
Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

1

Graph-Based Knowledge Representation and Algorithms for Air and
Maintenance Operations

Ella Olsson1, Olov Candell1, Peter Funk2, Rickard Sohlberg2, Miguel Castaño3, Mats A.
Gustafsson1, Peter Bladh1

1Saab Aeronautics, Linköping, Sweden
2Mälardalen University, Västerås, Sweden

3Luleå University of Technology, Div. of Operation & Maintenance Engineering, Luleå, Sweden

Abstract

This work presents an approach for information exchange between adjacent air operations domains by means
of graph technologies. The approach has the ability to leverage interoperability and collaboration between air-
and ground-based systems and stakeholders in respective domains. In its foundation, it provides a means for
relevant actors to access and assess relevant data, information and knowledge, and thus provide input in terms
of viable action alternatives in a complex and dynamic operational context. As a proof-of-concept, we have utilized
a full-stack application framework to implement a decision support demonstrator for operational aircraft
maintenance. Our solution facilitates a lightweight and dynamic representation of relevant domain knowledge,
readily available for exploitation by graph algorithms, adapted to our domain. We have based our implementation
on the full-stack application framework Grand-Stack, which is an architecture designed to exploit the power of
graphs throughout its stack.

Keywords: Graph Database, Graph Algorithms, Interoperability, Aircraft Maintenance, Grand-Stack

1. Introduction
The increasing dynamics envisioned in future military air operations raises new needs for more agile
and highly mobile air base logistic and maintenance capabilities, and a faster, more flexible response
to changes in operational needs and challenges [1]. Publications on U.S. Air Force Future Operating
Concepts speaks in terms of operational agility, superior decision speed and dynamic command &
control (C2), when discussing a “unifying principle that guides how the Air Force conducts its core
missions in the future” [2]. This relates well to the Swedish air force approach, with an overarching
need for an airbase system that provides the air units a greater freedom of dynamically dispersed
operations across large geographical areas, with good endurance and efficient resource utilization
[3]. Interest and system needs for air operations is also shifting towards system-of-systems (SoS) and
interoperability [4][5]. I.e. solutions where systems, to a greater extent, are able to exchange
information and services with other systems, regardless of operational domain type,  vendor, units or
coalition partners. Hence, maintenance and support systems for air operations will need better
capabilities for collaboration with other systems, spanning both ground-based and air-borne systems,
as well as with related system for command and control (C2) and defense logistics.

This paper presents an approach for information exchange between adjacent air operations domains
by means of graph technologies. The approach has the ability to leverage interoperability and
collaboration between air- and ground-based systems, as well as coalition partners. In its foundation,
it provides a means for relevant actors to access and assess relevant data, information and
knowledge, and thus provide input in terms of viable action alternatives in a complex and dynamic
operational context. A graph model forms the basis for information representation, and its design has
been influenced by the Swedish air operations doctrine and policies in order to facilitate integration of
tactical/operational level of logistic C2 as well as with envisioned air operations C2 structures and
needs.



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

2

The graph model is envisioned to be feed with data from various types of information sources including
both ground-based and airborne components. These components produce a vast amount of technical
data from sources such as integrated health management systems (IVHM) and maintenance and
logistics support systems respectively, as well as tactical data from tactical ground support systems
and C2.

The graph model is implemented in a Neo4j database, which acts as data layer a proof-of-concept
(PoC) demonstrator application.  The PoC itself is based on the Grand Stack architecture, which is
an architecture, designed, “using a consistent data model in order to leverage graphs throughout the
stack” [6]. Further, “The combination of GraphQL, React, Apollo, and Neo4j Database, aka “the
GRANDstack,” provides an easily adoptable end-to-end solution perfect for building fullstack
GraphQL applications.“ [6]

2. Background and Purpose

2.1 Background and Initial Problem Statement
The rationale for the study has its based in general, future air operations requirements and needs, as
deducted from the public Swedish and U.S. air operations related doctrine and policies [1][2][3][4][5].
From these needs, we have used a top-down approach to link C2 rationales and principles to the
underlying of organizational structure and applied processes. The result has provided us with detailed
information of how tactical needs (e.g. Air Tasking Order (ATO)) and maintenance capabilities are
interconnected and how information is exchanged from higher to lower organizational units [7].
Further, this information exchange has provided additional insights on how tactical needs (in terms of
orders) are transformed to more specific mission production requirements and plans, and how to we
can match these mission requirements to actual maintenance capabilities available as lower
organizational units and services within the air base system. Within the air base system, maintenance
and logistics planning also requires a high level of logistics functional services and situational
awareness [8], on macro as well as on micro levels. Furthermore, the resulting actions often need to
follow complex hierarchical pathways through a decision hierarchy for the execution to commence
according to plan. The addition of time- and/or resources constrained environments further stresses
the planning task and the risk for errors increase [9].

