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Abstract 

This works intend to present a novel numerical approach for carrying out virtual Vibration Correlation 

Technique (VCT) in stiffened and unstiffened structures subjected to mechanical and thermal loadings in order 

to predict the buckling load, to characterize the natural frequencies variation for progressively increasing loads, 

and to provide a verification of the experimental VCT results. The study has been performed using the well-

established Carrera Unified Formulation (CUF) able to describe several kinematic models for one-dimensional 

(1D) and two-dimensional (2D) structures. All Green-Lagrange strain components are employed because far 

nonlinear regimes are investigated. Furthermore, the geometrical nonlinear equations are written in a total 

Lagrangian framework and solved with an opportune Newton-Raphson method along with a path-following 

approach based on the arc-length constraint. Different structures have been investigated and compared with 

the Abaqus solution in order to validate the proposed approach and provide some benchmark solutions. The 

results document the good accuracy and reliability of the proposed approach and show this numerical tool's 

potentialities. The virtual VCT can be used effectively during the preparation of experimental tests in order to 

appropriately investigate the boundary conditions to be applied or it can be a powerful method to be used to 

investigate cases that are difficult to analyze experimentally, such as structures subjected to thermal or shear 

loads. 
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1. Introduction 
One of the most important important experimental methods used in aerospace industry for the 

assessment of the buckling is the Vibration Correlation Technique (VCT) [1,2]. This nondestructive 

experimental test allows to calculate the buckling load and the equivalent boundary conditions by 

interpolating the natural frequencies of the structures for progressively increasing applied loads 

without reaching instability. The first experimental VCT investigations were performed by Lurie [3], 

Meier [4] and Chu [5]. In view of its importance and potential, several experimental tests and studies 

were carried out for decades. Recently, Abramovich et al. [6] adopted the VCT to evaluate the 

buckling load of metallic and laminated structures. Jansen et al. [7] presented the capability of 

analysis tools for supporting and improving the accuracy of the VCT results obtained through semi-

empirical methods. For the sake of brevity, readers are referred to [8,9] for further detailed 

investigations. The literature on VCT analyses of isotropic and classical composite one-dimensional 

(1D) and two-dimensional (2D) structures is vast [10,11]. However, in practical industrial applications, 

this method exhibits some limitations due to complicated boundary conditions or particular types of 

loading, such as thermal. The principal goal of this work is to overcome these limitations and provide 

an efficient methodology based on high-accuracy but efficient layerwise (LW) models to investigate 

the dynamic characteristics of unstiffened and stiffened metallic and composite beam, plate and shell 

structures under extreme compressive and thermal loadings. This approach presents a powerful 
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methodology to study cases that are difficult to investigate experimentally, such as structures 

subjected to thermal or shear loads and with complicated boundary conditions, among others. 

In this context, the structures are formulated in the Carrera Unified Formulation (CUF) [12] framework 

in order to obtain accurate results. The main advantage of the CUF is to be able to consider the 

structural model order as an input of the analysis. In this way, the refined generic models do not 

need specific formulations. One of the advantages of the present formulation with respect to the 

others, often based on linear approaches, is to consider the geometrical nonlinearities that allow to 

guarantee a remarkable accuracy of the results. In fact, the nonlinear governing equations and the 

relative finite element (FE) arrays of the 2D theories are written in terms of Fundamental Nuclei 

(FNs). FNs represent the basic building blocks of the presented formulation. The investigated 

structures are subjected to progressively higher applied loads, and for each state of equilibrium, on 

the deformed structure, the natural frequencies are calculated by solving a linearized eigenvalue 

problem, obtained from an analysis of the free vibration on the structure. 

2. Vibration around nonlinear equilibrium states  
The application of the presented methodology to investigate the vibration around nonlinear 
equilibrium states can be described in the following steps: 1) first, the static geometrical nonlinear 
problem is solved using the Newton-Raphson method based on the arc-length approach; 2) Once 
the nonlinear equilibrium is computed, the tangent stiffness matrix KT  is obtained in each states of 
interest; 3) Then, since the modal behavior of a structure is not a property of the geometric and 
mechanical characteristics, but it is a property of the state of equilibrium, the free vibrations analysis 
is carried out around a linearized (non-trivial) equilibrium state along the nonlinear path. Namely, the 
linearization of the equation of motion is written as: 

