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Abstract

We present recent developments and improvements of the efficiency carrying out aerodynamic CFD calcu-
lations at Saab. The enhancement comes from an implicit discretization in time of the governing equations
where the linear system of equations that arise from the linearization is solved iteratively and efficiently with
the help of an external numerical library. The new approach is implemented in Saab’s in-house CFD solver
M-Edge for unstructured grids. We show comparative results for several test cases with focus on Gripen. Most
calculations lead to a factor of three or more in computational speed-up. This holds for both steady state and
time accurate calculations. Furthermore, we can also get improved steady state convergence with less or no
remaining oscillations in the computed results, hence leading to improved accuracy as well.
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1. Introduction
Aerodynamic prediction and design at Saab rely more and more on large scale CFD simulations. For
external aerodynamics, we typically perform calculations in the entire flight envelope where we vary
Mach number, angle of attack, side slip angle, altitude, control surface deflections etc. Most aerody-
namic calculations of the external shape of an aircraft are steady state viscous calculations using the
Reynolds Averaged Navier-Stokes (RANS) equations with turbulent closure from a turbulence model.
Our main product is the Gripen aircraft. A typical RANS unstructured mesh with a good resolution of
the boundary layer (y+ ∼ 1) has about 60× 106 nodes and about a factor three more elements. Al-
though a single RANS calculation on such a grid can be done in hours, thousands of calculations are
required to cover all necessary combinations of ingoing parameters which requires major computing
resources.
Unsteady calculations are also becoming more and more common as computational resources in-
crease together with improved modelling capability and efficiency of the underlying CFD software.
Typical applications are control surface deflections, calculations of dynamic derivatives, hysteresis
effects at high angles of attacks etc. Also, the number of turbulent scale-resolving calculations (hy-
brid RANS-LES) increase due their improved prediction capability of large scale separated flows.
Example of such simulations comprise computations over landing gears, engine inlet calculations,
weapon bays etc.
Saab develops its own CFD software, M-Edge, that originates from the Edge flow solver [7]. The
development is carried out together with a few collaborative partners at universities and research
institutes under Saab lead. Saab has a close cooperation with the National Supercomputer Centre
(NSC) in Linköping for many years. In a previous work, NSC has analyzed the efficiency of the
code, improved its parallel scaling and identified and removed bottlenecks in the code to speed-
up computations. During recent years, Saab and NSC have been working on a new implicit time
integration method to further accelerate the convergence of the computations. This work has now
been validated internally at Saab and is already in use for various applications. Here we describe
this new implicit approach, and we show a number of cases to demonstrate that the new scheme
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works very well and achieves a substantial increase in computational efficiency compared to previous
algorithms.
The paper is organized as follows: In the next section we present the finite volume scheme for
unstructured grids. Then follows a section about steady state time integration. We outline explicit
Runge-Kutta integration, followed by line-implicit integration, and finally we put emphasis on describ-
ing the new implicit scheme. Next, a section of how to extend the steady state solution technique
to time accurate problems by dual time stepping follows. After that we present a short section on
the M-Edge flow solver together with some practical experiences and recommendations on what we
have found to be important for the implicit approach to be efficient and robust. Finally, we present
a set of steady and unsteady flow cases demonstrating the improved efficiency of the new scheme,
followed by some concluding remarks.

2. Finite Volume Method
We consider the governing equations of the Navier-Stokes equations in integral form∫

V

∂Q
∂ t

dV +
∮

∂V

FdS = 0 (1)

with the conservative variables Q (density, momentum and total energy) and F the sum of the con-
vective and viscous terms of the underlying continuity, momentum and energy equations.
Consider the discrete counterpart of Equation (1) with a control volume Vi for an arbitrary discrete
node with subscript i. The spatial discretization of the Navier-Stokes equations in Equation (1) using
a finite volume formulation on an unstructured grid for this node may be written in semi-discrete form
as follows:

Vi
dQi

dt
+∑

k∈i
FikSik +FibcSibc =Vi

dQi

dt
+Ri(Q) = 0 (2)

where Qi contains the conservative variables for node i, FikSik is the flux between two connected
nodes i and k (denoted k ∈ i), FibcSibc is the boundary flux at node i. The boundary flux is only included
if the node is located on a boundary in order to close the control volume. If node i is an interior
node this term is zero. The fluxes are summed up to the residual for node i, Ri(Q). The formulation
is a so-called dual grid formulation where a dual grid forms the control volume to a primary grid.
As an example, Figure 1 illustrates the dual grid of a triangular grid. The dual grid is computed in
a preprocessing step that sums up contributions from surrounding elements to a node such that a
single control surface is obtained for each edge, e.g. S01 between nodes 0 and 1 in Figure 1. A more
thorough description of the approach above can be found in e.g. [5].
We leave out sub index when we refer to an entire vector for all unknowns. Note that the vector Qi may
contain more than 5 unknowns, e.g. additional unknowns related to a turbulence model. Typically,
turbulence models include additional source terms as well, which have been omitted in Equation (2)
for the sake of brevity.

