
A GENERALISED MULTI-OBJECTIVE ISLAND MODEL FOR FLIGHT
CONTROL SYSTEM CLEARANCES

Patrick Piprek1, Pedro Miguel Dias1 & David Schwalb1

1Airbus Defence and Space GmbH, Flight Dynamics MAN, Rechliner Straße, 85077 Manching

Abstract

The clearance process of fighter aircraft is a very challenging task due to the large amount of possible flight
conditions, pilot commands, potential failure scenarios, and uncertainties that must be assessed to find the
most critical cases. To automatize the selection from this parameter space and increase the confidence in
finding the worst-case combinations, this paper proposes an island-model-based framework allowing for multi-
objective optimisation. The proposed scheme employs a two-stage parallelisation capability, both parallelising
the islands themselves as well as the model evaluation inside them. By this, it enables great scalability for
computations on a high performance computing cluster, while it is also very flexible in terms of potentially
used optimisation algorithms. Furthermore, it is very generic with respect to the evaluated model dynamics
as well as the used objectives, applied constraints, and optimisation parameters. The proposed framework is
demonstrated in a first step with test functions commonly used for global optimisation problems. Finally, an
application example within a fighter aircraft clearance of a severe turbulence assessment using the described
framework is shown.

Keywords: global optimisation, multi objective optimisation, generalised island model, fighter aircraft clear-
ance, flight control system

1. Introduction
In modern fly-by-wire aircraft, the flight control system (FCS) plays a key role in the safety, perfor-
mance, and reliability of the aircraft. The complexity and dependency on its correct behaviour further
increases in modern fighters, which are often designed to be naturally unstable in order to enhance
manoeuvrability and agility. Such aircraft solely rely on the FCS to artificially stabilize the aircraft.
The robustness and correct functioning of the FCS across the applicable flight envelope is assessed
in a clearance process. This assessment typically consists of the application of several sub-system
tolerances, aircraft configurations, manoeuvrers, and time-variant failures, all applied to an aircraft
with highly non-linear dynamics. As a direct consequence, the task at hand becomes complex and
multi-dimensional. Up to these days, much of this assessment work is carried out manually, with
the assessment engineers selecting predefined flight conditions based on previous experience and
combinations of parameters in a so-called grid approach [1]. Here, optimisation-based schemes of-
fer significant potential to reduce the manual workload and, specifically, the “engineering judgement”
involved in deciding which parameter combinations are critical. Thus, they are chosen in this study
as the method for the proposed generalised multi-objective FCS clearance framework.
In general, clearance of FCS using more modern approaches than a grid-based solution have been
studied in [2], with optimisation methods being one option also used and applied as an extension
for some time now [3]. Compared to traditional approaches, like the mentioned grid-based evalua-
tion [1], the benefit is that they offer a mathematical foundation in the sense that they converge to
the optimal points under algorithm-dependent conditions. Additionally, they remove the necessity of
a discrete, grid-based specification towards a more real-world related continuous evaluation. Finally,
the accessibility of high-performance computing (HPC) clusters gives the opportunity to exploit more
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capabilities of optimisation algorithms, as the evaluation and convergence times can be reduced
significantly by those to within a reasonable time frame due to their parallelisation capabilities.
As noted, there have already been approaches to clear flight control laws using e.g. gradient-based
optimisation schemes [3, 4], which may also consider uncertainties [5]. Furthermore, study [6] intro-
duced the optimisation of the angle of attack with different objective function models and compares
the numerical result to the analytical optimum. Although these approaches generally offer fast con-
vergence due to the gradient step, they require smooth enough dynamics and controllers as well as
continuous optimisation parameters to be viable in general applications. Additionally, multi-objective
problems are normally not straightforward to solve. Thus, they are not yet feasible in the highly
non-linear and non-smooth multi-objective FCS clearances of fighter aircraft.
To overcome the drawbacks of gradient-based optimisation in terms of FCS clearance, studies have
been conducted with a global optimisation-based perspective [7–10]. These schemes offer more
promise towards dealing with non-smooth optimisation problems. In studies [7] and [8], differential
evolution and genetic algorithms, in connection with local improvements by means of gradient-based
optimisation, are proposed. The goal is to optimise a handling qualities objective of a delta-canard
aircraft. Following, study [9] optimises time-varying pilot inputs for FCS clearances. Both global as
well as local optimisation methods are checked. Finally, study [10] introduces the connection of global
optimisation with game theory for the carefree handling clearance of a fighter aircraft. Additionally,
it introduces parametrizations for the valid range of pilot inputs. Consequently, effort to use optimi-
sation within, specifically, fighter aircraft clearance has frequently been carried out. However, most
of the proposed schemes have been focused on single-objective optimisation, which is a drawback
for actual clearance assessment as multiple requirements, and thus objectives, must be checked at
once. Furthermore, the exploitation of the full capabilities of HPC clusters has also not yet been taken
fully into account in connection with optimisation-based FCS clearance.
Consequently, this paper proposes a global multi-objective optimisation framework as a means for
automatizing clearance assessments and enhancing the chances of finding relevant problematic re-
gions of the flight envelope. The proposed algorithm is based on the concept of the generalised
island model [11] and its implementation is centred around achieving maximum flexibility and scala-
bility. This specifically applies to the range of potentially applied optimisation algorithms that can be
incorporated. Furthermore, it is suitable for computationally demanding objective function evaluations
with multiple objectives due to its two-stage parallelisation capabilities.
To show the developed algorithm, the paper is structured as follows: Section 2 introduces the theo-
retical background and the underlying algorithms of the proposed framework. Following, Section 3
shows the proposed multi-objective island model implementation. This proposal is verified in Sec-
tion 4 by means of standard global optimisation test functions, while Section 5 shows the application
in an actual fighter aircraft clearance assessment. A summary and an outlook are given in Section 6.