2.2 Technology-Driven Solutions
From a technological perspective, the last decade has spawned major breakthroughs in the area of
web-based information technologies and their applications, driven by the advent of social networks
and streaming media services. These technologies has disrupted the way we communicate with each
other and the way we consume media. With a vastly growing user base, combined with high-speed
networking and an increasing set of social use cases, these applications has in term adopted smarter
and more effective information and storage solutions [11], tailored to the specific requirements of e.g.
social network applications. Such applications live in a networked environment and handles
networked data in terms of interconnected and networked entities. Technologies that have made their
way also into defense applications [9].

These requirements has given rise to a new breed of graph-based database managements systems,
that differs from the commonly used Relational Database Management System (RDBMS)[12].
Whereas the RDBMS is based on relational algebra and it is good at representing stable data with
fixed pre-set, e.g. one-to-one, one-to-many etc. relations  [13], the graph model is based on a network
model with a close similarity between its conceptualization of the world and its physical
implementation. A graph model usually consists of nodes, relationships, properties, and labels. Where
nodes can be seen as information slots/documents that stores information in strings similar to
documents and relationships is used to connect nodes together in a graph structure. A relation can
also have properties that can extend its sematic meaning, or be used as metadata for the graph
algorithms. In addition, a graph database usually has a performance increase when handling
connected data relative to RDBMS and this performance remains relative constant even as the data
set grows [14].



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

3

Given the node topology of modern air operations where air-, and ground-based systems, as well as
coalition partners can be seen as interconnected nodes in a complex and dynamic SoS architecture
- we believe that the concept of a graph model naturally lends itself well as a basis for a real-time, on-
line, information sharing in modern air and maintenance operations

3. A Graph-Based Application for Planning and Decision Support in Air- and
Maintenance Operations

The objective of this research is three-fold:

1. To investigate the application of graph models in air-, and maintenance operations. Previous
research findings has lead us to believe that this approach is viable solution for an effective
multi-domain integration and information sharing framework, able to mirror the dynamic
context of todays and future military air- and maintenance operations. This has lead us to
develop a graph representation of air-, and maintenance operations, which is further
described in section 3.2.

2. In addition, our objective is also to raise the Technology Readiness Level (TRL) [15] from 2-
3 to 4-5 for the proposed technologies within the operation, maintenance and logistics support
application domain. This has been done by leveraging our previous results from a conceptual
level to a demonstrator level, which will enable us to validate our concept and components
using a graph model implementation, which also will form the basis for additional functionality.
The demonstrator application is further described in section 3.3.

3. In our previous research, we have developed an enterprise architecture model that models
the integration of air and maintenance operations [7]. The model goes from high-level
operational views that represent the interaction and relations of air and maintenance
operations at the operational level. Further, we have drilled down along the operational view
into service and system views that models the inherent functionality, systems and
organizations of air and maintenance operations. At the system level, care has been taken to
model specific maintenance functions such as flight line servicing. Combined, the architecture
views can be seen as a rudimentary command and control interface for air and maintenance
operations. This interface aims to provide services that helps relevant actors to assess
relevant data and information and to provide input in terms of viable action alternatives, actors
may include, maintenance ground personnel, commanders and other stakeholders. The
interface is further described in section 3.1 along with its implementation in section 3.4.

3.1 Command and Control Interface
We have elicited a set of high-level requirements based on the capability taxonomy as defined in [7],
which models a set of high-level capabilities of air and maintenance operations, including planning,
control and execution of military air operations. The capability taxonomy contains three main
capabilities as listed below [3][7]:

1. Support Operational Air units - Maintaining military air operations is the main capability of
the aircraft maintenance domain. This capability includes the ability to set up, maintain air
bases, and serve flight crews. It also includes the ability to plan, execute and follow-up of
maintenance operations.

2. Planning, Control and Coordination of Military Air Operations - The basis for planning
and coordination of military air operations is to have the ability to maintain an event-driven
readiness and an ability to concentrate resources in time and space in order to produce
required air missions.

3. Conduct Air Operations with operational air units - This capability includes the ability to
plan, execute, evaluate and report military air operations. We will focus on the capability to



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

4

perform air operations with the JAS Gripen combat air system. The types of missions that the
JAS Gripen fighter system is capable of is depicted in the figure below, shortly explained
thereafter. All imposing a unique set of type specific requirements and restrictions on the
utilization of the related maintenance resources.