Figure 1 – Primary (solid line) triangular grid and its dual grid (dashed line).
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3. Steady State Time Integration
First, we are looking for a steady state solution in time to Equation (2).

3.1 Explicit Runge-Kutta Time Integration
The governing equations may be integrated explicitly in time using a multi-stage Runge-Kutta method

Q(0) = Qn

Q(s) = Q(0)−αs
∆t
V

R(Q(s−1)); s = 1, ..., p (3)

Qn+1 = Q(p)

where αs denote the stage coefficients of the p-stage scheme. To reach asymptotically steady state,
the Runge-Kutta coefficients are chosen for optimal damping of high-frequency errors. We employ a
3-stage scheme with α1 = 2/3,α2 = 2/3,α3 = 1.
To accelerate the convergence to steady state, we use local time steps, which means that ∆t varies
from node to node. To further accelerate convergence, the explicit time integration scheme is com-
bined with multigrid. The current geometric multigrid scheme is based on the Full Approximate
Storage (FAS) approach for the non-linear problem. The coarser grids are generated as part of a
preprocessing step where coarser grids are generated by agglomeration (fusing) of finer grid control
volumes, see e.g. [3] for more details.
Furthermore, implicit residual smoothing is applied to extend the admissible CFL number.

3.2 Line-Implicit Runge-Kutta Time Integration
The explicit Runge-Kutta scheme can be combined with a line-implicit time integration method along
selected grid lines where the mesh is highly stretched. This allows to increase the time step and
to remove the restriction from the small length scales normal to the wall, which generally leads to a
speed-up of the steady state convergence.
The residual is split into two parts, R(Q) = RE(Q)+RI(Q), where the implicit residual RI(Q) contains
the fluxes along the implicit lines only and RE(Q) contains all remaining fluxes treated explicitly. The
multi-stage Runge-Kutta method can then be formulated as

Q(0) = Qn(
I + γs

∆t
V

∂RI(Q)

∂Q

)
(Q(s)−Q(s−1)) = Q(0)−Q(s−1)−αs

∆t
V

R(Q(s−1)); s = 1, ..., p (4)

Qn+1 = Q(p)

where γs denote implicit stage coefficients. For the explicit 3-stage scheme we use γ1 = 1,γ2 = 1,γ3 =
0.8. As in the case of the fully explicit scheme, we combine this method with multigrid, where we
employ the line-implicit integration on the finest grid only. We refer to [8] for further details and
numerical results.

3.3 Implicit Time Integration
For steady fluid flow, the time accurate description of the transient solution is immaterial. Time plays
the role of an iteration parameter to achieve an asymptotic steady state solution in the computation.
Therefore, the solution is advanced in time by an implicit backward Euler method.
The governing equations can then be expressed as:

(Qn+1−Qn)
V
∆t

+R(Qn+1) = 0. (5)

Linearizing the residual leads to the following linear system of equations:

J(Qn)∆Qn =−R(Qn) (6)

with
J(Qn) =

V
∆t

I +
∂R
∂Q

(Qn), ∆Qn = Qn+1−Qn. (7)
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In practice, we employ an under-relaxation of the solution update:

Qn+1 = Qn +α ∆Qn, α ≤ 1 (8)

To our findings, α = 0.5 offers a robust and efficient scheme.
The linear system of Equation (6) is solved by an iterative Krylov subspace method. In the present
study, we employ the GMRES algorithm [15], preconditioned by an incomplete LU-factorization,
namely ILU(0). For parallel processing, the ILU preconditioner is embedded in an additive Schwarz
method. The implementation of the Krylov method is based on the PETSc software library [2] devel-
oped at Argonne National Laboratory.

3.3.1 Jacobian Evaluation
The exact linearization of the spatial discretization is very complicated. Amongst others, it requires
the full linearization of the artificial dissipation operator which is highly non-linear in nature and not
readily accessible in a closed form. Furthermore, the memory requirement of the exact Jacobian is
extremely high. In order to alleviate these problems, the Jacobian of the spatial discretization is based
on a simplified, lower order approximation. It solely uses solution information provided by compact
stencils, which only couple direct neighbors. Hence, the assembled Jacobian is a blocked matrix
where the number of non-zero entries is equivalent to twice the number of edges plus the number of
nodes (diagonal entries). Each entry is an N×N matrix where N ≥ 5 is the number of unknowns in a
node.
We assume that all convective terms of the mean flow and turbulence equations are discretized by
a central discretization with added numerical dissipation. The Jacobian of the central part of the
convective fluxes in Equation (2) are computed as the exact derivatives of the discrete numerical
fluxes since they only involve nearest neighbors. The Jacobians of the viscous fluxes only involve
the normal derivatives, [5], and neglect the tangential derivatives. Further, the dynamic viscosity
is considered constant, so is the turbulent dynamic viscosity. The spectral radius of the linearized
turbulent source terms is estimated and added to the diagonal part of the Jacobian. It is also essential
that the Jacobians of all boundary fluxes in Equation (2) are included. The formulation of these
Jacobians depend on the specific boundary condition.
For the linearization of the artificial dissipation of the convective flux term, the dissipation operator is
approximated by the upwind dissipation of the Roe scheme [14]. Assuming a first order method in
space between nodes i and k this can be expressed as:

dRoe =−1
2

∣∣ARoe∣∣(Qk−Qi). (9)

ARoe is the so-called Roe matrix and is considered constant when deriving the Jacobian. Then, the
approximate Jacobian of the dissipation can be expressed by

∂dRoe

∂Qi
=

1
2

∣∣ARoe∣∣ , ∂dRoe

∂Qk
=−1

2

∣∣ARoe∣∣ . (10)

The absolute Roe matrix is expressed in terms of the associated left and right eigenvector matrix and
its corresponding eigenvalues: ∣∣ARoe∣∣= G |Λ|G−1 (11)

with the diagonal matrix of the absolute eigenvalues

|Λ|= diag(|λ1−3| , |λ4| , |λ5|). (12)

The eigenvalues of the convective fluxes can be determined as

λ1−3 = un,λ4 = un +a,λ5 = un−a (13)

where un is the normal velocity and a is the speed of sound. The immediate use of these eigenvalues
generally leads to an unstable discretization, particularly when an eigenvalue vanishes, i.e. λi ≈ 0.
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These instabilities typically occur near stagnation points and in the vicinity of shock waves. To avoid
such problems, a so-called entropy fix is introduced. The absolute eigenvalues are replaced by some
effective values

|Λ|ef = diag(|un|ef , |un +a|ef , |un−a|ef) (14)

so that the effective Roe matrix reads as following:∣∣ARoe∣∣
ef = G |Λ|ef G−1. (15)

Here, the entropy fix is based on a simple cutoff value, that is expressed in terms of the local spectral
radius (|un|+a):

|un|ef = max{|un| ,δ IMP (|un|+a)}, |un±a|ef = max{|un±a| ,δ IMP (|un|+a)} (16)

To our experience, a value of δ IMP = 0.3 is a good compromise between robustness and efficient
convergence. The Jacobian of the convective upwind dissipation for a turbulence model is expressed
similarly to the Roe scheme. For the Spalart-Allmaras turbulence model [18] we use the following
expression:

dRoe
tu =−1

2
|λtu|ef ((ρν̃)k− (ρν̃)i). (17)

where ρν̃ is the turbulence conservative variable. Then, the corresponding Jacobians are given by

∂dRoe
tu

∂ (ρν̃)i
=

1
2
|λtu|ef ,

∂dRoe
tu

∂ (ρν̃)k
=−1

2
|λtu|ef . (18)

The absolute eigenvalue is assumed to be constant with respect to the linearization. We choose

|λtu|ef = |un|+0.1‖u‖2
2 +δ

IMP (|un|+a) (19)

3.3.2 CFL Evolution Strategy
To accelerate convergence to steady state, the numerical solution is advanced using local time steps.
In case of explicit time integration, the CFL number is set to a constant value for all non-linear it-
erations (time steps). The time step is proportional to the smallest length scale of a computational
cell and typically CFL ∼ 1 for reasons of numerical stability. With the line-implicit time integration the
length scale limitation from the small edges along the lines is removed leading to locally larger time
steps.
For the fully implicit time integration there is theoretically no upper bound on the time step and CFL
number. However, a high CFL number and a large time step can only be used if the solution is
relatively close to its converged steady state solution. Therefore, the CFL number is varied between
a minimum and a maximum value during the iteration process:

CFLmin ≤CFL(tn)≤CFLmax

The choice of the CFL number has to balance the requirements for a robust numerical scheme and
fast convergence. In the current approach, we increase the CFL number by a certain factor at each
time step, until a prescribed maximum value CFLmax is reached

CFL(tn) = β ·CFL(tn−1), β ≥ 1 (20)

β is typically selected in the range β ∈ [1.05,1.5], where β = 1.2 is our choice of preference. Usually,
we employ CFLmin = 1.5 and CFLmax = 104.
The CFL evolution strategy is employed for steady state calculations mainly. For unsteady calcula-
tions, described below, with an initial solution sufficiently developed in time, we typically employ a
constant and high CFL number from the beginning.
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4. Unsteady Time Integration
The steady state time integration schemes above can be extended to unsteady time accurate calcu-
lations by a so-called dual time stepping approach introducing a fictitious time derivative in dual time.
We demonstrate this for the 2nd order backward difference scheme (BDF2) [11] that is employed in
this paper. We stress that this approach can also be used for diagonally implicit multi-stage Runge-
Kutta schemes [9] and fully implicit Runge-Kutta schemes [12]. A requirement is that the implicit
scheme is both A- and L-stable.
We discretize Equation (2) with the BDF2 scheme, assuming that the geometry is fixed in time with a
constant volume V ,