2. Theoretical Background
This section summarises the theory of the used algorithms connected within the proposed FCS clear-
ance framework. It specifically introduces the considered optimisation problem formulation, details
the specific requirements on objectives and constraints, and introduces the basic optimisation algo-
rithms.

2.1. Optimisation Problem
In general, the following multi-objective minimisation problem, including constraints, is solved in an
FCS clearance assessment:

minimize
z

J(x;z) , J : Rm×Rn→ Ro

subject to zlb ≤ z≤ zub , z ∈ Rn ,

ẋ = f(x;z) , f : Rm×Rn→ Rm ,

clb ≤ c(x;z)≤ cub , c : Rm×Rn→ Rp ,

ψeb = ψ (x;z) , ψ : Rm×Rn→ Rq .

(1)

2
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Here, z is the set of optimisation parameters. The objective functions as well as equality and inequality
constraints are given by the symbols J, ψ, and c, respectively. The state dynamics are defined by
the function f for the states x ∈ Rm. Take into account that these are solved using a single shooting
discretisation [12] in this study. Finally, the indices lb, ub, and eb denote the lower, upper, and equality
bounds for the constraints, respectively.
The main practical caveat of the problem specification in (1) is the multi-objective definition. Such
problems are generally difficult to solve, because they require Pareto optimality [13], which may be
difficult to achieve. However, they are of high relevance in practical FCS clearance assessments
because there is not only one objective, but multiple ones, based on the different requirements, that
have to be analysed such as angle of attack limits and control surface saturations.
Consequently, the main contribution of this paper is the definition of a framework that allows for the
optimisation of problems as specified in (1) in an efficient manner, specifically keeping in mind the
large set of potential optimisation parameters that are encountered in FCS clearances. Furthermore,
it is important to note that the objectives, evaluated as part of a FCS clearance, are generally discrete,
meaning that they are for instance the maximum angle of attack encountered over the optimisation
horizon, for which the time instance naturally changes for different scenarios. This makes the problem
non-smooth by construction, in addition to the potentially anyway used set of discrete optimisation
parameters, and consequently difficult to solve in nature.