The above-identified capabilities may be supported by a set of standardized services, which can be
related to the NATO C3 Technical Services Taxonomy [8]. In this taxonomy, we identify a sub-set of
services, namely the Logistics Functional Services. These services provide unique computing and
information services for logistics support by supporting a set of (military) activities relating to planning,
execution, sustainment, and maintenance of forces, through:

 Recognized Logistic Picture Services (RLP) - “provide the means to create, manage and
disseminate the Recognized Logistics Picture. These services will generate a de-conflicted and
agreed picture of the logistics environment through the collection, aggregation, correlation and
fusion of information from multiple sources” [8].

 Logistics Planning Services - “deliver functionality to automatically access, process and
disseminate information related to threat environment; identified available logistic nodes;
available infrastructure and its suitability for logistic operations; host-nation support capabilities
and capacity; military interoperability and cooperation agreements; environmental protection;
climate; and terrain.” [8].

 Movement Services - “deliver functionality to automatically access, process and disseminate
information to coordinate and control movements to/from and within the theater of operations.”
[8]

 Asset Tracking Services - “deliver functionality to automatically access, process and
disseminate asset information pertaining to location, status, and condition of products, vehicles,
and other assets.” [8].

Figure 1. A birds-eye view of the Logistic situational awareness (LSA) demonstrator use case
presenting spatial aspects of ingoing monitored entities.



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

5

3.2 A Graph-Based Information Model of Air- and Maintenance Operations
In this research, we have created our graph models from a domain-centric view based on our
background knowledge, combined with recent finding of information entities and relationships in the
air and maintenance operational domains. The model has been created using the process of graph
data modeling. We base the process upon our previous studies of the domain of interest [7] and
previous work in which we have identified key entities in the air and maintenance operational domains,
as well as the C2 domain. These entities has then been modeled as a connected graph of nodes and
relationships with properties and labels using the concept of a property graph model where the nodes
store information about entities data records, and directional relationships are used to connect nodes.
Further, nodes stores data in key-value pairs in nodes and relationships and labels are used to group
nodes and relationships. The domain model is depicted in the figure below.

Figure 2. The complete domain model [7] of c2 and maintenance operations.

3.3 Demonstrator Architecture
This section presents the system-wide design decisions of the demonstrator application. We will
describe the behavioral design and other design decisions affecting the selection and design of the
software components that make up the matching system. The architecture is based on the
GRANDstack framework [16] and the grand-stack-starter application, which can be found here [17].
In addition, we employ additional server and planner components in the back-end as further detailed
later in this section.



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

6

Figure 3. The system-wide architecture of the demonstrator application.

GRANDstack - The GRANDstack framework is centered on the GraphQL query language with the
aim of “… adapting your application’s design and data store to leverage graphs throughout the stack”
and to “…decrease friction by using a consistent data model improving developer productivity,
performance and maintainability.”[16]. The GRANDstack framework is an assembly of widely used
and adopted web-based components that combined leverages a full application stack. These
components are:

React is a component based library for building user interfaces using JavaScript[16]. We use the
React library for the implementation of our use cases, which in term has been derived from our
requirements. React is used to fetch and process data as well as to update data in the database and
to render the data on in a web browser. We also use react library components to render the GUI of
our application. GUI implementation in React involves the design of views that map application data
to React handles which in turn has the capability to provide updates efficiently in response do data or
user updates. We use a specific React view for each use case and each view is then implemented as
a tab in the pattern of the grand-stack-starter application. This enables to easily compose our use
cases together into a demonstrator application.

Apollo - We use the Apollo Client and the Apollo server for building our GraphQL API. Apollo server
resides on the database side, or the back-end of our application and it is used to abstract Neo4j cypher
queries into the GraphQL language. We use the Apollo client on the client side, or the front-end of our
application, for querying the GraphQL APIs. The Apollo client can be used in conjunction with many
frontend frameworks, including the React framework, which is used in the demonstrator application
[16].

Neo4j - We use the Neo4j native graph database for persistent data storage. Neo4j is a well-
established, open source graph database that supports many programming languages and it runs on
most commonly used operating systems. It is well suited for use in applications such as artificial
intelligence and real-time recommendations, among other. Neo4j uses a native graph model for
storage and it enables querying its data as a graph. In our application, we use the graph data model
in all layers from storage, to queries and GUI. For storage, Neo4j uses a Property graph data model
which is a directed graph represented by nodes and relations between nodes. Both nodes and
relations can have attributes and nodes can also have labels which is a set oriented concept [18] that
aids in e.g. grouping of nodes, creation of sub-graphs and querying etc.

