33RD CONGRESS
OF THE INTERNATIONAL COUNCIL

OF THE AERONAUTICAL SCIENCES

MACHINE LEARNING METHODS ENSURING BOTH PERFORMANCE
AND INTERPRETABILITY OF ESTIMATING AIRCRAFT ARRIVAL TIMES

Nobuharu Morikawa' & Eri ltoh!-2

'Faculty of Aerospace Engineering, The University of Tokyo
2Air Traffic Management Department, Electronic Navigation Research Institute

Abstract

Estimating the arrival time of aircraft more accurately is one of the most important functions for optimizing the
runway operation. For this purpose, this study proposes applying machine learning techniques and aims to
clarify the most feasible method which minimizes the estimation errors. In this paper, we applied five super-
vised learning methods; Elastic Net, Decision Tree Regression, Random Forest Regression, Gradient Boosting
Decision Tree, and support vector machine, for estimating aircraft arrival time at Tokyo International Airport.
The results showed that the Gradient Boosting achieved the best performance under the given assumptions.
Furthermore, Permutation Feature Importance(PFl), Partial Dependence(PD), Individual Conditional Expecta-
tion(ICE), and SHapley Additive exPlanations(SHAP) values are introduced to further understand the results
estimated using the ML methods. Based on the feature analysis and these indices, we propose a methodology
to implement the ML model into the AMAN/DMAN system in the actual air traffic operation

Keywords: supervised machine learning, air traffic management, SHAP

1. Introduction

Although air traffic demand is currently declining in the short term due to the impact of COVID-19,
in the long term, it is estimated to increase by 2.2 times in 2039 compared to 2019 [1]. Efficient
runway management is required to further improve arrival and departure aircraft traffic management
at the airport. In our previous research, we proposed the design requirements for an aircraft arrival
management system (AMAN: Arrival Manager) for Tokyo International (Haneda) Airport [2-7]. To
further improve the efficiency of runway management, our study indicated that the prediction of arrival
time at the runway in the en-route airspace (about 150NM to 200NM away from Haneda Airport) can
be shared with the departure management system (DMAN), which has the function of managing the
time of aircraft departing from Haneda Airport, thereby contributing to the efficient use of the runway
at the airport.

With this background, we have been developing a methodology applying Machine Learning (ML)
models to improve the accuracy of arrival time estimation in the integrated AMAN/DMAN system.
Our proposing method contributes to predicting the aircraft arrival time approximately 30 minutes
before landing and takeoff. The proposing method uses flight information, which allows us to obtain
during the actual operation while the arrival aircraft is flying in the en-route airspace. Furthermore,
the stakeholders involved in airport operations require us to explain the outputs of the ML models.
For ensuring both estimation accuracy and interpretability, we applied elastic net, decision trees, and
support vector machines in this study. The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 describes the data used in this study. Section 4 states the problem
and reviews each machine learning method, while Section 5 presents our experimental evaluation.
Section 6 draws concluding remarks.
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2. Related Work

Significant work has gone into applications involving machine learning for air-traffic management,
in areas such as air-traffic flow networking and trajectory classification [8-10], delay prediction for
air traffic networks [11,|12], dynamic airspace sectorization [13], trajectory prediction in terminal
airspace [14] and runway exit prediction for arriving aircraft [15]. These studies have shown scope
for machine-learning methods utilizing airtraffic data are effective in extracting and understanding
complex airtraffic characteristics, but no results have been published on their application to the op-
eration and design of airtraffic management systems. Accordingly, this study investigates a machine
learning method suitable for predicting aircraft arrival times in en-route airspace as part of efforts to
contribute to the design and operation of AMAN/DMAN. To predict arrival time more accurately, vari-
ous machine-learning methods are applied by incorporating factors related to air-traffic management,
such as airspace capacity, into the feature set.

3. Track Data of arrival aircrafts at Haneda Airport and Feature Extraction

3.1 Applying a distance-based Model

In this research, we used flight plans and track data for 39 days between September 2019 and Febru-
ary 2020 during northerly wind operations arriving at Haneda Airport from the southwest. Figure
shows the track data, along with concentric circles with radii varying every 10 NM from 10 to 200
NM starting from Haneda Airport and the outer edge of the terminal airspace. Arrival flows from the
southwest are indicated by red lines.

Figure 1 — Concentric circles at the center of Haneda Airport and arrival traffic flow model (Capital
letters indicate waypoints to be transferred to the terminal airspace.)