𝛿(𝛿𝐿𝑖𝑛𝑡 + 𝛿𝐿𝑖𝑛𝑒 − 𝛿𝐿𝑒𝑥𝑡) = 𝛿𝒒𝑠𝑗
𝑇 𝑲𝑇

𝑖𝑗𝜏𝑠
𝛿𝒒𝜏𝑖 + 𝛿𝒒𝑠𝑗

𝑇 𝑴𝑖𝑗𝜏𝑠𝛿𝒒̈𝜏𝑖         (1) 

where 𝑴𝑖𝑗𝜏𝑠 is the FN of the mass matrix and it is assumed to be linear, 𝑲𝑇
𝑖𝑗𝜏𝑠

 represents the FN of 

the tangent stiffness matrix and 𝒒𝜏𝑖 indicates the vector of the unknown nodal variables. 4) By 
assuming harmonic motion around non-trivial equilibrium states, the equation of motion is simplified 
into a linear eigenvalues problem, Eq. (2), from which it is possibile to evaluate natural frequencies 
and mode shapes. 

(𝑲𝑇
𝑖𝑗𝜏𝑠

− 𝜔2𝑴𝑖𝑗𝜏𝑠)𝛿𝒒̃𝜏𝑖 = 0 (2) 

 

in which ω indicates the natural frequencies and 𝛿𝒒̃𝜏𝑖 is the eigenvector. If the full nonlinear tangent 
stiffness matrix is considered the method is called full nonlinear approach, whereas in the case of 

small rotations and linear pre-buckling, 𝑲𝑇
𝑖𝑗𝜏𝑠

 can be approximated as the sum of the linear stiffness 

(𝑲𝟎 = 𝑲𝑆(𝑞 = 0)), with 𝑲𝑆 the secant stiffness matrix, and the geometric (pre-stress) contribution 

𝑲𝜎, 
𝑲𝑇 ≈ 𝑲0 + 𝑲𝜎                                                                    (3) 

 

This expression of 𝑲𝑇 is valid around the trivial solution. It is important to underline that, in this 

simplified case, the 𝑲𝜎 matrix refers only to the linear contribution of the stress. 
These vectors and matrices are expressed in the CUF domain. According to CUF, the three-
dimensional (3D) displacement field in the dynamic case for a generic composite 1D/2D model, 
represented using a Cartesian system (x, y, z), is defined as a general expansion of the primary 
unknowns: 
 

{
 𝟏𝑫:   𝒖𝑘(𝑥, 𝑦, 𝑧; 𝑡) = 𝐹𝜏

𝑘(𝑥, 𝑧)𝒖𝜏
𝑘(𝑦; 𝑡)

 𝟐𝑫:   𝒖𝑘(𝑥, 𝑦, 𝑧; 𝑡) = 𝐹𝜏
𝑘(𝑧)𝒖𝜏

𝑘(𝑥, 𝑦; 𝑡)
τ = 1,..., M 

(4) 

 

in which 𝒖𝜏 is the generalized displacement vector,  𝐹𝜏 represent the expansion functions of the 
thickness coordinate z, M denotes the order of expansion in the thickness direction, k indicates the 
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layer index in laminated composite structures and t stand for time.  
In this research, Lagrange polynomials (LE) are adopted for the expansion functions. In the CUF 
domain, the nine-point (L9) Lagrange polynomials were adopted to formulate the higher-order 
kinematic beam model, while the three-node quadratic (LD2) Lagrange expansion was employed in 
the thickness direction to obtain the higher-order kinematic of the plate/shell model. 
For brevity, readers are referred to [12] for a full explanation about the mathematical derivation of 
the 1D/2D FE formulation in the domain of CUF. 
The finite element method (FEM) is used to approximate the in-plane generalized displacement 
vector employing the shape function 𝑁𝑖. 

{
𝟏𝑫:  𝒖𝜏

𝑘(𝑦; 𝑡) = 𝑁𝑖(𝑦)𝒒𝜏𝑖
𝑘 (𝑡)

 𝟐𝑫:  𝒖𝜏
𝑘(𝑥, 𝑦; 𝑡) = 𝑁𝑖(𝑥, 𝑦)𝒒𝜏𝑖

𝑘 (𝑡)
i = 1,..., Nn 

(5) 

in which Nn stand for the number of nodes per element and i indicates summation. For clarity, the 
four-node (B4) cubic beam element is adopted in this work as shape function or the classical nine-
node quadratic (Q9) for the plate element. 
In this study, employing the total Lagrangian formulation, the full Green-Lagrange nonlinear strain 
vector is adopted. 