GraphQL is a data layer agnostic specification for building APIs [16]. The data used in the API
specification is strictly typed and the type definitions makes up the GraphQl API. A GraphQL client



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

7

uses these types when it makes its API calls. Types are defined with data fields and connections to
other types. Relations are also explicitly defined as types. We use the GraphQL api to abstract the
Noe4j database. We describe node labels as type definitions and attributes as fields. We also explicitly
describe node relations as types and define how they connect types.  We call the API using GraphQL
queries, which traverse the graph data mapping it to type definitions. A GraphQL query hierarchically
traverses through subsets of the graph database guided by the structure of the query and the relations
in the database.

Node.js - The backend of our demonstrator application is a Node.js application that serves a
GraphQL endpoint over HTTP. The Node.js application uses an Apollo server that connect to the
Neo4j database via a Bolt protocol [19].

Apart from GRANDstack the following additional components have been added to our architecture:

The Kie Server is a modular, standalone Java-based server component that can be used to
instantiate and execute rules (Drools) and processes. The KIE Server exposes this functionality via
REST, JMS or and Java interfaces to client application. Created as a web deployable WAR file, this
engine can be deployed on any web container that can handle WAR files.

WildFly - In our demonstrator setup, we use the lightweight open-source application server WildFly
as the container. WildFly was configured to enable Cross-origin HTTP requests (CORS) since the
requests is sent from different origins.

OptaPlanner is an AI constraint solver [20] able to optimize planning and scheduling problems. We
employ the OptaPlanner with Drools Planner, which uses the Drools Expert (rule engine) for score
calculation of our planning solutions. This enables us to write scalable constraints in a declarative
manner. Drools optimize a planning problem based on as set of facts, which represent the input data
that is to be processed by the rules. The rules matches the facts with actions which will fire on relevant
facts. In our case, we rank the facts using rule actions in order to find a viable plan. Rules are written
in Drools Rule Language and stored in .drl files[21]. Both Drools Planner and the OptaPlanner are
open source developed to help solve planning problems.

3.3.1 Application GUI
The main application GUI is structured similarly as the grand-stack-starter application [17] with a main
dashboard and tab list where the tabs contains separate functionality. We have adopted this structure
and implemented each use case as a separate tab in the tab list. The main structure of the application
GUI is depicted in the figure below.



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

8

Figure 4. The general structure of the application GUI.

3.3.2 Front-End
GUI implementation in React involves the design of views that map application data to React handles
which in turn has the capability to updates efficiently in response do data or user updates. We use a
specific React view for each use case and each view is then implemented as a tab in the pattern of
the grand-stack-starter application. This enables us to easily compose our use cases together into a
demonstrator application.

The front end is comprised of a set of React JavaScript components. There is one React components
for each implemented Use Case. In general, each React component implements a set of GraphQL
queries and a main render() method that process results from the query and returns a formatted
display which is output to the main application display in a web browser. In some cases it also updates
the data in the database by mutation type queries.

Each React component that fetches and/or updates data in the database uses an instance of the
Apollo Client for querying the GraphQL APIs.

Figure 5. The demonstrator application front-end.
3.3.3 Back-End
The backend of our demonstrator application is a Node.js application that serves a GraphQL endpoint



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

9

over HTTP. The Node.js application uses an Apollo server that connect to the Neo4j database via a
bolt protocol [19]. The GraphQL data layer abstracts the Neo4j property graph model into a set of
storage agnostic and strictly typed data types used by the GraphQL client when it makes its API calls.
A GraphQL query, hierarchically traverses through subsets of the graph database guided by the
structure of the query and the relations in the database. Finally we employ a Neo4j native graph
database for persistent data storage where we use the Neo4j native graph model for storage and
GraphQL queries.

Figure 6. The demonstrator application back-end.

3.4 Implemented Use-Cases
On basis of the high level requirements and the identified, standardized set of services (Recognized
Logistic Picture Services, the Logistics Planning Services and the Asset Tracking Services), as
detailed in section 3.1, we have derived a set of use case requirements for our demonstrator
implementation. The follow subsection will present each use case and its implementation in more
detail.

3.4.1 Logistics Situational Awareness
The logistics Situational awareness services aims to improve the awareness of what is happening in
an area of interest with focus on logistics locations. In our specific case we focus on the key drivers
of logistics requirement in terms of the locations of the aircrafts and the key suppliers of logistics
capabilities: the air base system.

Locate aircrafts and air bases on map - The goal of this use case is to present the location of each
available aircraft and air base on a map. The use case requires that there are recent updates of the
aircraft and air base entities, including their locations stored in the database. This will result in a
presentation of each available aircraft and air base on a map in the main application view. The use
case trigger is whenever the specific use case tab is selected in the application. The figure below
depicts the map view of the use case.