Here, we define 20 airspaces i € {1,2,...,20} surrounded by concentric circles. Airspace i =1 is
defined as an airspace surrounded by concentric circles of radius 10 and 20 NM, while airspace i =2
is defined as one surrounded by concentric circles of radius 20 and 30 NM and so on.

3.2 Feature Extraction

3.2.1 Numerical Variables

For each airspace i defined in the previous section, the flight time taken by aircraft arriving at Haneda
Airport in each airspace, as well as the ground speed, altitude, separation, namely the time interval
from the preceding aircraft and heading, measured when entering each area of airspace, were ex-
tracted and used as numerical variables. The separation represents the degree of congestion in the
airspace. Table [1|summarizes the numerical variables.
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Table 1 — Numerical variables

| Feature | Description \
XXXtoYYYFT || Flight time taken from XXX NM to YYY NM
XXXGS Ground speed at XXX NM
XXXAL Altitude at XXX NM
XXXSEP Separation at XXX NM
XXXANG Heading at XXX NM(0-360 degrees)

3.2.2 Categorical Variables

Categorical variables are defined as shown in Table 2 for factors that may affect air traffic. The
selection of categorical variables is based partially on literature [12], and we use the airline, depar-
ture airport, RECAT(Wake Turbulence Re-categorization [16]), transit gate (entry point into terminal
airspace) and runway arrival time.

Table 2 — Categorical variables

Classification | Feature | Description
airline 1 Airline 1
airline 2 Airline 2
Airline airline 3 Airline 3
airline 4 Airline 4
airline 5 Airline 5
other_airline Other Airlines
RJOOBB Osaka International Airport or Kansai International Airport
RJFF Fukuoka Airport
ROAH Naha Airport
RJCC New Chitose Airport
RJGG Chubu Centrair International Airport
Departure Airport | OTHER_JAPAN | Other Airports in Japan
ASIA Airports in Asia
Europe Airports in Europe
Hawaii Airports in Hawaii
N_America Airports in North America
South Sydney International Airport or Auckland International Airport
WV_A Class A in RECAT
WV_B Class B in RECAT
WV_C Class C in RECAT
RECAT WV_D Class D in RECAT
WV_E Class E in RECAT
WV_F Class F in RECAT
WV_G Class G in RECAT
AKSEL AKSEL
XAC XAC
Pass-through Gate | AROSA AROSA
HME HME
155E 155E
STONE STONE
Arrival Time XXX Within the hour of XXX

RECAT is classified into seven categories (A, B, C..., G) based on the aircraft's maximum takeoff
weight and wingspan. WV_A is the aircraft with the largest takeoff weight and wingspan, followed by
smaller aircraft in alphabetical order. For example, B777 is classified as WV_B, and A320 or B730 is
classified as WV_D.

The transit gates are defined by the names of the waypoints via which arriving aircraft next pass after
traversing the six waypoints on the outer edge of the terminal airspace shown in Figure |1 The main
air traffic arriving from the southwest enters the terminal airspace through SPENS and SELNO, then
traverses XAC and AKSEL, respectively.
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4. PROBLEM STATEMENT AND MODEL REVIEWS

We use features introduced in the previous section and target a model that predicts the flight time
taken from 200 to 80 NM when arrival aircraft pass 200 and 150 NM respectively. In response, we
build several models, which are then ranked by performance.

4.1 Elastic Net
The elastic net [17] is a type of multiple regression analysis thatAoptimAaIIy exploits ridge and lasso
regression. N samples and p features xi,...,x,, and coefficients 3 = (Bo,...,B,) are used to predict
the target using Equation] R R A

y2ﬁ0+xlﬁl+"'+xpﬁp (1)

The objective function is set as in Equatio and parameter 3 is found to minimize it.
L(A1,%2,8) = ly— X B +M[Bl1 + 4|8 (2)

The elastic net is characterized by variable selection and grouping effects and given its tendency
to estimate sparse solutions, over-fitting (over-learning) is unlikely to occur, making it a highly in-
terpretable method. The disadvantage is that as a type of linear regression, it is less accurate for
regression problems with strong nonlinearities.

4.2 Decision Tree

Decision trees [18] are widely used models for classification and regression. The former is called
a classification tree and the latter a regression tree. In decision trees, classification and regression
are performed using a hierarchical tree structure; comprising questions that can be answered with
Yes/No.

4.2.1 Regression Tree

The advantages of regression trees are their high readability due to a tree structure and robustness
against outliers. Conversely, downsides include instability, since the learning result is prone to change
significantly in response to small changes in training data and overfitting can occur unless appropriate
pruning is performed. Accordingly, ensemble methods like Random Forest and the Gradient-Boosting
Decision Tree are more effective.