𝜺𝑘 = 𝜺𝑙
𝑘 + 𝜺𝑛𝑙

𝑘 = (𝒃𝑙 + 𝒃𝑛𝑙)𝒖𝑘 (6) 

where 𝒃𝑙 and 𝒃𝑛𝑙 represent the linear and nonlinear differential operators [13].  
The stress vector is computed from the constitutive relation: 

𝝈𝑘 = 𝑪𝑘𝜺𝑘 (7) 

in which C  is the material elastic matrix for orthotropic materials and it is defined in [14].  

Considering the linear thermo-elasticity, the elastic strain vector 𝜺𝑒
𝑘 is equal to: 

 

  𝜺𝑒
𝑘 =  𝜺𝑘 − 𝜺𝑇

𝑘                                                                   (8) 

 

where 𝜺𝑇
𝑘  represents the strain vector due to the temperature change ΔT=T-T0, that is expressed as: 

 

                                                            𝜺𝑇
𝑘 = 𝜶𝑘𝜟𝑇                                                                   (9)  

 

in which T0 indicates the reference temperature and α stands for the linear thermal expansion 
coefficients vector. 
Consequently, the introduction of the thermal contribution leads to the definition of a new constitutive 

law and to a component related to the thermal load (𝑭𝑇) in the integral of the virtual variation of the 
internal work and a new contribution in the geometric stiffness matrix (𝑲𝜎 𝑇

). For the sake of brevity, 

the complete description with thermal contribution is not provided here, the interested reader is 
referred to [15].  

3. Numerical results 
In order to show the potential of the presented approach, some results obtained based on the use 
of virtual VCT for metallic and composite structures are illustrated below [16,17].  
For the representative purpose, different metallic plates subjected to compressive load are 
investigated as first example. In detail, one unstiffened plate and two stiffened structures are 
considered. These structures have the following geometrical and material data: width (a) equal to 
355 mm, the length (b) is 355 mm, a total thickness (h) of 2 mm. The dimensions of the stiffener are: 
l = 7 mm and d = 4 or 7 mm, respectively. The material properties are: E = 70 GPa, υ = 0.33 and ρ 

= 2780 kg/m3. The boundary conditions of this plate are illustrated in Fig. 1. 
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Figure 1 - Geometry and boundary conditions of the unstiffened and stiffened plate structures. 

For the following discussions, the convergent model is obtained by adopting at least 11x10Q9 for 
the in-plane mesh approximation and only one LD2 in the thickness direction. For the stiffened 
structure, another LD2 is added to describe the stiffener. 
Figure 2 depicts the equilibrium curves of the unstiffened and stiffened plates computed by the 2D 
CUF nonlinear model. Furthermore, in this figure, the linearized buckling load values, representing 
by the horizontal lines, are also displayed. A defect load applied in the center of the plate, Fd = 0.01 
N, was used in order to simulate geometrical imperfections. 
 

    

Figure 2 - Equilibrium curves for the unstiffened and stiffened plates under in-plane compressive 
loads. CUF model makes use of LD2 kinematics and 11x10Q9 FE mesh approximation. 

Figure 3 shows the comparison between the variation of the natural frequencies for progressively 
increasing loads via the trivial linearized solution and full nonlinear approach for the three cases 
considered. For completeness the first ten free vibration modes shapes for the stiffened plate with d 
= 7 mm are reported in Fig. 4. 
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Figure 3 - Comparison between the natural frequencies variation versus compressive loading via 
the trivial linearized solution (L) and full nonlinear approach (NL) for the (a) unstiffened plate, (b) 

stiffened plate with d = 4 mm and (c) stiffened plate with d = 7 mm. 
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Figure 4 - Characteristic first ten free vibration mode shape for the stiffened plate structures with d 
= 7 mm. 

The results show that the approach based on the trivial linearized solution allows one to evaluate the 
frequency variation of this case at lower levels of the compressive load with accuracy. The deviation 
of the linear results from the nonlinear ones becomes remarkable for higher compressive load levels. 
In detail, the first vibration mode reaches a minimum value near the critical load, and after the 
buckling, the frequencies increase. This definite change in the slope of the frequencies represents a 
criterion for the buckling prediction. The results suggest that the proposed methodology provides an 
excellent procedure to predict the critical load and to evaluate the natural frequencies variation in 
nonlinear regime with high reliability. In addition, the presented approach allows to model the 
structure with high accuracy and also take into account the deformation of the stiffener, as illustrated 
in Fig. 4. For completeness, a Modal Assurance Criterion (MAC) graphical representation is reported 
in Fig. 5. This figure compares the first 10 modes of the deformed structure in different states of the 
nonlinear analysis with the undeformed one. As reported by these graphical representations, natural 
modes for a low load (Fig. 5a) are identical to those related to the undeformed case; i.e., all the MAC 
values in the diagonal are equal to 1. As the load increases, more and more boxes are different from 
1 and the state is entirely nonlinear. 
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Figure 5 - MAC values between the modes of the undeformed structure and those of the deformed 
structure for the stiffened plate with d = 4 mm. 