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

1
0

Figure 7. A birds-eye view of our LST use case.

3.4.2 Asset Tracking

See Available aircrafts and/or air bases - The goal of this use case is to list available aircraft, or
available air bases in the main application view. The use case requires that there are recent updates
of available aircraft and air base entities, stored in the database. This will result in either a list of
available aircrafts, or available air bases, presented in the main application view. The use case trigger
is whenever the specific use case tab for available aircrafts or available air bases is selected in the
application. The figure below depicts the aircraft and the air base view of this use case respectively.

Figure 8. Demonstrator view of Aircraft asset tracking.



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

1
1

Figure 9. Demonstrator view of Air base asset tracking.

See available resources at air bases - The goal of this use case is to list available resources located
at a specific air base and present details about each resource in the main application view. The use
case requires that there are recent updates of available resources for each air base, stored in the
database. This will result in a list, presenting details about each available resource for the selected air
base in the main application view. The use case is triggered whenever the specific use case tab is
selected in the application and a specific air base is selected in the GUI. The figure below depicts the
use case main view.

Figure 10. Demonstrator view of available resources located at a specific air base.

See resource requirements for individual aircrafts - The goal of this use case is to list resource
requirements for a selected aircraft and present details about each resource requirement in the main
application view. The use case requires that there are recent updates of the resource requirements of
the selected aircraft, stored in the database. This will result in a list, presenting details about each
resource requirement for the selected aircraft in the main application view. The use case is triggered
whenever the specific use case tab is selected in the application and a specific air base is selected in
the GUI. The figure below depicts the use case main view.



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

1
2

Figure 11. Demonstrator view of to list resource requirements for a selected aircraft.

3.4.3 Planning

Cypher-Based Matching - The goal of this use case is to match resource requirements for a selected
aircraft and present details about the match result as a list in the main application view. The use case
requires that there are current information of the specific resource requirements of the selected aircraft
as well as current information about available resources on available air bases, stored in the database.
The match result will be presented in a list, presenting details about each resource requirement and
the matching resource capability and on which air base the specific resource is available at. The results
is presented in the main application view. The use case is triggered whenever the specific use case
tab is selected in the application, and a specific aircraft tail number is entered in the GUI. The figure
below depicts the use case main view.



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

1
3

Figure 12. Demonstrator view of the match list for resource requirements for a selected aircraft.

Data driven recommendations (‘shopping’ analogy) - The goal of this use case is to predict future
resource requirements for a specific aircraft based on other aircraft’s resource requirements. This is
done on basis of the similarity of other aircrafts resource requirements compared with the aircraft in
question. Similarity is calculated based on resource categories. In our information model, we have
three resource categories: Person, GSE and Spare. The use case requires that there are current
information of the specific resource requirements of the selected aircraft as well as current information
about resource requirements of all other aircrafts, available in the database.

We aim to use collected data as a basis to infer probable future maintenance needs for an aircraft.
We solve this by adapting a commonly used graph-based recommendations algorithm [22][22][24][25]
to into our maintenance domain. The algorithm we apply is a type of content-based filtering algorithm
where we infer potential future maintenance resource needs for a specific aircraft based on similarities
of the aircrafts previous resource needs with other aircrafts resource needs. The content-based
filtering algorithm is able to identify similarities between entities using attributes of the items. We apply
this algorithm to our maintenance domain data in order to find similarities between maintenance needs
of different aircrafts in order to infer future maintenance resource needs for a specific aircraft.

The recommendation result will present a prediction of what resource needs the aircraft in question
might have, based on resource needs in the same categories that other aircrafts with similar resource
need profiles has required, but has yet not been required by the aircraft in question.  The resource
prediction recommendation is presented as a list where the resources needed by the aircraft in
question is matched up with future recommendations of resources that has been needed by other
aircrafts with similar resource need profiles. The list is presented in the main application view. The
use case is triggered whenever the specific use case tab is selected in the application, and a specific
aircraft tail number is entered in the GUI.  The figure below depicts the use case main view.



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

1
4

Figure 13. Demonstrator view of resource requirements prediction for a specific aircraft based on
other aircraft’s resource requirements.

Data driven recommendations based on similarity (collaborative filtering) - The goal of this use
case is compare an aircraft with other aircrafts on basis of a similarity measure, which is based on a
relative resource need for each aircraft. The result is a ranked list of similar aircrafts; compared to the
one in question, based on the resource need measure.  Ranking is done by calculating the relative
use of a specific resource for each aircraft and compare this measure with all other aircrafts. In our
information model, we can calculate the relative use of a resource for a specific aircraft by dividing it
is usage with the sum of all resources, used by the aircraft. We can find all resources using the relation
[RequiresTask], as depicted in Figure 2 between the aircraft and its maintenance tasks and to further
follow the relation from each maintenance task to its resource requirements.