V
3Qn+1−4Qn +Qn−1

2∆t
+R(Qn+1) = 0. (21)

We introduce a new time derivative in fictitious time τ and denote the unknown Qn+1 with Q∗

V
dQ∗

dτ
+V

3Q∗−4Qn +Qn−1

2∆t
+R(Q∗) =V

dQ∗

dτ
+ R̃(Q∗) = 0 (22)

where R̃(Q∗) = R(Q∗)+V (3
2 Q∗−2Qn + 1

2 Qn−1)/∆t and Q∗→ Qn+1 as ∂Q∗/∂τ → 0. For each physical
time step ∆t, we can apply the various steady state time integrators described above to Equation (22)
to be iterated towards steady state in dual time τ. It should be noted that for the implicit approaches
described above, an additional contribution 3V

2∆t I is added to the Jacobian.

5. The Flow Solver M-Edge
The CFD code employed for the present simulations and used internally at Saab is the M-Edge
flow solver, which originates from the Edge flow solver [7]. The discretization in space is a finite
volume formulation for unstructured grids as described above where a median dual grid forms the
control volumes with the unknowns allocated in the grid nodes. The various available time integration
methods are also described above. A large number of turbulence models are available. Throughout
this paper, a central discretization is used for the convection to which a small amount of numerical
dissipation is added. This applies to the mean flow and for the turbulence equations. The viscous
terms are discretized by a compact discretization of the normal derivates and remaining tangential
derivates are obtained from Gauss-Green integral formulation of gradients to have a full viscous
operator. There are numerous boundary conditions available in M-Edge for walls, external boundaries
and periodic boundaries. All of these boundary conditions are specified weakly, which means, that
the unknowns on nodes located on a boundary are unknowns like any other unknown in the interior
[6], [13]. The boundary conditions are specified through the boundary flux in Equation (2).
A preprocessor creates the dual grid, coarser grids for multigrid, stretched lines for the line-implicit
approach, wall distances and other quantities required by the flow solver. Last but not least, it splits
the computational grid by domain decomposition. The splitting ensures that the implicit lines are not
broken, so that entire lines belong to a specific partition.

5.1 Some Specifics for the Implicit Scheme
Several aspects were found to be important to make the new implicit scheme efficient and robust.
We list some of these findings below.

• We do not combine the implicit scheme with multigrid, although it is possible. Multigrid has
very small or no effect in implicit time advancement using large time steps. It has larger effect
on explicit time integration schemes that have good high frequency smoothing and where the
coarser grids in practice serve to increase the relatively small explicit time steps.

• Although the implicit lines are not used for the implicit scheme, it was found important for the
robustness not to partition the domain along the lines where the grid is highly stretched. Re-
moving this requirement can lead to divergence or deterioration in the rate of convergence.

• Some Jacobians for the boundary condition fluxes were challenging to derive. We have used the
external software Maple to derive closed expressions for some boundary fluxes, e.g. for external
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characteristic boundary conditions and for subsonic inflow conditions where total states are
specified. We also found that some boundary conditions required a small amount of additional
local numerical dissipation which was added to the Jacobian, e.g. the external characteristic
boundary conditions.

• The linear system in Equation (6) should be solved "accurate enough" by the iterative GMRES
process. An excessively accurate solution of the linear system will cost additional time and
not increase the convergence of the non-linear iteration drastically. On the other hand, the
solution should be accurate enough to avoid divergence. We typically reduce the error of the
linear system to 10% of its initial value, which offers a good compromise between efficiency and
robustness.

• We separate the mean flow and turbulence equations and treat their Jacobians and iterative
solutions separately. Treating all equations together did not results in a computational speed-
up, on the contrary it often resulted in computational overhead due to larger Jacobians. The
implicit scheme is implemented for general turbulence models, that are based on one or two
transport equations. It is most efficient for models based on the model by Spalart-Allmaras, [18]
[17]. Turbulence models of k−ω type often show somewhat slower convergence rates and may
require lower CFL numbers as well.

• We found that time dependent calculations with small time steps, e.g. hybrid RANS-LES cal-
culations, benefit in terms of steady state convergence in dual time from a smaller and scalar
dissipation. More specifically, where the elements of the eigenvalues in

∣∣ARoe
∣∣ in Equation (9)

are replaced by its largest eigenvalue (spectral radius) and where the factor 1/2 is replaced by
a smaller value. A contributing reason why a smaller numerical dissipation is beneficial is that
the additional source term from BDF2 in Equation (22) contribute to the stability and diagonal
dominance of the assembled Jacobian matrix.

