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Abstract

Reducing uncertainties in the estimation of aircraft departure taxi-time is one of the most important measures
for maximizing the runway throughput while also saving fuel consumption and mitigating air traffic congestion
in airport operations. A previous study applied queuing models to three major airports in the United States to
predict taxi times of departure aircraft. However, the prediction error margins were within five minutes for just
60% to 70% of flights, which is not accurate enough to be able for application to real-world aircraft departure
management. This study proposes a methodology for applying Machine Learning (ML) methods as possible
alternatives for accurate prediction of departure aircraft taxi time. We used flight plans, radar data, and spot
assignment charts of actual flights which departed from the case study airport, Tokyo International Airport, and
developed a taxi-out model for departure aircraft traffic. For the taxi- time estimation, we applied five methods:
Linear Regression, Elastic Net, Random Forest Regression, Gradient Boosting Regression, and XGBoost, and
compared the prediction accuracy for each to determine the best ML method. Some past studies suggested
that decision-tree-based methods such as random forest regression and gradient boosting regression are
better suited for flight time prediction of aircraft cruising or approaching destination airports. We assumed that
these decision-tree-based methods would also predict taxi time of aircraft on the ground more accurately than
linear regression models.
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1. Introduction

Air transportation demand has been growing rapidly around the world. According to a survey pub-
lished by the FAA [1], the air travel passenger levels are increasing by around 4% per year in the
U.S. Although this growth fell far short of the forecast due to the COVID-19 pandemic in 2020, the
demand is expected to recover by 2024 and continue on this trajectory [2]. Major global hub airports
are already struggling to meet high demand, and departure delays are constantly occurring during
congested hours [3].

Expanding the airport infrastructure such as by constructing new runways is one possible option to
increase the airport capacity, but this costs huge amounts of money and takes significant time. For
this reason, improving the airport operation efficiency has been suggested as a measure to deal with
the congestion with limited infrastructure.

One of the ideas to improve the airport operation efficiency is integrated arrival and departure man-
agement, which achieves the optimal departure aircraft flow entering the departure runway in a unit
of time [4][5]. One element of this is to apply departure metering, which assigns suitable hold times
for departure aircraft at their gates. This idea is expected to reduce both departure delay and fuel
consumption while taxiing. However, departure metering is only possible if taxi times for departure
aircraft can be accurately predicted. Due to this requirement, many previous studies have tried to
predict aircraft taxi times using various methodologies.

Sadeep et al. [8] applied queuing models to predict taxi time of departure aircraft from three major
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US airports. The results showed that the prediction error of only 60% to 70% of flights had prediction
error margins greater than five minutes.

Another research applied several machine learning algorithms to aircraft taxi time prediction at Char-
lotte Douglas International Airport ([6]). They analyzed number of data elements to identify the key
factors affecting the taxi times and the unique operational characteristics of the airport. Although they
compared five machine learning methods with carefully chosen features, random forest regression,
which showed the best prediction performance among the methods they adopted, still failed to predict
more than 30% of departures within an error margin of 5 minutes, although performance was slightly
better than the aforementioned results of queuing models. These results suggest that modifying the
prediction models and finding better feature sets are necessary to improve the taxi time prediction
accuracy at large and busy airports.

Xinwei W et al. [7] compared multiple prediction models using real-world data for several international
airports, and investigated the impact of various features on the prediction accuracy. They concluded
that high accuracy can be achieved with a group of features that are generally important across all
airports along with a small number of features specific to particular target airports. The generally
important features included taxiing distance, total turns in the taxiing routes, and number of aircraft
departing within a certain period of time. This paper also showed that weather condition features had
little impact on taxi time, based on comparisons of 11 weather-related features.

Tokyo International Airport (RJTT), also known as Haneda Airport, is one of the busiest airports in
the world. With rapidly growing air transportation demand, this airport for which improving the effi-
ciency of airport operations to mitigate congestion and delay is extremely important. The previous
studies cited above suggested that we need to identify key factors affecting taxi time at the particular
airport we are interested in and also improve the methods used to achieve more accurate predictions.
Considering these points, this study aims to develop a prediction method for RJTT that can achieve
accurate taxi time prediction with prediction error margins small enough to be suitable for real-world
applications in departure metering.

This paper is organized as follows. Section [2.explains the characteristics of RJTT. This section also
covers the results of data analysis related to taxiing time at this airport. Section [3.presents the pre-
diction methods and Section [4.covers the results. Finally, Section [§.contains our conclusions and
possible topics for future study.