Note: In this case, we use a collaborative filtering algorithm [22][22][24][25] for assessing the similarity
of aircrafts maintenance resource needs. The collaborative filtering algorithm uses the notion of a
[Rates] relation in order to find relevant resource recommendations based on aircrafts with a similar
history of resource usage. In our case the algorithms assumes that aircrafts are similar if they hves a
history of similar resource usage. We use the resource usage as analoge to having similar
maintenance resource preferences. E.g., what are the resources that those similar aircrafts
consumes?

The use case requires that there are current information of the specific resource requirements of the
selected aircraft as well as current information about resource requirements of all other aircrafts,
available in the database. The similarity result will present a list ranked by the similarity measure for
each resource used by the aircraft in question, combined with the other aircrafts, which has the most
similar resource usage. The list is presented in the main application view. The use case is triggered
whenever the specific use case tab is selected in the application, and a specific aircraft tail number is
entered in the GUI. The figure below depicts the use case main view.

Figure 14. Demonstrator view of a ranked list of similar aircrafts, compared to the one in question,
based on the resource need measurements.

Maintenance Planning Optimization - For maintenance planning optimization, we employ the
OptaPlanner constraint solver [20], which is able to optimize planning, and scheduling problems. We
define our planning problem as described below:



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

1
5

Our air base system has a number air bases and our operational air units has a number of aircrafts.
In our problem definition, we need to maintain these aircrafts using the resources located at our air
bases. Each aircraft produces its own maintenance requirements in terms of maintenance task needs
and each maintenance task need contains a set of resource requirements. See Figure 15 for the
conceptual data model that we use to define this problem. The problem now becomes an allocation
problem where we need to assign available resources at our air bases (maintenance capabilities) to
our resource requirements (tactical need) produces by the aircrafts. For this problem the following
constraints has to be fulfilled:

o A specific maintenance capability must be able to handle a specific set of hard constraints
formulated by the tactical need of an aircraft:

o Maintenance capability quantity: The quantity of a specific maintenance capability must be at
least be the sum of the resources (tactical needs) assigned to that specific capability.

o Maintenance capability name: The name of a specific maintenance capability must be the same
as the resource name (tactical needs) assigned to that specific capability.

o Maintenance capability availability: The resources (tactical needs) production date/time must
lie within the window of availability (start to end date/time) of a specific maintenance capability.

o This problem is a form of bin packing. The following is a simplified example, in which we assign
three tactical needs (resource requirements) to available maintenance capabilities with two
constraints; quantity and name:

Figure 15. A conceptual view of the matching problem as implement in the OptaPlanner.

OptaPlanner uses a score calculation for finding matches between tactical needs and maintenance
capabilities. Every solution that OptaPlanner produces a matching solution that has a score where the
score is used to compare the quality between solutions where a higher score equals a better solution.
OptaPlanner uses a Drools rule engine to assign and compare score between solutions. The resulting
best solution is the solution with the highest Score, which in our case is the solution that has the highest
scoring match considering the set of hard constraints as presented above. The figure below shows a
matching solution using the bin packing analogy of a best planning solution.



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

1
6

Figure 16 A conceptual view of the matching solution as implemented in the OptaPlanner.

4. Conclusions
We have shown how a decision support in operational aircraft maintenance can be implemented using
as a graph-based solution. Our approach facilitates a lightweight and dynamic representation of
relevant domain knowledge readily available for exploitation by powerful graph-based algorithms
adapted to our domain. Our decision support solution has been implemented in a demonstrator using
a state-of-the art development environment consisting of mainly free and open-source solutions for
development environment and the distributed version control system. Further, we have based our
implementation on the web-centric software stack grand-stack, using a consistent data model in order
to leverage graphs throughout the stack. Our solution implements a set of services related to the C3
taxonomy. The resulting decision support solution can be seen as a “social network”  for air and
maintenance operations where relational bindings between entities ties the network together and
enables the application of the same type of graph algorithms that are used in e.g. Facebook, Amazon,
Netflix etc. The graph database offers a non-intrusive cross-domain information fusion service, able
to leverage data- and relation-driven insights that may be unattainable using now available stove-
piped systems. It also has the capability to grow incrementally as knowledge about the domain
increases. It means that it is possible to add new entities, relations and even sub-graphs to the
database as knowledge about the domain increases, without disturbing existing queries and
application functionality. A graph database is agile in this manner as the graph data model can involve
in pace with the rest of the application.