2.2. Optimisation Algorithm
To solve the problem specified in (1), the use of genetic algorithms is proposed in this study. However,
any optimisation algorithm suitable for the specific problem formulation to be solved can be applied
in the proposed island model framework, which is detailed in Section 3. Consequently, the exact
mathematical description of the genetic algorithm operators is out of the scope of this paper and the
reader is referred to the literature. The following paragraphs will thus only give a general overview on
some details of the algorithms required to understand the behaviour of the island model. In general,
the proposed scheme was already successfully tested with the NSGA2 [14], NSGA3 [15], and omni-
optimisation [16] genetic algorithms.
The basic flow of a genetic algorithm is visualised in Figure 1: In general, the idea is to define an
initial population of the optimisation parameters, most often based on random sampling, and then
evaluate the dynamics and constraints to get an initial overview on where valid critical regions may
lie and sort the results accordingly. This is the non-dominated and crowding distance sorting step in
the figure (which is more specific to the NSGA2 [14], but, in one way or the other, this idea is followed
by all multi-objective genetic algorithms). Here, the individuals are sorted into different fronts from
closest to farthest away from current Pareto front. Furthermore, solutions that are relatively isolated
are preferred over solutions that are crowded together to ensure a well-spread approximation of the
solution. Then, the genetic algorithm operators of “selection”, “crossover”, and “mutation” are applied
to generate a new offspring population (which can be smaller in size than the initial population) that
should improve on the solution, i.e. approximate the actual Pareto front better. This procedure is
iterated until a stopping criterion, which is most often the number of generations, is reached. In
general, the balance between exploitation and exploration of the search-space is essential for the
performance of this kind of algorithms. Such balance is achieved mainly via crossover and mutation
respectively, with the selection of the parents also playing a role to this.

2.3. Objective and Constraint Modelling
The following sections give an overview on the objective (Section 2.3.1) and constraint modelling (Sec-
tions 2.3.2) within the proposed optimisation framework that is required to efficiently solve the FCS
clearance problem.

2.3.1. Objective Modelling
The objectives in this study are typically user-defined criteria that are referring to clearance require-
ments and are evaluated based on the analysis of time histories. As a result, different objectives can
have different magnitudes, making it more difficult to compare them. Furthermore, while the optimi-
sation algorithms are normally designed for minimisation problems, FCS clearances generally try to

3
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Figure 1 – Flowchart of a generic genetic algorithm applicable in the islands of the generalised
island model.

bl gl gh bh
0

1

J̃i

J i

Figure 2 – Criteria transformation using bad-good values based on fuzzy logic for i-th objective.

solve maximisation problems (such as finding the worst, i.e. maximum, angle of attack). To account
for both issues, a transformation based on fuzzy logic is performed [17]. This is depicted in Fig-
ure 2. The transformation can be shaped by the user using so-called bad-good value combinations.
The optimal range of values is defined between good-low, gl, and good-high, gh, which are equally
mapped to 0, thus being the optimal value the optimisation is trying to reach. Between bad-low, bl,
and good-low as well as good-high and bad-high, bh, the values are mapped to an interpolated value
between 0 and 1 and they provide an indication of how close the current solution is to the optimal one.
Below bad-low and above bad-high, the values are mapped to 1 which is the worst possible value
in the optimisation. Consequently, the mathematical definition of the mapping for the i-th objective is
given by:

Ji = max
{

0,max
[

min
(

1,
J̃i−gl

bl−gl

)
, min

(
1,

J̃i−gh

bh−gh

)]}
(2)

Here, J̃i is the original, non-normalized objective value.
It is important to stress that the definition in Figure 2 also serves a further purpose in the context of
FCS clearances: Here, it is generally not of interest to find the isolated extremal point (which fulfils
all optimality conditions), but all parameter combinations that lead to unsafe operation of the aircraft.
Thus, the mapping between good-low and good-high is generally an interval of all results that are
considered unsafe operation.

2.3.2. Constraints
Constraints are handled in this implementation by applying a constrained-domination criterion [14].
This is an extension of the usual domination criterion. A solution i is said to constrained-dominate a
solution j, if any of the following conditions is true:

4
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1. Solution i is feasible and solution j is not

2. Solutions i and j are both infeasible, but solution i has a smaller overall constraint violation cv

3. Solutions i and j are feasible and solution i dominates solution j (standard domination criterion)

By convention, a negative constraint violation cv means that the solution is violating and it is therefore
infeasible. If it is feasible, then it is always zero. The calculation of the constraint violation depends on
the closest boundary that it is violating and on the nature of the constraint (continuous or discrete).