• The price to pay for the new implicit scheme is a substantially increased computer memory con-
sumption. The increase is about a factor of four compared to the explicit multigrid approach with
or without line-implicit integration. The additional memory requirement is due to the storage of
the assembled Jacobian, the ILU preconditioning matrix and the vast number of additional un-
knowns required by GMRES. The increased memory consumption is usually not a problem for
the computer architectures currently in use, but a user should consider that the computational
domain has to be split in a sufficient number of partitions to fit into available memory.

6. Numerical Results
Numerical results are presented for turbulent viscous calculations on a number of test cases. Most of
the cases involve steady state calculations, some are unsteady calculations using dual time stepping
with the BDF2 method. All calculations employ no-slip adiabatic wall conditions and characteristic far
field boundary conditions.
Unless otherwise stated, the turbulence model for the RANS calculations all use the Spalart-Allmaras
turbulence model [18]. Comparisons are made between the computations obtained with the new
implicit scheme and with computations using 3 levels of multigrid with line-implicit time integration
on the finest grid that up to now has been the standard scheme used at Saab. All steady state
calculations are started from free stream flow conditions. For steady state calculations the CFL
numbers start from a low value of CFL = 1.5 and ramped up to a maximum value of CFL = 104 with
a factor of 1.2 per iteration. Unsteady calculations with a given initial flow solution use the high CFL
already from the beginning whereas the explicit calculations employ CFL = 1.0. All calculations use
a central discretization with added numerical dissipation for the mean flow and turbulence equations.
The convergence of the density residual is displayed for most cases. The density residual is defined
such that it corresponds to the time derivative of the density. Usually, the logarithm of the L2 norm of
the residual is displayed.

7



Enhancing CFD Predictions for the Gripen Aircraft

6.1 Transonic Flow over RAE 2822 Airfoil
The first test case is the two-dimensional flow over the RAE 2822 airfoil, Case 10 [4]. The free
stream conditions are M∞ = 0.754, α = 2.57◦, Re = 6.2× 106. A structured grid with 22× 103 nodes
is employed. Figure 2 shows a detail of the grid and the Mach number contours of the converged
solution. Computations are carried out using 1 and 4 partitions, i.e. serial and parallel calculations
with 4 cores.

Figure 2 – RAE 2822 airfoil. Grid (left), Mach number contours (right).

The convergence of the density residual and the lift coefficient as function of computational time are
depicted in Figure 3. The implicit scheme is more than 20 times faster than the M-Edge standard
scheme, using explicit/line-implicit time integration with multigrid. The explicit/line-implicit calculations
suffer from the sharp trailing edge and the C-type grid, which limits the CFL number in this region.
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Figure 3 – RAE2822 steady state convergence of density residual as function of elapsed time (left).
Convergence of lift coefficient as function of elapsed time (right).

6.2 Transonic Flow over NACA0012 Airfoil
Next test case is the two-dimensional flow over the NACA0012 airfoil, using unstructured hybrid grids
with quadrilateral cells close to the airfoil and triangular cells further away from the airfoil. Three
different grids are available with 51×103, 54×103 and 57×103 nodes with normal distance between
the first two nodes being 10−5, 10−6 and 10−7 chord lengths, respectively. The number of quadrilateral
layers is 35, 45 and 55, respectively. For all three grids, the airfoil surface grid (315 nodes) as well as
the triangular part of the mesh remain the same. The maximum aspect ratio, i.e. the ratio between the
largest and smallest edge of a cell, is 1.5×103, 1.5×104 and 1.5×105. The test case has been used
in a previous study to verify that grid independent convergence can be achieved using a line-implicit
formulation [8].
The flow conditions are the same as for the RAE 2822 airfoil, M∞ = 0.754, α = 2.57◦, Re = 6.2× 106.
All calculations are performed in serial mode using a single core. Figure 4 shows the convergence
history for the explicit time integration scheme with multigrid and with/without line-implicit integration.
Without the line-implicit integration, the convergence slows down considerably as the near wall grid
is refined and the aspect ratio increases. Introducing the line-implicit integration, the convergence is
nearly independent of the stretching of the mesh. The implicit scheme converges fastest for all grids.
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There is a minor degradation of the convergence wih the implicit scheme for the grid with the highest
aspect ratio. The speed-up of the implicit scheme is in a range from a factor of 4.5 to 9 compared to
the explicit multigrid scheme with line-implicit time integration.