5. Future Work
5.1 Future improvements of the Graph model
A possible expansion of the graph model may look like the picture below.

Figure 17. Suggested extension of the graph model to facilitate individual resource instances.



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

1
7

A new graph node “ResourceInstance” is introduced and is a Resource but acts as a specific instance
of a Resource. This can be convenient when you need to plan for individual resources in a time
schedule, e.g. a specific person/employee as a resource or a support equipment with limited time
capability.

From a maintenance perspective, all replaceable items in an aircraft that are classified as a life-
controlled item would be a candidate for instantiation as a Resource Instance. A further evolvement
of the graph model would be representation of the “journal” of a specific life controlled item with its
current state, maintenance, repair and overhaul log etc. Such data would typically be sourced from a
Fleet/Maintenance Management System.

The current representation of an aircraft in the NFFP7 graph model consists of one node Aircraft per
aircraft tail number. This is the high-level representation of an aircraft as a tactical resource as well
as a maintenance object itself. Another possible expansion of the graph model would be to include
nodes representing the “As maintained” structure of the aircraft with its installed equipment’s (which
also are considered life controlled items) and further detail the maintenance plan for each node in the
“As maintained” structure. This relates to findings in NFFP5 regarding as built structures and
maintenance needs information modelling.

5.2 Graph-Based Publish/Subscribe
For context integration, we have looked at publish/subscribe graph database concept [26] aimed for
large-scale collaboration spaces that are both highly distributed and dynamic. This complies well with
the domain of operational aircraft maintenance that contains distributed information stored in various
propriety databases.
The concept relies on local databases, on-aircraft, at-aircraft, on bases and other places that advertise
changes to data that they are willing to notify to clients, and publish events to the graph database
through the publish/subscribe system when such changes occur.
Clients can subscribe to one or more of these change events and in consequence, are informed in a
timely manner when particular state changes occur in some database, e.g.  "notify me of the specific
types of newly allocated maintenance resources at a specific wing". The notification data can stem
from a wide variety of distributed databases [26]. An example of this concept that relies on an active
database tier that is built upon a passive database system. In this example, the active database uses
a model to define its reactive behavior where database events triggers rules that evaluates the events
and triggers actions that formulates the task to execute after the rule has been triggered and its
condition validated.

5.3 Digital Twins

Within the presented study, a work package has been performed studying capabilities required for
maintenance-oriented Digital Twins (DTs) within the context of military aviation, and the challenges
related to such capabilities [27]. Bosch has adopted a similar digital twin approach to this concept
[28]. A digital twin can in its basic form be seen as a virtual representation of real-world asset. This is
the definition made by Bosch. The virtual representation may be further extended to implement
functionality and additional information. This extension is referred to as adopting a more holistic view
of the real world asses where its capabilities is more closely reflected by the digital twin. Bosch has
its own cloud service implementing a holistic digital twin concept. In this framework, a digital twin is a
‘thing’ that helps orchestrating all aspects of a physical device. The ‘thing’ is composed of features
representing states, attributes etc. of the real world asset. Features can also be links to functions and
capabilities of the physical device. The framework maps physical devices via a micro service to a
virtual representation of the device. Further the virtual representation (thing) can be accessed by
tailored user applications. Adopting this concept into the aircraft maintenance domain is exemplified
in the section below. In Bosch’s concept, the digital twin is composed of three feature types:

1. Features that represents states properties. E.g. a specific engine status variable etc.



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

1
8

2. Functionality such as operations, events and triggers are represented as messages. In this
case the things service routes the messages to/from the physical device via a diver connectivity
layer.

3. Features that represent functionality is implemented by integrating separate micro
services/components. They are responsible for listening to signals/notification coming from the
things micro service process and optionally send responses back.

6. Acknowledgment
This paper is a dissemination of results produced in a project within the Swedish National
Aeronautical Research Program 7 (NFFP7), funded by the Swedish Innovation Agency, Vinnova.
The project has recently finished, and the final report was approved by the funding agency in
January 2022.

7. References

[1] U.S. Air Force. Doctrine Publication 4-0 - Combat Support. 2020
[2] USAF. Air Force. Future Operating Concepts, AFFOC – a view of the Airforce in 2035.
[3] Försvarsmakten. Reglemente Taktik för Luftoperationer 2017 (TR LuftOp 2017) M7739-353126.