Continuous constraints Continuous constraints define continuous feasible regions defined by min
and max values. Figure 3 illustrates the four distinct, reasonable feasible regions that can be defined.

z

maxmin

Figure 3 – Distinct feasible regions visualisation including allowed minimum, min, and maximum,
max, values for continuous constraints.

Taking the region from a minimum value, min, to positive infinity (orange arrow to the right) as an
example, the constraint violation for the scalar variable z is calculated as follows:

cv =

{
0, if z≥min
z−min
|min | , else

(3)

A similar logic is applied to the other regions, always taking the closest boundary.

Discrete constraints As opposed to continuous constraints, discrete constraints define a scattered
feasible region that may always be mapped to integer values. Instead of min and max values, a set
of values is defined. A threshold, ε, may be used to check if a solution is feasible or not to avoid
potential issues with numerical precision.
Due to its discrete nature, the calculation of the constraint violation, cv, as specified before is not
possible. Therefore, a binary cv is assumed, i.e., cv =−1 if violating and cv = 0 otherwise.

2.4. Hypervolume Performance Metric
There are multiple techniques for measuring the performance of multi-objective optimisation algo-
rithms available in the literature [18]. Here, the focus is on the hypervolume (HV) metric, because
it is one of the most used metrics due to its superior properties in measuring the performance of
even different algorithms and making them comparable. This is a core requirement of the proposed
scheme due to the fact that it should be independent of the actually used optimisation algorithm and
whether or not the islands apply the same or different algorithms.
In general, the HV indicator is additionally popular, because it shows the closeness of the solutions
to the optimal set and, to some extent, the spread of the solutions across objective space by means
of a scalar measure. It measures the size of the portion of objective space that is dominated by a set
of solutions collectively. One known shortcoming of this metric is that it is computationally heavy to
calculate. However, faster approaches have been proposed which are also scalable to n-dimensions.
This study uses one of these, the so-called “HV by slicing objectives” (HSO) algorithm [13, 19, 20].
It is based on the idea of processing one objective at a time, which significantly improves the com-
putational speed. Here only a short overview of the HSO algorithm is given. For details regarding
different steps in the algorithm the reader is referred to [13, 19, 20].
Before starting the algorithm, a key step is to set an appropriate reference point r. This is specifically
crucial if the evolution of the HV during the optimisation is to be used or interpreted in any way. In
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Figure 4 – General idea of hypervolume calculation for two-dimensional Pareto frontier.

general, setting the reference point requires previous knowledge of the objective space boundaries.
For the problems defined in this study, this is straightforward due to the fuzzy logic defined in Sec-
tion 2.3.1, which is applied to the objective values: This would consequently makes the choice for the
ideal reference point r = (1,1, . . . ,1). However, to avoid the possibility of getting a HV that is equal to
zero, which may need special treatment in the algorithms, and could happen if the fuzzy logic break-
point values are specified unreasonable for the problem, the reference point is set to r = (2,2, . . . ,2).
By this the HV is always greater than zero by construction, but still independent of the actual problem
formulation, which makes it generic in its application.
The HSO algorithm can be summarised as follows: In the first step of the actual algorithm, the non-
dominated Pareto optimal solutions are sorted by their first objective values, which are then used to
cut slices through the HV, where each slice itself is an n− 1 HV in the remaining objectives. As a
next step, all these HV of the different slices are calculated and multiplied by their depth values. The
depth value is the depth of the slice in the first objective. All these n-objective values are then added
to obtain the total HV. Figure 4 shows a small two-dimensional example, which would be a slice of
a three-dimensional space, illustrating the calculation of the HV based on the current points (black
crosses) on the (estimated) Pareto frontier (green line) with respect to the reference point (red cross).
In this case rectangles are used to calculate an estimation of the current HV.