2. Data Analysis of Departure Traffic at Tokyo International Airport

2.1 Ground and Runway Operations at Tokyo International Airport

RJTT has four runways and three terminals, as shown in Figure 1] The runways include two parallel
north-south runways (34L/16R, 34R/16L) and 2 northeast-southwest runways (04/22, 05/23). How
these four runways are used is determined based on the wind directions (Figure [2). In the northerly
wind conditions, runways 05 and 34R are used for southbound and northbound departures, respec-
tively, and the parallel 34L and 34R runways are used for In arrivals. In southerly wind conditions,
there are two patterns used. The new pattern, which is to be the main one for operations in the near
future, uses three runways (16L/R, 22) for departures and two runways (16L/R) for arrivals. The data
shows that around 70% of all yearly departures from RJTT use runways 05 and 34R. The data also
shows that departures and arrivals to and from airports south of RJTT such as Osaka and Fukuoka
are dominant (about 70% of the total flights), so runways 05 and 34L are busy in northerly wind con-
ditions.

The previous research has confirmed that which departure runway is used is one of the most impor-
tant factors for predicting taxi times of departure aircraft. For this reason, we decided to try taxi time
prediction for departures from runway 05, which is the most used departure runway at RJTT.

One of the important characteristics to note is that taxiing time to runway 05 may differ greatly de-
pending on the departure terminal used. Figure [1| shows the basic taxiing routes to runway 05 from
Terminals 2 and 3. It is apparent from the figure that the taxiing distance from the farther terminal
(Terminal 3) is much longer than from the closer terminal (Terminal 2). Also, every departure from
Terminal 3 must cross runway 34L, on which more than 70% of arrivals land. This suggests that there
might be different taxi time prediction key factors for departures from different terminals.
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Figure 1 — Runway and terminal configurations of RJTT
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Figure 2 — The runway utilization patterns at RUTT

2.2 Taxiing Time Data Analysis

Taxiing time in this study is defined as the time period between the moment an aircraft starts pushing
back from the gate and the moment it reaches the line around 0.5 NM in front of the runway hold
line. Since our goal is to mitigate departure queues by applying the prediction results to departure
metering, we needed to predict taxiing time without the effects of the queuing time. The line we used
as the end of taxiing roughly represents the tail of the longest departure queue in front of runway 05
as observed in the data.

The taxiing operation defined above can be divided into three phases: pushback, taxi preparation,
and running. Pushback is the phase in which an aircraft is pushed from the gate onto a taxiway by
a towing truck. An aircraft holds its position for a few minutes after pushback, in order to complete
taxi preparations both in the cockpit ( starting the engines and setting up the computers ) and on
the ground ( detaching from the towing truck ). Afterward, the aircraft can finally start running to the
departure runway with its own engines. We paid attention to this point, suspecting that key factors
affecting the time of each phase might differ and therefore developing different prediction models for
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each phase to account for this in hopes of improving the overall prediction accuracy.

In this study, we used flight plans, radar data, and spot assignment charts of actual flights which de-
parted from RJTT during the 38-day period between September 2019 and February 2020. The data
contained the location of each aircraft, as well as its ground speed, heading, and altitude recorded
every second. Categorical data such as the type of aircraft, departure spot and runway, airline, and
destination was used as well. We divided the time history data of each aircraft into the aforemen-
tioned three phases based on the ground speed (Figure [3).
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Figure 3 — Histogram of the times for each taxiing phase (Terminal 1, 2, 3 from the top to the bottom)

3. Taxi Time Prediction for Departures at Tokyo International Airport

In the following two sections, we will explain our RJTT taxi time prediction experiment. Section [3.
describes the features, methods, and performance metrics we used in this experiment. We conducted
several experiments, and the results are explained and discussed in Section [4.

3.1 Factors for Taxi Time Prediction

Table [1] shows the factors we used for taxi time prediction in this study. These factors were chosen
based on previous studies ([6] [7]). Airline and Destination are category factors consisting of some
airlines and destinations in each category. Examples of Airline include "JAL," which referes to Japan
Airlines only, and "Other_Japan," which refers to Japanese airlines except for JAL, ANA, and SKY.
Some examples of Destination categories are "Japan”, "Other_Asia", "Europe." Spot ID refers to the
alphabetical IDs of close spot groups as shown in Figure [4] Numerical factors include those related
to airport congestion levels such as the number of recent departures and arrivals, those related to
the taxiing distance such as the direct distance, and those related to weather. The congestion factors
had a relatively large impact in the previous study ([7]), and we assumed that they would have an
impact on taxi time at RJTT to some extent as well. Weather data was obtained from the database
provided by the the Japan Meteorological Agency. Many previous studies used more direct features
such as taxi distance and pushback distance, but we did not because taxiing route may not yet be
determined at the moment of prediction; before pushback starts.

