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Explore possible ways one could achieve zero emissions aviation by considering both in-flight

emissions (not limited to CO2) relating to the aircraft vehicle system as well as identifying
Important emissions from the broader aviation system.
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Hydrogen fueled aircraft may offer tangible benefits over kerosene, synfuel,and other
sustainable alternatives:

* Increase in range compared to batteries and fuel cells [12]

Lower lifecycle and operational emissions than kerosene and synfuelaircraft [12][13][14]

Lower production energy requirement than sustainable synfuel [12]

Fuel production can be less expensive and easier to scale than sustainable synfuel and biofuel [12]
Clear industry support: Airbus [15], ZeroAvia [16], H2FLY [17], Universal Hydrogen [18]
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Tank Location: T&W: Aft Fuselage

* Least modification to existing T&W

* Doesn’t block access to cockpit

e Airbus looking at this configuration

BWB: Lateral/Aft of Homeplate

*  Works well with wide geometry of BWB

e Lateral keeps CG central

Airframe OML:

T&W (6]

* Fuselage extension as required for fuel

* Wing moves aft to account for CG change

e Current, no other changes to airframe OML

BWB (2 configurations)

e Passenger cabin and tank size are part of aero/structural optimization

* Fixed OML — trade passengers vs range based on LH2 that can fit in OML

Integral vs Non-integral:

T&W and BWB: Non-integral

* Non-integral is easier to integrate and maintain with existing fuselage
structure

* Integral has better gravimetric index (Gl)

Swappable vs Non-swappable:

T&W: Non-swappable

BWB: Non-swappable for aero/structural optimization; Swappable for fixed OML

* Non-swappable has better Gl

e Swappable allows filling before airplane arrives and easy swapping of tanks
for quicker turnaround times
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Get Limiting Design Pressure, Yield Tail cone/trailing Initial Guess
Fuselage Stress, Safety Factor, edge length and Required Fuel +
Dimension Joint Efficiency min radius Boiloff
Assume
Fuselage
Structure . .
Thickness Tank ) Tank l Fuselage Sized vehicle,
external s mt(cejrnal Calculate Required Length and Fuel Mission Profile,
: ; radius Calculate tan radius alculate Require ' . )
Set insulation thickness for design S —"y System Weight Run Mission Analysis and Fuel burn b s

thickness to Compute Fuel Burn

volume and mass

pressure

Update Boil-off and

* Hydrogen stored in liquid form (~20K) to ensure Required Fuel
feasibility of volumetric energy density for long-range flight

* Lowerstorage density and pressure relative to gas
e Lighter and more compact tanks
e Tanks must be insulated

* Requires 4x the volume of kerosene tanks for same range
» Preferred (not required) shape is spherical/cylindrical to minimize surface area and therefore heat transfer to fuel
* No longer viable to store fuelin wings > smaller wings
* Downstream impacts on landing gear, wing placement,empennage sizing,and more

» Boil off, or vaporization, occurs through the mission
seorgia Toch  If boiloff is greater than engine fuel flow then need to vent

Aerospace Systems « Ifengine fuel flow is greater than boiloff then need to artificially boil
Design Laboratory
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Sample results for equivalence ratio of 0.6

¢ Hyd rogen Eng ine CyCIe Mode Iing (Fuel and air are at the same temperature and pressure)
e Typicallyuse GasThl ThermoPacakage but this
isycr)) nly a)|/oplicable to Jet-Atype fuel ; Fuel pressure | JANAF - Product | CEA — Product Percent
. AllFuel Janaf and CEA can model H2 (atm) temperature (K) | temperature (K) | difference
* AllFuel matches fairly wellto CEA at standard 200 17 1761.32 1760.46 0.049%
temperature but can’t model differentamounts 400 17 1920.76 1920.42 0.018%
of fuel heating
« Janafmatches CEAvery welland is much faster 600 17 2080.02 2078.66 0.065%
to run relative to CEA 800 17 2246.13 2235.91 0.455%
o Selected Janaf for use but needs to use 1000 17 239456 2390.67 0.162%

different station properties to properly model
fuel temps properly

 Hydrogen needs to be heated to ~150 — 250K before combustion

e Current heat exchanger modelassumes a cross-flow tube-fin heat
exchanger

 Initial work is focused on sizing only a recuperator to heat the H2 to
200K
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BWB Airframe Design Process

Engineering Sketch Pad(ESP)
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Python-based
Toolchain
Automation

Variable-fidelity: CART3D &
STARCCM+

Lyu, Zhoujie, and Joaquim RRA Martins. "RANS-based aerodynamic shape
optimization of a blended-wing-body aircraft." 21st AIAA Computational Fluid
Dynamics Conference. . 2013.