3. Multi-objective Island Model Framework for FCS Clearances
The following paragraphs introduce the proposed generalised, multi-objective island model framework
that can be used for FCS clearances. It is a connection of the principles introduced in Section 2,
combining state-of-the-art optimisation algorithms with large-scale parallelised evaluations on a HPC
cluster. The framework is implemented in JavaTM, but also provides interfaces to SQLiteTM databases
and the command line to execute e.g., Fortran or Matlab R© code.
The proposed algorithm has a two-stage parallelisation scheme in which not only each island is
running in parallel its individual algorithm, but also the evaluation of the objective/constraint functions
is performed in parallel as illustrated in Figure 5: Here, the outermost parallelisation is provided by
OpenMPI (cyan box), a message passing interface for HPC [21]. In this scope, OpenMPI is used to
schedule the communication between the processes and execute the code. The actual distribution of
the processes and allocating of the cores is handled by SLURM [22]. It should be noted that SLURM
may also distribute the processes onto different nodes of the HPC cluster (light-blue boxes).
Inside the actual implementation of the proposed framework, one core will take the role of a “mas-
ter” (red square), whose purpose is basically to organize the program-internal communication (dashed
blue lines) and execution of the code. This master will distinguish the available processes, allocated
by OpenMPI, based on their defined rank onto the number of specified islands (grey boxes). In
general, it will distribute the processes equally onto the islands, assuming an equal workload. How-
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Figure 5 – High-level illustration of the proposed island model implementation including different
parallelisation layers.

ever, different distribution schemes are possible, as e.g. indicated by “Island 2” in Figure 5, which
has fewer processes. This non-equal distribution may specifically be reasonable if algorithms profit
differently from parallelisation (e.g. gradient-based optimisers may generally benefit less from par-
allelisation than genetic algorithms). If there is no communication required/expected at this point,
because the islands are busy with the execution of the optimisation, the master process may handle
some clean-up and data transfer tasks.
Now, inside the islands, one process is scheduled to be the “island master” (orange square), which
handles the supporting processes (white squares) by providing them the tasks they should execute,
while it is also the only process that communicates the island’s status with the master. This is for
instance required for scheduling the migration between the islands. However, the island master,
together with the supporting cores, will mainly deal with the non-linear simulation, analysis of the
time histories, and evaluating the steps in the selected optimisation algorithm.
Such an implementation allows for great scalability and leverages the computational power of modern
HPC clusters with multiple computing nodes. Moreover, this parallelisation scheme is well-suited for
optimisation problems which have demanding objective and constraint function evaluations. This is
typically the case for FCS clearances, in which every function evaluation translates into a non-linear
simulation of several seconds with additional analysis of the corresponding time histories.
Furthermore, the framework in Figure 5 does not make any assumptions on the algorithm each island
is running. This means that each island can run the same algorithm with different settings or, in an
extreme case, even completely different classes of optimisation algorithms. Thus, despite the com-
mon choice for this kind of optimisation framework being population-based algorithms, the proposed
island model also allows for different classes such as gradient-based optimisation or game theory,
which all work together towards achieving the same goals. This full flexibility of mixing different algo-
rithms can consequently be viewed as a hybrid metaheuristic approach in which several algorithms
can be combined. The use of these hybrid approaches has often proven to be beneficial in solving
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optimisation problems because the benefits of the global search can e.g. be directly combined with
an improved local convergence [7, 8].
A relevant feature in the proposed approach is the migration operator: In general, migration is the
exchange of data between the different islands about their best solutions, thus helping to improve the
overall performance characteristics by sharing information. Most often, the choice of the migration
topology is constrained by the distributed computation setup and is carried out by deterministic or
fixed migration paths, e.g. in a one-way ring [23]. In this paper however, the migration topology
is dynamic and the destination of migration is chosen based on the performance of each island.
To retrieve this information, the fundamental concept is to combine the migration step with typical
performance metrics used to assess the quality of the Pareto front in multi-objective optimisation.
Because of its properties, the most commonly used for such purposes is the HV metric introduced
in Section 2.4, which translates the quality of the Pareto front into a scalar value. It is therefore also
applied in this study. Despite being often regarded as a costly operation, faster algorithms have been
proposed to increase its performance [19]. Furthermore, the calculation of the metric is only required
when the migration takes place and therefore, its impact on the overall performance is considerably
lower than e.g. the non-linear simulations. It should be noted here that by design each island can
only receive individuals from a single island with a better HV value, except for the best island (“Island
4” in Figure 5), which can receive individuals from any island. To establish these island pairings, the
master process must be aware of the HV values of all islands. As a consequence, this requires the
island model to be synchronized at this stage. Potential migration paths are depicted by directional
red arrows in Figure 5. It should be noted that the number of exchanged solutions is a user-defined
property of the framework. Additionally, it is mentioned here that the master process will communicate
to each island with which island it should exchange data, while the island masters take over the task
of the actual exchange. This avoids the communication of the data to the master, which would then
only act as a relay reducing the performance.
It is further worth pointing out that the island model in its essence is not an optimisation algorithm but
rather an optimisation framework. Thus, the claim of being a multi-objective optimisation algorithm
is driven from the basic algorithms executed by each island. Generally, the migration operator im-
plemented copes with single- and multi-objective optimisation problems. This is due to the fact that
the HV calculation in the boundary case of a single-objective essentially becomes a distance and an
area in the case of two objectives. Therefore, the performance of the island can always be assessed
and the migration logic can also be carried out making the proposed framework applicable to general
optimisation problem formulations.
Summarising, this section introduced the proposed generalised island model for multi-objective op-
timisation. Although it is applied in the scope of FCS clearances in this paper, the methodology is
very generic and can be applied to any sort of optimisation problem formulation. Specifically, the
possibility to use different classes of optimisation algorithms within the islands, the generic migration
operator, and the two-stage parallelisation are superior properties of the proposed scheme.