0 500 1000 1500 2000
t(s)

-10

-8

-6

-4

-2

0

Res(ρ)

mgrid, dy-5

mgrid, dy-6

mgrid, dy-7

LI+mgrid, dy-5

LI+mgrid, dy-6

LI+mgrid,dy-7

0 50 100 150 200 250 300
t(s)

-10

-8

-6

-4

-2

0

Res(ρ)

Impl, dy-5

Impl, dy-6

Impl, dy-7

Figure 4 – Unstructured grid near NACA0012 airfoil, implicit lines in red (left). Convergence of
density residual with explicit scheme with multigrid (black) and multigrid and line implicit (red) as
function of elapsed time (mid). Convergence of density residual as function of elapsed time with

implicit scheme (right).

6.3 Internal Flow in a Nozzle
Next, we consider the internal flow in a two-dimensional nozzle. The test case is used to validate
the implicit scheme for different types of boundary conditions, as these are non-trivial to derive. On
the three left inflow boundaries, the total pressure and the total temperature are specified together
with the direction of the flow in the positive x-direction. On the top boundary, characteristic boundary
conditions are used, the static pressure is specified on the right outflow boundary and a symmetry
boundary condition on the bottom boundary. There is a supersonic region in the contraction, the
flow is otherwise subsonic. The computational grid has about 38×103 nodes, consisting of 12×103

quadrilateral elements and 49×103 triangular elements. Figure 5 shows the computational grid, the
Mach number distribution and the convergence of the density residual. The calculations are executed
in serial mode using a single core. The implicit scheme is about a factor of 5.5 faster compared to
the explicit scheme with line-implicit integration.
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Figure 5 – Unstructured grid in left part of nozzle (left top). Mach number distribution (left bottom).
Convergence of density residual as function of elapsed time (right).

6.4 3D Flow over the ONERA M6 Wing
As first 3D test case, we consider turbulent flow over the ONERA M6 wing [16]. The free stream
flow conditions are M∞ = 0.84, α = 3.06◦, Re = 14.6×106. The computational grid contains 0.92×106
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nodes with 1.18× 106 prismatic elements near the wing and 1.87× 106 tetrahedral elements outside
the prismatic region. There are about 40× 103 triangular elements on the surface of the wing and
about 11× 103 triangular and quadrilateral elements on the plane of symmetry. For the line-implicit
integration, each line contains about 27 nodes on average, with 19.8×103 lines in total, which corre-
sponds to the total number of nodes on the wing surface. The maximum aspect ratio of the grid is
12×103.
All calculations were carried out in parallel using 32 partitions and processors (cores). The conver-
gence history of the density residual and the lift coefficient are displayed in Figure 6. Comparisons
are made with the explicit scheme using multigrid, with and without line-implicit time integrations. We
can see that the calculation is accelerated by about a factor of two using the line-implicit time integra-
tion, compared to the standard explicit scheme. Another factor of 4 is obtained with the new implicit
scheme. A well converged steady state solution is here obtained in about one minute computing
time.
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Figure 6 – ONERA M6 wing, steady state convergence of density residual as function of elapsed
time (left). Convergence of lift as function of elapsed time (right).

6.5 Steady State Gripen Calculations
One of the main purposes for the new implicit scheme is to make CFD calculations for the Gripen
aircraft more efficient. In the following, we present results using a representative grid for the Gripen
with about 60×106 nodes, partitioned in 256 domains for the parallel computation. The grid contains
113×106 prismatic and 28×106 tetrahedral elements with about 55 layers of prismatic cells.
We consider transonic flow conditions with M∞ = 0.8,α = 4◦ at an altitude of 6000 meters. All simu-
lations are started from free stream conditions and with turbulence effects modeled by the Spalart-
Allmaras model. In addition to wall and far field boundary conditions, the static pressure is specified
at the engine inlet which is a subsonic outflow boundary. The engine outlet is modeled as a sub-
sonic inflow boundary, which requires the total temperature, total pressure and flow direction to be
prescribed. The explicit calculations, combined with line-implicit integration, employ full multigrid with
3 multigrid levels which up to now has been the default setting. In the past, calculations for such a
complex configuration at transonic conditions did not converge entirely to machine accuracy.
The convergence of the residual as function of elapsed time and non-linear iterations can be seen in
Figure 7, which also displays the convergence of the normal force.
For the explicit/line-implicit scheme, the density residual converges about 6 orders of magnitude
before it goes into a limit cycle oscillation. The implicit scheme shows a different convergence be-
haviour. The method is able to converge the residual to machine accuracy. The difference in the
residual history is also reflected in the evolution of the normal force. The explicit scheme shows re-
maining oscillations of the normal force, while the implicit schemes rapidly converges to a constant
value. Worth noting is that this constant value is not the same as an averaged value from the last
iterations with the explicit scheme. The implicit scheme delivers fully converged aerodynamic forces
and moments after 6-7 orders of magnitude reduction of the density residual, which corresponds to
about one wall clock hour of computing time on 256 cores.
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Figure 7 – Gripen density residual steady state convergence as function of iterations (left) and
elapsed time (mid). Convergence of normal force as function of elapsed time (right).