I

LH2 Hybrid Wing
Body(HWB) Design
(264 PAX)

I

ESP/TACS
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Cabin Layout: BWB — 264 PAX

All dimensions in inches
1178 (~98 ft)
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Assumptions:

e For Business class used the Delta one seats
e 45 in pitch, 24 in width

e For Economy class used the Comfort+ seats

e 34 in pitch .
e« 18in width * Emergency Exits: Type A
e 42 in wide by 72 in high, with corner radii not greater than seven inches
e Cargo
X:?;T:[};ace Systems e 2 bays of LD3-45 containers
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Multi-bubble (3-bubble section) Multi-bubble (4-bubble section)

Elongated Oval (Racetrack section)

multi-sphere/cylindrical
bulkhead to minimize
stresses?!

\>

Multi-torus nose/tapered

multi-cylinder to minimize
stresses?

Factors considered:
e Overall cabin height
Georgia Tech e Passenger comfort
Aerospace Systems e Cabin interior design flexibility
Design Laboratory e Cabin area to weight ratio (determined using FEA2)

15



16

Span, Sweep & Chord Variations  High fidelity CFD simulations are
[ expensive (HPC time and cost)

 DoE samples are filtered based on
the design volume and thickness
constraints

e Optimal exploration of the
variation domain helps avoid
using non-informative simulation
points and build surrogates with
more relevant training data

Wing Dihedral, Twist Variations Airfoil Shape/Thickness Variation

Georgia Tech
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Multi-criteria Objective function

8(A(X))

Inputs: f(X™),

X' = Design Variable i

Outputs: f(X™ . .
Inputs: (X™) 1.1 Euler- utputs: fIX™) 1.2 Reduce Dimension il BEBAR=SS
. based CFD I Method: Active Subspace
Latin
Hypercube Outputs: (X™ — X™)
Sampling
Inputs: X"
2. Construct NS- Outputs: f (X™) 3. Evaluate
N . .
based Surrogate |k Y Objective Outputs: g (f (X))

Function

Method: Krigging and
Adaptive Sampling

Infill
5 design
points
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« A two step multi-fidelity approach for
efficiently optimizing the aerodynamic
performance of the TTBW

o Step 1: Dimensionality reduction using the
active subspace method (gradient based or
gradient free)

e Using an inviscid CFD solver like Cart3D

o Cheap and relatively quick to run compared to
RANS

Active variable 1
- Step 2: Bayesian adaptive sampling to (excerpt)
efficiently march towards an improved design

* Using RANS CFD
e Gradient free approach

« Balances exploration of the design space while
exploiting  potential regions of good

pe rformance “How much do we expect L/D to improvelj‘>

if we run the next design point?”
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1. Internal Structure

Generation in ESP

CAPS2FUN

2. FUN3D and
TACS’ aerothermal
elastic analysis

CAPS2FUN

4. Update Geometry with

optimized structure

3. Adjoint-based gradient
evaluation for properties
optimization (pyOPT)
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Overview of Structural Sizing Approach

Workflow for Structural Weight Estimation

OML
Geometry

Enabled by Rapid Airframe Design Environment (RADE)
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GT Representation of RISE

GT Representation of

Geared Turbofan

GT Representation of
Direct Drive Turbofan
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* Need to tie high-fidelity aero and structural optimization efforts to

fuelburn and emissions estimates

« An EDS model provides the required mapping

* Changes to the OML can be captured through modifications of a

« FLOPS + NPSS + WATE++ along with other codes in EDS together

FLOPS model

provide a system level performance estimate

* Aerodynamic performance and structural weight estimates required for

« EDS modelalso allows for leveraging existing capabilities to:

mission analysis is replaced with higher fidelity estimates

Investigate multiple engine architectures for a given airframe (notional

GEnx, notional PW1133, SROR, etc.)

Swap out conventional Jet-A powered engines with LH2 powered

engines
Consider hybrid-electric propulsion architectures

Optimize the cycle for any engine to best match the given
airframe
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Lo-Med Fidelity
System Level
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Fuel Burn Improvement** Noise Improvement™®**

T&W Baseline (Jet-A) - -

T&W 2030 Technology Reference Aircraft (Jet-A)*

2030 T&W Turbofan (Jet-A) + Mild Electrification

2030 T&W Turbofan (LH2)

2030 T&W Turbofan (LH2) + Mild Electrification

2030 T&W SROR (Jet-A)

2030 T&W SROR (Jet-A) + Mild Electrification

2030 BWB Turbofan (Jet-A)

2030 BWB Turbofan (LH2)

2030 BWB Turbofan (LH2) + Mild Electrification

2030 SBW Turbofan (Jet-A)

2030 SBW Turbofan (Jet-A) + Mild Electrification

Gr

Georgia Tech

Aerospace Systems ~ *Relative to T&W Baseline **Relative to 2030 TRA ***EPNdB Margin Relative to Chapter 14
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* Presented parametric modeling capabilities for future concepts aimed at zero
carbon emissions
 Parametric geometry generation for both aero and structural optimization
« Accounting for cabin and tank constraints
Multifidelity aerodynamic modeling
o Adaptive sampling
o Active subspace optimization
Hydrogen tank model
Structural weight prediction
Parametric NPSS/WATE++ engine modeling

 These modeling elements are needed for capturing system level impacts of
potential future sustainable concepts
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