4. Test Function Verification
In this section, the proposed framework introduced in Section 3 is verified using a standard test
function for global optimisation. For this purpose, the unconstrained, two-objective ZDT4 test function
is used, which is defined as follows [24]:

J1(z) = z1

J2(z) = h(z) ·
[

1−
√

z1

h(z)

]
(4)

The auxiliary function, h(z), is given as follows:

h(z) = 1+10 · (n−1)+
n

∑
i=2

[
z2

i −10 · cos(4 ·π · zi)
]

(5)

Here, n is the number of optimisation variables.
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Figure 6 – Visualisation of convergence to optimal hypervolume for ZDT4 test function with different
number of islands and migration operator.

The first conducted test compares the convergence towards the optimal HV, given in [24], of the test
function for a different number of islands and migration operators (population size: 80 ; maximum
number of generations: 500; migration of 10 solutions every 10th generation). The results are dis-
played as box plots (25th and 75th percentiles based on fifteen optimisations per island and migration
setups; outliers symbolized by red crosses) in Figure 6: Here, the results for four, ten, twenty, and forty
islands (each island here only has one process as the objective evaluation is not complex-enough
to require a split onto different processes), half running an NSGA2 [14] and the other half running
an omni-optimisation [16] algorithm, are compared for three different migration operators. The first
one is the “one-way ring” [23], a standard way of migration in which the islands communicate in a
ring with a fixed partner, the second is the HV method introduced in Section 2.4, while the third one
is an unconnected example for reference, i.e. no migration between the islands occurs. The results
show that the HV-based migration is overall converging with the fewest number of generations to the
optimal solution. For a small number of islands, the one-way ring migration performs very similar to
the HV-based migration due to the limited number of possible partners for the migration, which makes
it easier for an island to be positively affected by another higher-performance island. However, for
more islands the HV-based migration improves the time to convergence by means of fewer genera-
tions and also reduces the percentile spread, thus increasing the confidence in the obtained results
from different runs. Finally, it can be seen that the migration is in general improving convergence
speed significantly as the unconnected setup performs worst for all cases. Thus, Figure 6 shows that
the proposed framework including the HV-based migration specifically improves the convergence for
a large number of islands, which may normally be used in complex problems such as fighter aircraft
clearances.
The next results, displayed in Figures 7 and 8, show the convergence of the current population (blue
circles) for one of the evaluated cases with four islands towards the analytical Pareto front (solid
black line). This is displayed for different generations (numbers 10, 140, 170, and 390) that specifically
also contain migration. The effect of this step is displayed by visualising the removed (red triangles)
and added (green squares) points to the front. Here, Figure 7 shows the behaviour for the first two
islands running an NSGA2 algorithm, while the omni-optimisation algorithm is dealt with in Figure 8.
Generally, it can be stated that both algorithms converged to the analytic Pareto front after roughly 170
generations matching the results of Figure 6.
Regarding the effect of migration, Figure 8 is particularly interesting: Here, it can be seen that in
generation 140 of the “Island 3” column, two very bad solution on the y-axis are removed by the
migration and substituted by solutions very close to the front from another island. This proves the
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Figure 7 – Visualisation of convergence to Pareto front for ZDT4 test function displaying different
generations and effect of migration for two islands running NSGA2.

