#### System Level Studies for NASA

:

Model Development toward Zero Emissions

Dr. Jimmy Tai Division Chief, Advanced Configurations Division Aerospace Systems Design Laboratory (ASDL) School of Aerospace Engineering Georgia Institute of Technology

Insert contract Nos.:

#### Aerospace Systems Design Laboratory

### Zero Emissions Initiative

Explore possible ways one could achieve zero emissions aviation by considering both in-flight emissions (not limited to CO2) relating to the aircraft vehicle system as well as identifying important emissions from the broader aviation system.



## Conceptual Designs toward Zero Emissions



## Benefits of Hydrogen

- Hydrogen fueled aircraft may offer tangible benefits over kerosene, synfuel, and other sustainable alternatives:
  - Increase in range compared to batteries and fuel cells [12]
  - Lower lifecycle and operational emissions than kerosene and synfuel aircraft [12][13][14]
  - Lower production energy requirement than sustainable synfuel [12]
  - Fuel production can be less expensive and easier to scale than sustainable synfuel and biofuel [12]
  - Clear industry support: Airbus [15], ZeroAvia [16], H2FLY [17], Universal Hydrogen [18]



#### Overview of LH2 Modeling Developments

![](_page_4_Figure_1.jpeg)

# Tank Configuration

![](_page_5_Figure_1.jpeg)

![](_page_5_Figure_2.jpeg)

Georgia Tech Aerospace Systems Design Laboratory

#### Tank Location: <u>T&W: Aft Fuselage</u>

- Least modification to existing T&W
- Doesn't block access to cockpit
- Airbus looking at this configuration

#### BWB: Lateral/Aft of Homeplate

- Works well with wide geometry of BWB
- Lateral keeps CG central

#### Airframe OML:

<u>T&W</u>

- Fuselage extension as required for fuel
- Wing moves aft to account for CG change
- Current, no other changes to airframe OML BWB (2 configurations)
- Passenger cabin and tank size are part of aero/structural optimization
- Fixed OML trade passengers vs range based on LH2 that can fit in OML Integral vs Non-integral:

T&W and BWB: Non-integral

- Non-integral is easier to integrate and maintain with existing fuselage structure
- Integral has better gravimetric index (GI)

#### Swappable vs Non-swappable:

T&W: Non-swappable

BWB: Non-swappable for aero/structural optimization; Swappable for fixed OML

- Non-swappable has better GI
- Swappable allows filling before airplane arrives and easy swapping of tanks for quicker turnaround times

#### Overview of LH2 Modeling Developments

![](_page_6_Figure_1.jpeg)

# Tank Sizing: Overview

![](_page_7_Figure_1.jpeg)

- Lighter and more compact tanks
- Tanks must be insulated

Aerospace Systems

**Design Laboratory** 

Georgia Tech

- Requires 4x the volume of kerosene tanks for same range
  - Preferred (not required) shape is spherical/cylindrical to minimize surface area and therefore heat transfer to fuel
  - No longer viable to store fuel in wings  $\rightarrow$  smaller wings
  - Downstream impacts on landing gear, wing placement, empennage sizing, and more
    - Boil off, or vaporization, occurs through the mission
      - If boiloff is greater than engine fuel flow then need to vent
      - If engine fuel flow is greater than boiloff then need to artificially boil

### Overview of LH2 Modeling Developments

![](_page_8_Figure_1.jpeg)

- Hydrogen Engine Cycle Modeling
  - Typically use Gas Tbl ThermoPacakage but this is only applicable to Jet-A type fuel
  - AllFuel, Janaf and CEA can model H2
    - AllFuel matches fairly well to CEA at standard temperature but can't model different amounts of fuel heating
    - Janaf matches CEA very well and is much faster to run relative to CEA
- Selected Janaf for use but needs to use different station properties to properly model fuel temps properly
- Hydrogen needs to be heated to  $\sim 150 250$ K before combustion
- Current heat exchanger model assumes a cross-flow tube-fin heat exchanger
- Initial work is focused on sizing only a recuperator to heat the H2 to 200K

# Sample results for equivalence ratio of 0.6 (Fuel and air are at the same temperature and pressure)

| Fuel temp<br>(K) | Fuel pressure<br>(atm) | JANAF - Product<br>temperature (K) | CEA – Product<br>temperature (K) | Percent<br>difference |
|------------------|------------------------|------------------------------------|----------------------------------|-----------------------|
| 200              | 17                     | 1761.32                            | 1760.46                          | 0.049%                |
| 400              | 17                     | 1920.76                            | 1920.42                          | 0.018%                |
| 600              | 17                     | 2080.02                            | 2078.66                          | 0.065%                |
| 800              | 17                     | 2246.13                            | 2235.91                          | 0.455%                |
| 1000             | 17                     | 2394.56                            | 2390.67                          | 0.162%                |

![](_page_9_Figure_12.jpeg)

![](_page_9_Picture_13.jpeg)

