of the SLAM algorithm. 

 

 

 
 

Figure 12 – SLAM pose estimation and ground truth plots. 

In Figure 11 the output map of the computed point map is displayed. The different dot colors obtained 
from the of the detection of the environment features represent the ring height from the scan pattern 
of the LiDAR sensor. In pink squares it is represented the pose estimated by the SLAM algorithm. 

The commanded trajectory required first a gain of altitude and secondly, a straight flight between the 
buildings. From Figure 12 it can be seen how the LeGO-LOAM estimated correctly the trajectory 
followed by the air vehicle in the simulation. 

5. Conclusion  

The objectives of this study were to create a Simcenter native simulation framework and enable its 

coupling with external functionalities available in ROS. The test scenarios evaluated the open-source 

PX4-Avoidance DAA algorithm and the LeGO-LOAM SLAM algorithm for an eVTOL aircraft. This 

demonstrated that the framework can be used to efficiently evaluate automated flight functions for 

urban air mobility vehicles that are available in ROS or developed as a C++ implementation. 

6. Future Work  

The Simcenter-ROS framework has been developed with the use of automatic design space 

exploration tools in mind. This enables the use of a design exploration and optimization tools that 

interfaces with engineering and CAD software. In the future, the Simcenter-ROS framework will be 

coupled to Simcenter HEEDS to automatically identify and investigate critical scenarios for 

autonomous flight missions using ROS DAA or controller modules. 

The Simcenter-ROS framework has been implemented using the ROS1 framework. The main 

reason for using ROS1 has been the compatibility of the PX4-Avoidance package which at the time 
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of writing did not have a version compatible with ROS2. ROS1 however is not meant to be used for 

real-time simulation performance while ROS2 was developed with real-time performance in mind. 

Since both Simcenter Amesim and Simcenter Prescan support real-time simulations, porting the 

framework to ROS2 would result in a real-time simulation framework that could be used in Hardware-

in-the-loop testing e.g DAA and SLAM algorithms on embedded hardware. These setups can be 

beneficial in the validation process of controllers and autopilots. 
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