 
 
A 3-layer [90°+<0°/45°> / 0°+<0°/45°> / 90°+<0°/45°>] hinged variable angle tow (VAT) composite 
shell subjected to in-plane compressive and transverse load is illustrated as second assessment. 

This structure has the following data: L = 508 mm, Rα = 2540 mm, θ = 0.1 rad, h = 12.7 mm, E1 = 
3300 MPa, E2 = E3=1100 MPa, G12 = G13 = 660 MPa, υ12 = υ13 = 0.25, ρ = 1 kg/mm3. All nodal 
displacements are restrained along the hinged edges, see Fig. 3. The present shell is modelled 
adopting 10x10Q9 for the in-plane mesh approximation and one LD2 in each layer in the z-direction. 
The equilibrium curves of the considered shell structure are provided in Fig. 6.  
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Figure 6 - Equilibrium curves evaluated at the center of the hinged VAT composite shell under 

compressive and transverse loads. 
 

Figure 7 illustrates the comparison between the first two natural frequencies variation obtained via 
the trivial linearized solution and the full nonlinear approach. In this figure, the red dots and the 
relative numbers refer to those displayed in Fig. 6. The results prove that for this type of structure to 
evaluate the trend of the natural frequencies accurately is needed to perform a nonlinear analysis. 
 

 
 

Figure 7 - Comparison between the approach based on trivial linearized solution and full nonlinear 
solution for the variation of the first two non-dimensional natural frequencies for the hinged VAT 

composite shell subjected to compressive and transverse loads. (𝜔̃ = 𝜔 (
𝑎2

ℎ
√

𝜌

𝐸2
)) 

 
As a final example, a clamped-clamped laminated composite [0°/90°/0°] beam structures subjected 
to thermal loadings is analyzed, see Fig. 8b. The geometrical and material properties are: L = 1 m, 
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a = 0.01 m, h = 0.01 m, E1 = 144.8 GPa, E2 = E3 = 9.65 GPa, ν12 = 0.3, G12 = G13 = 4.14 GPa, G23 = 

3.45 GPa, ρ = 1450 kg/m3, α11 = −2.6279x10−7 °C-1 and α12 = 30.535x10−6 °C-1. The convergent 
model for this beam structure is reached by using at least ten B4 FE along the beam axis and two 
Q9 for each layer. 
In Fig. 8a the comparison between the natural frequencies variation for progressively increasing 
thermal loadings computed via the presented trivial linearized approach and Abaqus (Hex20). For 
completeness, the first four free vibration mode shapes of the composite beam are depicted in Fig. 
8c, 8d, 8e, 8f. 
 

 

Figure 8: (a) Natural frequencies variation versus thermal loadings for the composite beam; (b) 
Geometry and boundary conditions; (c) I flexural xy mode; (d) I flexural yz mode; € II flexural xy 

mode; (f) II flexural yz mode. 

 
 

4. Concluding remarks 
The presented method allows to determine the buckling load of metallic and composite unstiffened 
and stiffened structures subjected to mechanical and thermal loadings, to evaluate the natural 
frequencies variation and to provide a verification of the experimental VCT results with high reliability. 
Furthermore, the virtual VCT becomes a useful technique during the preparation of the experimental 
test or a powerful method when it is necessary to investigate cases that are difficult to analyze 
experimentally, such as structures subjected to thermal or shear loads and with complicated 
boundary conditions, among others. The results demonstrated the potential of this approach and 
provide reasonable confidence for future applications in this topic. In detail, a full nonlinear approach 
is needed to perform accurate investigations. It was shown that eigenfrequencies and eigenmodes 
can suffer abrupt aberrations in deep nonlinear regimes. Moreover, mode aberration is evident 
compared to the modes calculated using the full nonlinear approach with those obtained using the 
trivial linearized solution. 
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