4.2.2 Random Forest

The Random Forest [19] involves collecting several slightly different decision trees and averaging
them. This is based on the concept that although individual decision trees can allow relatively accu-
rate predictions, they overfit some of the data. If numerous decision trees are created, each overfitting
in a different direction, overfitting can be suppressed without pruning by averaging the results.

4.2.3 Gradient-Boosting Decision Tree(GBDT)

Decision trees are created in sequence, with the next decision tree correcting the errors of the pre-
vious one in GBDT [20]. The GBDT uses very shallow decision trees around 1 to 5 in depth, which
allows the model to occupy less memory and accelerate the computation. The process of adding
decision trees one at a time and gradually making ever-diminishing modifications is key to steadily
reducing the rate of error in the overall data.

4.2.4 Support Vector Machine(SVM)

SVM can handle non-linear data by margin-maximization and kernel methods. The advantage of
SVM is its positive performance, even when the dimension of the data increases and it has fewer
parameters to optimize. The disadvantage is that the more training data involved, the more compu-
tationally intensive it becomes.
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5. Results

5.1 Prediction Error when using the Haneda-centered Model

Table [3] shows the RMSE values when predicting flight time from 200 to 80 NM for each algorithm at
200 and 150 NM from Haneda Airport, along with the RMSE when using the average flight time from
200 NM to 80 NM as the baseline. Table [3|explains that GBDT is the most accurate when it comes to
predicting flight time. Nevertheless, there is a relative error of about 10% in GBDT, since the average
flight time from 200 to 80 NM is 921 seconds.

Table 3 — RMSE values when Haneda-centered distance-based model is applied.

Methods | Airspace of the features used | RMSE [s]

Elastic Net i z ;(5) 18082
Decision Tree i z ;g 19237
Random Forest iz ;g 18057
GBDT — ;3 gi
SVM =5 >
Baseline - 134

5.2 Improving the distance-based Model

Next, we improved the distance-based model by defining an airspace j € {1,2,...,20} surrounded by
concentric circles with Ohshima as the starting point and verified the accuracy of predicting the flight
time at the point of entry into the terminal airspace. Figure |2/ shows the concentric circles centered
on Ohshima and the traffic flow arriving at Haneda Airport.

Figure 2 — Map of Japan and concentric circles centered on Ohshima are drawn with flight tracks.
The red tracks show the south-west traffic flow

As shown in Figure [1] and 2, traffic arriving at Haneda Airport from the southwest is split into two
flows, traversing the two gates, SPENS and SELNO. In the Haneda-centered model, the difference
in flight time is attributable to the location of the transit gates for these two traffic flows. By using the
Ohshima-centered model, we hypothesized that the two traffic flows could be treated more equally
and accurately. However, since 80-150-200 NM in the Haneda-centered model corresponds to 30-
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120-180 NM in the Ohshima-centered model, we compare the results using corresponding airspace
features.

5.3 Prediction Error when using the Ohshima-centered Model

Table [4] shows the RMSE values when predicting the flight time from 180 to 30 NM for each algorithm
at 180 and 120 NM from Ohshima, along with the RMSE baseline. Table[4explains that the elastic net
improved accuracy by about 12-15%. Since other methods also helped boost accuracy significantly,
it can be analyzed that the two main traffic flows can be treated equally by improving the distance-
based model and extracting features at the center of Ohshima, thereby reducing the dimensionality
of categorical variables, given scope to eliminate the effect of the two pass-through gates (SPENS
and SELNO).

Table 4 — RMSE values when the Ohshima-centered distance-based model is applied.

Methods | Airspace of the features used | RMSE [s]

Elastic Net j i }é Zag
Decision Tree j i ﬁ 17253
Random Forest ji }; ?g
GBDT j - =
SVM j = gg
Baseline 3 134

5.4 Interpretability
5.4.1 Permutation Feature Importance(PFl)

PFl involves calculating the importance of a feature in a prediction by examining the extent to which
prediction error increases when the value of a feature is made unavailable. PFI can be easily calcu-
lated, no matter how complex the model, like Random Forest. Specifically, a feature is first rendered
unusable by shuffling its columns. The importance of the feature is then determined by calculating
the incremental prediction error. This operation is performed several times and the average is taken
as the importance of the feature.

Figure [3] shows the PFI plot when predicting the flight time taken from 200 to 80 NM at 200 NM in a
Random Forest by the Haneda-centered model.