For the explicit calculations, the remaining oscillations in the normal force originate primarily from
vortices emanating from the gaps between the control surfaces and the fuselage. This effect is mainly
visible in the temperature distribution as depicted in Figure 8. Streaks of high and low temperatures
are clearly visible in this area at the aft, whereas no such temperature variations can be observed in
the solution from the implicit scheme.

Figure 8 – Temperature distribution on upper side of Gripen. Upper half shows the implicit and
converged solution. Lower half shows the not fully converged explicit/line-implicit solution.

6.6 Unsteady Gripen Calculations
Although there exists a steady state solution as shown above, the solution does not necessarily need
to be stable in time. To investigate if this is the case, we have performed unsteady flow simulations
starting from the converged steady state solution of the implicit scheme as initial condition. The mesh
and the flow conditions are the same as mentioned above. In addition, we also perform unsteady
calculations using the not fully converged steady state solution from the explicit scheme as initial
condition. The goal is to investigate, if the difference in the initial conditions has an impact on the
result of the unsteady simulation. Apart from the initial solution, everything else is the same. Within
each time step, we converge the maximum density residual to the same level. A time step of ∆t =
10−4s is used that provides good resolution in physical time with satisfactory steady state convergence
in dual time. We proceed with the unsteady calculations for about 1s in time.
The time histories of the lift force coefficient reveal significant differences as shown in left and mid
plots of Figure 9. Namely, the unsteady simulations result in two different cyclic time dependent
solutions. Starting from the well converged steady state solution, the flow remains steady for about

11



Enhancing CFD Predictions for the Gripen Aircraft

half a second. After that, the lift starts to oscillate with a small amplitude around its initial value.
Starting from the not fully converged steady state solution, the flow field ends in a different time
dependent cyclic solution. Both the average value and the amplitude of the lift oscillation are larger
than in the case, starting from the well converged solution. The oscillations are still substantially
smaller than those of the non-converged steady state solution. The included time histories for the
steady state solutions are fictitious, the iterations have been scaled to fit in the same plots. The mid
plot in Figure 9 also reveals that the main part of the oscillations occur due to vortices in the vicinity
of the gap between the fuselage and elevon as shown in Figure 8.
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Figure 9 – Gripen time history of total lift (left) starting from a converged and a not fully converged
steady state solution. Time history of lift on inner elevon (mid) Steady state convergence history

included, in fictitious time. Convergence of maximum density residual in dual time vs. elapsed time
during 10 time steps starting from the implicit steady state solution (right).

The unsteady calculations were carried out with the implicit time integration in dual time due to its
lower computational cost. A calculation was also carried out with explicit/line-implicit time integrator
in dual time to compare the efficiencies and to ensure that the dual time integrator did not affect the
time dependent solution. The right plot in Figure 9 shows a comparison of the convergence of the
maximum density residual versus elapsed time during 10 time steps starting from the implicit steady
state solution when the solution has become oscillatory in time. The plot reveals that the implicit
time integration in dual time is about a factor of 2.5 faster. It also reveals that the maximum density
residual increases to a higher level with the implicit scheme when going from one time step to the
next. The residual quickly reduces though.

6.6.1 Explanation to Multiple Solutions
The space discretization of the time dependent Navier-Stokes, Equation (2), leads to a large non-
linear system of ODE:s. If we reformulate the equations in terms of the discrete primitive variable U ,
instead of Q, we get another non-linear system of ODE:s where the residual R̄(U) can be approxi-
mated by polynomials of U with high accuracy

R̄i(U)≈ ∑
|α|≤m≤4

ci,αUα , α = (α1,α2, ...,αN), |α|=
N

∑
k=1

αk, αk ∈ {0,1, ...4}. (23)

The coefficients ci,α are independent of time. In order to give an explanation to multiple solutions
to the Navier-Stokes equations we study a simpler non-linear system of ODE:s, having a similar
structure as the discrete Navier-Stokes equations, namely the van der Pol equation

d2u
dt2 −µ

(
1−u2) du

dt
+u = 0. (24)

Equation (24) can be rewritten as a first order system of two equations
du1

dt
= u2

du2

dt
= µ

(
1−u2

1
)

u2−u1 (25)
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where u1 = u and u2 = du
dt . One of the features of Equation (25) is that the solution approaches

asymptotically a periodic solution for large t, which depends on µ but not on the initial solution (see
Figures 10 and 11). This is in contrast to linear systems. The steady state solution to Equation (25)
is (u1,u2) = (0,0). The initial solution in Figure 10 (mid) and Figure 11 is very close to the steady
state solution, however the asymptotic solution is far from that one.

Figure 10 – Phase space plot, van der Pol’s equation µ = 2, different initial solutions.

Figure 11 – Phase space plot, van der Pol’s equation, different values of µ.
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Figure 12 – Comparison of solutions to van der Pol’s equation (left) and N-S equation for Gripen
displaying total drag (right).