claim of the migration being a strength of the algorithm to remove solutions that are of reduced
practical interest as they are not part of the most critical solutions.
Concluding the test function section, Table 1 shows an overview of the average convergence and
execution times, calculated based on the fifteen executed setups, as well as the encountered mini-
mum and maximum times for the different number of islands with HV-based migration. Additionally,
the standard deviations are displayed. It should be noted that the measured time not only includes
the actual algorithm evaluation but e.g. also writing to files for means of tracking the progress. Fur-
thermore, the mentioned synchronisation of all islands during the migration is considered. As it could
be expected, convergence and execution times for four islands are lowest. However, the results for
ten islands also a very similar behaviour to the one with four islands although the spread between
the minimum and maximum value seems to become larger. The slowest execution is obtained with
forty islands: However, the time is not even doubled while there are ten times more islands evaluated.
Thus, the increase is within a very reasonable margin specifically considering that the results quality,
as seen in Figure 6, could be improved drastically using more islands. It should also be consid-
ered that there is more time for synchronization required in the forty island case, which explains the
increased measured times, and is specifically seen within the standard deviations as well. Further-
more, it can be seen that, using a suitable convergence condition e.g. for the HV, the actual execution
time of the algorithms can be reduced by roughly 50% in all cases, which is an additional benefit of
the HV-based migration operator that provides this information regularly.
Summarising, the viability of the framework proposed in Section 3 was proven in this section by
means of analysing the ZDT4 test function. Results for a different number of islands, migration opera-
tors, and optimisation algorithms were shown, displaying the capabilities of the framework specifically
with regard to scalability and flexibility. Following this verification by means of a test function, the next
section deals with an actual clearance assessment for a fighter aircraft.
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Figure 8 – Visualisation of convergence to Pareto front for ZDT4 test function displaying different
generations and effect of migration for two islands running omni-optimisation.

Number of Islands
Convergence Time [s] Execution Time [s]

Average Minimum Maximum Standard Average Minimum Maximum Standard
deviation deviation

4 6.86 5.23 8.86 1.09 11.36 10.30 14.30 1.15
10 6.80 4.57 10.57 1.39 12.98 11.48 16.97 1.72
20 7.52 5.35 12.66 1.73 14.63 12.84 20.87 2.62
40 10.89 7.03 15.74 2.39 21.34 17.38 26.99 3.97

Table 1 – Convergence and execution time statistics of ZDT4 test function evaluation for different
number of islands with HV-based migration.

5. Application in Clearance Assessment
This section shows an application example of the proposed framework from Section 3 in an actual
fighter aircraft clearance task: This task is the assessment of severe turbulence within an otherwise
failure-free aircraft. This configuration should ideally be carefree, i.e. the pilot shall be able to input
any (for the flight condition reasonable) input without destabilizing the aircraft [1]. This is modelled
by different clinical pilot inputs that cover a broad range of actually used commands by pilots during
operational flight [1]. The choice of the worst case manoeuvres in connection with the throttle position
is an optimisation parameter. Further parameters are the envelope point, the air brake position, the
tolerance on measurement accuracy of the air data system, the configuration (i.e. external stores),
the mass estimation error, and the so-called “fuel sloshing”, which describes the movement of fuel in
the tank due to manoeuvring. For the dynamics, a full, non-linear rigid-body simulation of the fighter
aircraft is used.
Within the framework, three islands and a total of 100 processes are used. This means that each is-
land has 33 processes associated to it. In this example, all islands run using an NSGA2 algorithm [14]
with an initial population size for each island of 200 and subsequent populations having the size of 150.
The number of generations per island is limited to 150 and the migration size is 10 every 10 gener-
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Figure 9 – Initial objective values plotted inside flight envelope for the three islands based on
random sampling in zero-th generation.