Table 1 — Factors used for prediction

Type Factor Name Explanation
Airline Group of Airlines
AircraftWeightCategory Weight category of the aircraft
Categorical Destination Group of destinations
SpotID Group ID of departure spot
DepTimeHour Departure time (0 to 23)
DirectDistance Direct distance between spot and runway (km)
Temperature Celsius temperature at departure time
Numerical Rainfall Amount of rainfall (mm) at departure time
WindVelocity Wind velocity (m/s) at departure time
CloseDepCount Number of recent departures
CloseArrCount34L Number of recent arrivals to 34L
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Figure 4 — Spot group ID [9]

3.2 Machine Learning Methods

In this study, we compared five machine learning methods: Linear Regression (LR), Elastic Net
(EN) [10], Random Forest Regression (RFR) [11], Gradient Boosting Regression (GBR) [12], and
Extreme Gradient Boosting, also known as XGBoost (XGB) [13]. The last three methods (RFR,
GBR, XGB) are decision-tree-based methods. Various studies have shown that decision-tree-based
methods performed better than linear regression methods (LR, EN) for predicting aircraft taxi time
and flight time ([6] [7]). Therefore, we tested RFR and GBR, which have been frequently used in
previous studies, and XGB, a relatively new method which has not been tested very much for taxi
time prediction as of yet.

3.3 Performance Metrics

We evaluated the prediction results using Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), R?, and accuracy. These performance metrics are calculated using the following equations.

1¢ .
MAE = ﬁZb’i_yi’ (1)
i=1
1 ¢ 2
RMSE = |-Y (yi—¥) (2)
i3
n a2
R = 1 Yim i — ) . (3)
n . 1lwyn .
i=1 (y,—,, i:lyl)
_ L& |y =i
accuracy = 1—72 ——1 | x100(%) (4)
=l i

where n is the number of data samples, y; is the actual value of sample i and y; is the predicted value
of sample i.

4. Prediction Results



INSERT RUNNING TITLE HERE

4.1 Predicting the Entire Taxiing Duration

Figure [5]and Table [2|shows the prediction results for each prediction method. The best value of each
metric is highlighted in bold. As shown in Table [2 decision-tree-based methods predicted taxi time
more accurately than linear regression methods. This result corresponded to the aforementioned
results from past studies, which showed that decision-tree-based methods were better suited for pre-
diction of air traffic flow. XGB achieved the best performance in all of the four performance metrics,
with GBR and RFR trailing close behind.

Table [3| shows lists of the top three most important factors for each method. One interesting point to
note is that both of SpotID and DirectDistance have a relatively large importance on RFR and GBR,
but only SpotID has a large impact on XGB. This may be explained by the fact that XGB is well-suited
to handling factors which have strong correlation to each other. We included three weather-related
factors, but none of these had a major impact on the taxi time, corroborating the findings of [7].

The MAE by XGB is less than a minute, which is much smaller than the margin of error in previous
studies. Although this may be partly because we did not include runway queue in our prediction
targets, this result still suggests that ML with decision-tree-based methods can predict taxi time with
sufficient accuracy for departure metering applications.

Table 2 — Prediction results and metrics for the four methods

LR EN RFR GBR XGB
MAE(sec) | 63.74 66.21 58.00 57.44 56.77
RMSE(sec) | 81.21 83.93 7453 73.95 7329

R? 0.528 0.496 0.603 0.609 0.616

accuracy(%) | 91.37 90.98 92.19 92.26 92.36

Table 3 — Top three most important factors

RFR GBR XGB
SpotID 0.33 SpotID 0.49 SpotID 0.63
DirectDistance 0.32 DirectDistance 0.35 Destination 0.14
Destination 0.16 Airline 0.05 DirectDistance 0.09
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Figure 5 — Left: Scatter plots of prediction results (actual value - predicted value), Right: histograms
of prediction error margins (%)
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4.2 Predicting Each Phase of Taxiing Operation and from Different Terminals with Different
ML Models

As mentioned in Section [2.each taxiing phase seems to have different factors which are particularly
important. In addition, departures from different terminals are impacted differently by these factors
as well because of the different taxiing routes and runway crossings. Focusing on these points, we
attempted to improve the prediction accuracy by applying different models to different taxiing phases
and to aircraft from different terminals. We chose LR and XGB for this experiment because they
achieved the best performance in the previous experiment in the linear-regression-based methods
and decision-tree-based methods, respectively. First, all the flight data samples were divided into
nine groups; three phases each for aircraft departing from three terminals. Next, we trained different
regression models using each set of data. Finally, we predicted the testing data and integrated the
results from the nine models.