Stockholm, Sweden, 2017.
[4] Försvarsmakten. Doktrin Gemensamma Operationer 2020. M7739-354030. Stockholm, Sweden,

2020.
[5] U.S. Air Force, U.S. Space Force. The Department of the Air Force role in Joint All-Domain

Operations. Air Force Doctrine Publication 3-99, Space Doctrine Publication 3-99. 2021.
[6] Full Stack GraphQL Applications With React, Node.js, and Neo4j. William Lyon MEAP began

October 2019 Publication in Summer 2022 (estimated) ISBN 9781617297038 300 pages
(estimated) filed under Development.

[7] Olsson, E., Candell, O., Funk, P., Sohlberg, R. Enterprise Modeling for Dynamic Matching of
Tactical Needs and Aircraft Maintenance Capabilities. In: Karim, R., Ahmadi, A.,
Soleimanmeigouni, I., Kour, R., Rao, R. (eds) International Congress and Workshop on Industrial
AI 2021. IAI 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. pp 370–383, 2022

[8] NATO C3 Taxonomy Baseline 3.1. AC/322-D(2019)0034 (INV). 2019.
[9] U.S. Chairman of the Joint Chiefs of Staff. Joint Air Operations, Joint Publication 3-30. (2019)

2021.
[10] Everstine, Brian W. Moving from Situational Awareness to C2. U.S. Air Force Magazine. Oct. 1,

2020. https://www.airforcemag.com/article/moving-from-situational-awareness-to-c2/
[11] Database engine trending https://db-engines.com/en/ranking_categories
[12] Hurlburt, George F., Thiruvathukal, George K., and Lee, Maria R. The graph database: jack of all

trades or just not SQL?. IT Professional 19.6 (2017): 21-25. 2017.
[13] Needham, M., and Hodler , Amy E. Graph Algorithms. Practical Examples in Apache Spark &

Neo4j. Pp. 16. 2019
[14] Graph Databases, New Opportunities for Connected Data, Ian Robinson and Jim Webber & Emil

Eifrem. Pp 8. 2nd ed. O'Reilly Media.
[15] Technology Readiness Assessment Guide, DOE
[16] Full Stack GraphQL Applications With React, Node.js, and Neo4j. William Lyon MEAP began

October 19 Publication in November 2021 (estimated), ISBN 9781617297038
[17] https://grandstack.io/
[18] Bruggen, R., and Mohanta , P. Learning Neo4j Run blazingly fast queries on complex graph

datasets with the power of the Neo4j graph database. 2014.
[19] https://en.wikipedia.org/wiki/Bolt_(network_protocol)
[20] https://www.optaplanner.org/
[21] Weppenaar, D.V.I.; Vermaak, H.J. Solving Planning Problems with Drools Planner – A Tutorial.

Interim. 10. pp91-109. 2011.
[22] Miller, Justin J. Graph database applications and concepts with Neo4j. Proceedings of the

southern association for information systems conference, Atlanta, GA, USA. Vol. 2324. No. 36.
2013.

[23] Webber, J. and Robinson, I. The Top 5 Use Cases of Graph Databases - Unlocking New
Possibilities with Connected Data. Neo Technology. White Paper. 2017.



Graph-Based Knowledge Representation and Algorithms for Air and Maintenance Operations

1
9

https://go.neo4j.com/rs/710-RRC-335/images/Neo4j_Top5_UseCases_Graph%20Databases.pdf
[24] Meteren, Robin Van., and Someren, Maarten Van. Using content-based filtering for

recommendation. Proceedings of the machine learning in the new information age:
MLnet/ECML2000 workshop. Vol. 30. 2000.

[25] Webber, J. Neo4j. White Paper Powering Real-Time Recommendations with Graph Database
Technology. https://neo4j.com/whitepapers/recommendations-graph-database-business/

[26] Moody, K., Vargas, L., and Bacon, J. Integrating Databases with Publish/Subscribe. 25th IEEE
International Conference on Distributed Computing Systems Workshops. June 6-10 2005.
Columbus, Ohio, USA. 2005.

[27] Castaño et al. A Review of Digital Twin Capabilities and Challenges in the Context of IVHM in
Aviation (Enablement of Digital Twin Capabilities in the context of IVHM in Aviation - Issues and
Challenges) Accepted for presentation and publication. ICAS, Stockholm, Sweden 4-9 September
2022. 2022.

[28] Bosch IOT Suite. https://docs.bosch-iot-suite.com/device-management/Devices-and-their-digital-
twins.html

Copyright Statement

The authors confirm that they, and/or their company or organization, hold copyright on all of the
original material included in this paper. The authors also confirm that they have obtained permission,
from the copyright holder of any third party material included in this paper, to publish it as part of
their paper. The authors confirm that they give permission, or have obtained permission from the
copyright holder of this paper, for the publication and distribution of this paper as part of the
ICAS  proceedings or as individual off-prints from the proceedings.