ations. This results in a total of 45,300 non-linear simulations including time history analysis, which
completed after roughly 1.5 hours on the HPC cluster (assuming a serial evaluation taking around 1s
per simulation, the evaluation would have taken roughly 12.5 hours). Finally, a two-objective optimi-
sation problem is looked at with one objective being the normalized overshoot above the design FCS
angle of attack limit for this flight condition, JAoA, and the second one being the normalized maximum
absolute angle of sideslip, JAoS. Both of these variables are common initial assessment quantities
to find critical situations in an FCS clearance. Flight envelope plots (altitude over Mach number) for
different generations of the algorithms are discussed in the following: Figure 9 shows the flight en-
velopes for the three islands and two objectives for the initial, i.e. the randomly-sampled, populations.
Here, one benefit of the island model is already clear in the sense that the different islands inherently
deal with the non-equal spread introduced by the sampling. For instance, “Island 2” has comparably
large “white areas” in the medium Mach-medium altitude domain, i.e. regions where no initial points
are calculated. This is covered by the other islands fairly well, thus, removing the requirement to
have sophisticated algorithms that produce an initial population because eventually critical solutions,
if they are located in such regions, are exchanged via the migration.
Following, Figure 10 shows an intermediate solution after twenty generations (and two migrations). At
this stage, the angle of attack objective is already similarly developed for all islands, while differences
in the results are particularly seen in the angle of sideslip objective. However, the migration already
seemed to have done a good job, together with the normal improvement of the algorithm, to distribute
information as e.g. “Island 2” now has points in the originally empty region, which turned out to be
comparably critical.
Concluding, Figure 11 shows the final solution envelopes after reaching the maximum number of
generations. It can be seen that all algorithms found similar regions of critical objective values. Still,
there are some differences in outliers or, presumably, less critical regions. As mentioned, this is a
further benefit of the proposed framework because, except for the migration exchange, the algorithms
evolve independently thus giving a more detailed overview on the actual result.
Summarising, this section has proven that the proposed island model framework is suitable for the
application in highly-complex optimisation tasks, which was shown here for a typical fighter aircraft
clearance assessment. Specifically, the parallelisation capabilities as well as the migration make the
framework suitable for complex problems, where the actual solution is not known from experience,
which normally makes it difficult to design a suitable solution scheme in another way.
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Figure 10 – Objective values after two migrations plotted inside flight envelope for the three islands
based on NSGA2 algorithm evolution.

Figure 11 – Final objective values after reaching maximum number of generations plotted inside
flight envelope for the three islands based on NSGA2 algorithm evolution.
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6. Summary and Outlook
This paper presents a framework for clearance of flight control systems using multi-objective optimisa-
tion algorithms within an island model approach. The method is specifically tailored to efficiently solve
clearance tasks with large parameter space, occurring for instance for fighter aircraft, by employing
a two-stage parallelisation scheme, which parallelises the islands and the dynamic model/constraint
evaluation independently. By this, the proposed scheme specifically thrives on high-performance
computing clusters. Furthermore, this framework gives great flexibility by allowing the use of different
classes of optimisation algorithms in each island, while maintaining a formulation that is also inde-
pendent of the actual optimisation task, by e.g. implementing a generic migration operator based on
a hypervolume. Summarising, this enables the use in a wide range of problem formulations without
the necessity to adapt the general framework.
Future developments may deal with the incorporation of other basic optimisation algorithms such as
gradient-based optimisation schemes including sensitivities. Furthermore, more detailed models, e.g.
in terms of pilot inputs, may be applied and statistical evaluation methods should be incorporated.
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