The system in Equation (25) can be extended to a system consisting of K independent systems of
type Equation (25) according to

du2k−1

dt
= u2k

du2k

dt
= µk

(
1−u2

2k−1
)

u2k−u2k−1, 1≤ k ≤ K (26)
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Different time dependent solutions to Equation (26) can be obtained by starting from different initial
solutions such as (u1,0,u2,0,0,0, ...,0,0), (0,0,u3,0,u4,0, ...,0,0) or (0,0,0,0, ...,u2K−1,0,u2K,0) (uk,0 6= 0).
We saw in the previous section that Gripen calculations exhibit a similar behaviour (see Figure 12).
Starting from a solution close to steady state we obtained asymptotically a periodic solution with finite
amplitude whereas other start solutions resulted in different periodic solutions. An explanation for this
is that the Navier-Stokes equations have the same structure as van der Pol’s equation and can be
expressed as a system similar to Equation (26).

6.7 Hybrid RANS-LES Calculations over a Cavity
The last case reported here involves scale-resolved turbulent calculations over the M219 cavity where
we employ dual time stepping for each physical time step and compare convergence rates in dual
time. The test case is well known and several references exist with a vast amount of numerical
results, see e.g. [1], [10]. The flow conditions are M∞ = 0.85,Re = 6.8× 106 where the Reynolds
number is based on the cavity length. An unstructured grid with 6.2×106 nodes is used with 9.6×106

tetrahedral, 9.0× 106 prismatic and a few pyramid elements. The geometry in the grid follows the
geometry used of the wind tunnel where experimental results have been generated. The grid of the
cavity and the device in the wind tunnel where the cavity is embedded can be seen in Figure 13. The
figure also displays an instantaneous Mach number on a cut at the center of the cavity.

Figure 13 – Surface grid of the cavity inside the wind tunnel (left). Instantaneous Mach number on a
cut in the cavity (right).

Comparative calculations are carried out for 10 time steps only, starting from a fully developed so-
lution using the IDDES model [17]. The parallel computations use 32 cores and partitions. For the
unsteady flow simulations, we use a time step of ∆t = 10−5s. In each physical time step, we perform
a constant number of 200 dual iterations for the explicit/line-implicit scheme as well as for the fully
implicit scheme. We have deliberately chosen a high number of sub iterations to demonstrate that
we can push the convergence in dual time to very low values. We stress that 200 dual iterations is far
beyond required engineering accuracy. The convergence in dual time can be seen in Figure 14. The
density residual with the implicit scheme reaches slightly lower values when converged in dual time.
As for the unsteady RANS calculation with Gripen above, the residual increases to a higher level with
the implicit scheme when going from one time step to the next. The corresponding mid plot of the
convergence of the maximum temperature reveals that this quantity converges more quickly with the
implicit scheme at each time step. The right plot displays the maximum density residual after the 200
dual iterations versus CPU (elapsed) time during the 10 time steps. The gain in efficiency is about a
factor of 2.5.
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Figure 14 – Convergence in dual time for the M219 cavity. Maximum density residual convergence
as function of sub iterations (left). Maximum temperature convergence as function of sub iterations

(mid). Converged maximum density residual as function of elapsed time (right).

7. Summary and Conclusions
We present a numerical approach based on an implicit discretization of the governing Navier-Stokes
equations. The implicit approach is employed for steady and time dependent problems. In the latter
a dual time stepping algorithm is introduced where a steady state problem is solved in dual time for
each physical time step.
The implicit approach relies on the discretization of the non-linear governing equations using an Euler
backward method. This is an iterative procedure that is used to drive the residual vector towards
zero to obtain a steady state. For each non-linear iteration, the residual is linearized leading to a
linear system of equations to be inverted. An external library, namely PETSc, is used to solve the
linear system iteratively with an ILU preconditioned a GMRES method to make the iterative solution
efficient. The approximate solution of the linear system is used to update the flow solution. Beyond
the description of the new algorithm, we also give some details on its implementation and usage that
we have found to be important for the efficient and robust use of the scheme.
We present numerical results for a number of test cases in two and three space dimensions with
comparative calculations using explicit multigrid calculations combined with line-implicit integration.
There is a substantial speed-up in the steady state convergence for all cases. For the steady state
Gripen calculation we manage to obtain a fully and machine converged steady state solution whereas
the corresponding calculations with the explicit/line-implicit approach leave remaining oscillations in
forces and moments. Also, unsteady calculations benefit in efficiency. All calculations show a speed-
up of at least a factor of three. We also demonstrate that unsteady calculations over Gripen can end
up in different time dependent solutions depending only on the initial solution. We have given an
explanation to why this can happen. The price to pay for the new method is an increased computer
memory requirement by about a factor of four.
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