Figure [6] and Table [4] show the prediction results for each taxiing phase. From Table [4 we can see
that running time is predicted more accurately compared to the other two phases. This is reason-
able because the time of pushback and taxi preparation largely depends on how smooth the ground
handlers’ operations proceed, which cannot be measured from aircraft movement data. In pushback
and running preparation, XGB performed much better than LR. On the other hand, the difference in
margin of error between XGB and LR was not so large for taxi preparation time. This indicates that
there are almost no factors that have an impact on this time, and therefore the prediction results do
not depend on the prediction methods used.
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Figure 6 — Scatter plots of prediction results for different taxiing phases (top: LR, bottom: XGB)

Table 4 — Prediction results and metrics for each phase

Pushback Taxi preparation Running
LR  XGB LR XGB LR  XGB
MAE(sec) | 30.62 25.66 24.90 2433 47.86 42.48
RMSE(sec) | 3850 33.19 32.63 31.77 62.81 56.83
R? 0.191 0.245 0.186 0.228 0.626 0.694
accuracy(%) | 55.17 62.50 81.70 8226 90.12 91.33

Figure /| and Table [5| show the prediction results of departures from different terminals. The result
for Terminal 3 has the largest deviation (lowest R?) but the smallest RMSE. This large deviation can
be explained by the existence of runway crossing. From Figure [7]we can clearly see that departures
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from Terminal 3 take a lot longer to reach the runway than those from the other terminals. This
is interesting because we expected that the longer the average running time was, the larger the
prediction error would be, but the result was the complete opposite. One possible explanation is that
we have close arrival counts on 34L, which clearly has a major impact on departures from Terminal

3 but little impact on departures from the other 2 terminals.
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Figure 7 — Scatter plots of running time prediction results for different terminals

Table 5 — Prediction results and metrics for different terminals

T1 T2 T3
LR XGB LR XGB LR XGB
MAE(sec) | 4258 41.61 4588 4424 43.26 41.53
RMSE (sec) | 54.83 53.65 65.63 63.48 51.73 51.15
R? 0.546 0.566 0.388 0.428 0.107 0.126
accuracy(%) | 91.20 91.46 90.11 90.51 93.67 93.94

Finally, Table [6] shows the comparison between the results for using only one model versus using
divided models. We can see that in LR, divided models performed better in all the performance
metrics. On the other hand, there were no improvements in the results of XGB. The result of a single
XGB model was still better than the improved LR models.

Table 6 — The results for one model and divided models

LR XGB
1 model divided models 1 model divided models
MAE (sec) 63.74 60.88 56.77 58.40
RMSE (sec) 81.21 77.93 73.29 74.96
R? 0.528 0.572 0.616 0.604
accuracy(%) | 91.37 91.82 92.36 92.18

5. Conclusions

In this research, we developed prediction models for aircraft taxiing time at Tokyo International Air-
port. We selected 11 factors based on previous studies. This factor sets contained airport-related,
aircraft-related, and weather-related elements. For our prediction methods, we compared five differ-
ent approaches, including a relatively new XGB along with frequently-used methods such as LR and
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RFR. The results showed that decision-tree-based methods, especially XGB, achieved significantly
improved performance compared to linear-regression-based methods in all of the metrics we used.
In these experiments, airport-related factors such as departure spot and the distance between the
spot and the runway had big impact on the taxi time. Weather-related features like temperature and
rainfall amount were also included in the factor sets but none of them significantly affected taxi time.
We also tried to improve the prediction accuracy by dividing the data samples by taxiing phases and
departure terminals, then training different models for each set of data. This slightly improved the LR
prediction accuracy but was not effective for improving XGB. Still, the mean absolute error of XGB
was less than 1 minute, which we think is small enough for departure metering applications.

Our next project will be to develop prediction models for other runways at RJTT. Departure runways
have been proven to have a major impact on taxi time, so we may need to develop completely dif-
ferent models for different departure runways. We will then apply the prediction models to departure
metering and investigate the effects of departure metering on taxi delay and fuel consumption. We
are currently developing an air traffic flow simulator using AirTOp software which will be used to
simulate departure metering on this simulator to evaluate its effectiveness.
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