The Numerical variables are at the top of the list, with ground speed at 200 NM (200GS) the key
parameter. Variables such as the flight time taken from 210 to 200NM (210to200FT) and heading at
200 NM (200ANG) are relatively high compared to other numerical values. The categorical variables
such as the departure airport and arrival time zone impact on the prediction, despite being relatively
small compared to numerical ones.

Conversely, Figure |4/ shows the PFI plot when predicting the flight time taken from 180 to 30 NM at
180 NM in a Random Forest by the Ohshima-centered model.

Unlike the Haneda-centered model, the ground speed at 180 NM (180GS) prevails and other values
are smaller. As mentioned earlier, this is because the Ohshima-centered model allows two separate
traffic flows to be treated equally, thus reducing complexity.

5.4.2 Partial Dependence(PD)

PD is a powerful method to generally determine the relationship between features and predictions. It
is an interpretation method that fixes other features, moving only those specified, then averaging and
visualizing the predictions of each instance.
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Figure 3 — Permutation Feature Importance Plot when predicting the flight time taken from 200 NM
to 80 NM at 200 NM in a Random Forest by the Haneda-centered model

Figure [5] represents the PD values plot of the numerical variables and Figure [6]the PD values plot of
the categorical variables.

Figure [5] shows that the flight time taken from 190 to 180 NM and that from 180 to 30 NM tend
to correlate negatively. Conversely, a ground speed of 180 NM or separation at 180 NM tends to
correlate negatively with the flight time taken from 180 to 30 NM.

Figure[6|shows a tendency toward shorter flight times between 4 and 8 o’clock and longer from about
19:00. The PD values also differ depending on the departure airport, with flights departing from
Osaka(dep_airport=0) usually taking longer.

5.4.3 Individual Conditional Expectation(ICE)

PD is a good way to generally determine the relationship between features and predictions, but taking
the average means the effect of the interaction can no longer be considered. Accordingly, ICE is a
method used to check the relationship between features and model predictions for each instance
without taking an average.

Figure [7] represents the ICE values plot of the numerical variables and Figure [8the ICE values plot
of the categorical variables.

One thing the PD did not find is that Figure [7] shows declining flight time as the heading approaches
90 degrees, in an eastward direction.

5.4.4 SHapley Additive exPlanations(SHAP)

SHARP, like ICE, renders the predicted value of each instance interpretable. Specifically, SHAP de-
composes the difference between the "predicted value for an instance" and the "average predicted
value" into the contribution of each feature. X is the feature and f(X) is the learned machine learn-
ing model. Specifically x; = (x; 1,...,x; ) is the feature of an instance i, and the prediction value of the
instance i becomes f(x;). In SHAP, we decompose the difference between the estimation value f(x;)
and the average value of the prediction E[f(X)] into the contribution of each feature. The contribution
of the feature x; ; of the instance i is defined as ¢; ;, and the difference from the expected value is
decomposed into the sum of the feature contribution as Formula 3| represents.

~

J
fx)—E[f(X)] = ; Pij (3)
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Figure 4 — Permutation Feature Importance Plot when predicting the flight time taken from 180 NM
to 30 NM at 180 NM in a Random Forest by the Ohshima-centered model

Figure [9 represents the SHAP values when predicting the flight time from 180 to 30 NM at 180 NM
in a Random Forest by the Ohshima-centered model.

Figure [9] shows that a high ground speed or high separation at 180 NM tends to make the flight
time taken from 180NM to 30NM shorter, and the low altitude at 180NM tends to shorten the flight
time. The categorical variables have smaller SHAP values than the numerical variables, but among
them, the departure airport can have large values. According to it, flights having departed from
Osaka(dep_airport=0) tend to have longer flight times.

6. Conclusion

We have presented several machine learning models such as elastic net and decision tree to predict
flight times between the en-route airspace and the entrance to the terminal airspace. Our exper-
iments verify that the GBDT achieved peak prediction accuracy, meaning the decision tree has a
high affinity with air traffic management. We can improve the prediction error by not only changing
machine learning methods, but also working out how to extract the feature. The Ohshima-centered
model outperforms the Haneda-centered model by a max of 25% in RMSE. We also attempt to
explain to stake holders like dispatchers, pilots, and air controllers why the model gives the predic-
tion. Accordingly, we introduced four methods: PFI, PD, ICE and SHAP to further understand the
prediction results. According to them, although numerical variables like ground speed at a certain
point impact significantly on prediction, categorical variables such as time slot and departure airports
also affects it. Some future work could involve selecting machine learning methods and appropriate
airspace division to further improve prediction accuracy. We should also consider weather conditions
like wind direction or speed because airplanes are highly affected by them.
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