#### Blended Wing Body Aero-Structural Optimization

![](_page_10_Picture_1.jpeg)

### BWB Airframe Design Process

![](_page_11_Figure_1.jpeg)

## Cabin Design as an Aero-Structural Optimization Constraint

#### Cabin Layout: BWB – 264 PAX

![](_page_12_Figure_2.jpeg)

Georgia Tech

Aerospace Systems Design Laboratory

![](_page_12_Figure_3.jpeg)

- 42 in wide by 72 in high, with corner radii not greater than seven inches
- Cargo
  - 2 bays of LD3-45 containers

### Pressurized Cabin Design : Structural Considerations

![](_page_13_Figure_1.jpeg)

# Optimal Design Space Exploration Informed by Design Constraints

![](_page_14_Figure_1.jpeg)

- High fidelity CFD simulations are expensive (HPC time and cost)
- DoE samples are filtered based on the design volume and thickness constraints
- Optimal exploration of the variation domain helps avoid using non-informative simulation points and build surrogates with more relevant training data

## Variable Fidelity Surrogate-based Aerodynamic Optimization

![](_page_15_Figure_1.jpeg)

## TTBW Aerodynamic Design Optimization Capability

- A two step multi-fidelity approach for efficiently optimizing the aerodynamic performance of the TTBW
- Step 1: Dimensionality reduction using the active subspace method (gradient based or gradient free)
  - Using an inviscid CFD solver like Cart3D
  - Cheap and relatively quick to run compared to RANS
- Step 2: Bayesian adaptive sampling to efficiently march towards an improved design
  - Using RANS CFD

Georgia Tech

Aerospace Systems Design Laboratory

- Gradient free approach
- Balances exploration of the design space while exploiting potential regions of good performance

![](_page_16_Picture_9.jpeg)

![](_page_16_Picture_10.jpeg)

![](_page_16_Figure_11.jpeg)

![](_page_16_Figure_12.jpeg)

![](_page_16_Figure_13.jpeg)

## **BWB** Structural Optimization

![](_page_17_Figure_1.jpeg)

## Overview of Structural Sizing Approach

Workflow for Structural Weight Estimation

![](_page_18_Figure_2.jpeg)

Enabled by Rapid Airframe Design Environment (RADE)

![](_page_18_Figure_4.jpeg)

## Propulsion System Modeling

![](_page_19_Figure_1.jpeg)

# Development of a System Level Model

- Need to tie high-fidelity aero and structural optimization efforts to fuel burn and emissions estimates
- An EDS model provides the required mapping
  - Changes to the OML can be captured through modifications of a FLOPS model
  - FLOPS + NPSS + WATE++ along with other codes in EDS together provide a system level performance estimate
  - Aerodynamic performance and structural weight estimates required for mission analysis is replaced with higher fidelity estimates
- EDS model also allows for leveraging existing capabilities to:
  - Investigate multiple engine architectures for a given airframe (notional GEnx, notional PW1133, SROR, etc.)
  - Swap out conventional Jet-A powered engines with LH2 powered engines
  - Consider hybrid-electric propulsion architectures
  - Optimize the cycle for any engine to best match the given airframe

![](_page_20_Figure_11.jpeg)

![](_page_20_Picture_12.jpeg)

## System Level Results to Come

|                                                  | Fuel Burn Improvement** | Noise Improvement*** |
|--------------------------------------------------|-------------------------|----------------------|
| T&W Baseline (Jet-A)                             |                         |                      |
| T&W 2030 Technology Reference Aircraft (Jet-A)*  |                         |                      |
| 2030 T&W Turbofan (Jet-A) + Mild Electrification |                         |                      |
| 2030 T&W Turbofan (LH2)                          |                         |                      |
| 2030 T&W Turbofan (LH2) + Mild Electrification   |                         |                      |
| 2030 T&W SROR (Jet-A)                            |                         |                      |
| 2030 T&W SROR (Jet-A) + Mild Electrification     |                         |                      |
| 2030 BWB Turbofan (Jet-A)                        |                         |                      |
| 2030 BWB Turbofan (LH2)                          |                         |                      |
| 2030 BWB Turbofan (LH2) + Mild Electrification   | CONSTR                  | UCTION               |
| 2030 SBW Turbofan (Jet-A)                        |                         |                      |
| 2030 SBW Turbofan (Jet-A) + Mild Electrification |                         |                      |
| Coursia Tash                                     |                         |                      |

![](_page_21_Picture_2.jpeg)

## Summary Remarks

- Presented parametric modeling capabilities for future concepts aimed at zero carbon emissions
  - Parametric geometry generation for both aero and structural optimization
    - Accounting for cabin and tank constraints
  - Multifidelity aerodynamic modeling
    - Adaptive sampling
    - Active subspace optimization
  - Hydrogen tank model
  - Structural weight prediction
  - Parametric NPSS/WATE++ engine modeling
- These modeling elements are needed for capturing system level impacts of potential future sustainable concepts

![](_page_22_Picture_11.jpeg)