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Abstract 

Metamodels offer a good solution for optimization problems with expensive experiments or simulations. With a 

large number of design variables, it is not easy to establish a precise metamodel throughout the whole design 

space for complex nonlinear problems, especially for a high-fidelity CFD analysis. To address this issue, the 

paper has presented an efficient solution for high-fidelity large-scale aerodynamic shape optimization problems 

based on several developments in the mid-range approximation method within a trust-region optimization 

framework. The trust-region strategy has been improved to contain more optimization states with a flexible and 

controllable performance to suit different types of problems. A metamodel assembly technique and its gradient-

enhanced version are developed to further relax the requirements of computational costs in the mid-range 

approximation method. Its performance is discussed through a detailed comparison of metamodel performance 

by using the Vanderplaats scalable beam problem. The single wing of the Common Research Model is offered 

to the proposed method to conduct the aerodynamic shape optimization. With all constraints satisfied, the 

optimized configuration has a 4.85% improvement in wing drag performance. The results show that the proposed 

method could achieve the design goal successfully within a reasonable computational cost. 

Keywords: mid-range approximation method; trust-region strategy; metamodel assembly; aerodynamic shape 

optimization; large-scale problems 

 

1. Introduction 

The prohibitive cost of the wind tunnel test makes more and more designers tend to apply 
Computational Fluid Dynamics (CFD) tools to analyze and optimize aerodynamic shapes in the main 
stage of the design process. The wind tunnel test currently is more to be used as a final check when 
an optimized aerodynamic shape is obtained. To reduce the chance that the final design may fail to 
satisfy design requirements under the wind tunnel test, high-fidelity methods should be used to produce 
more physically realistic designs. However, a new issue comes that significant computational resources 
are required for these high-fidelity methods. Furthermore, a detailed design with a sufficient number of 
design variables should be used to fully develop the potential of the design configurations. Considering 
the high computational cost of using high-fidelity models, it is quite difficult to explore the whole design 
space if optimizations have a large number of design variables, which attracts more attention to the 
efficient solutions for these problems. 

Metamodels, also known as surrogate models, response surfaces, or approximation models, might be 
a good solution for the aforementioned issues. The use of metamodels would be the general process 
of creating a computationally inexpensive abstraction through the form of either an approximation or 
an interpolation of data with a well-fined set of inputs and outputs to replace the original expensive 
experiment or simulation [1]. It has been widely applied in different areas, including vehicle 
crashworthiness design [2], aircraft mission analysis [3], aerodynamic shape optimization [4], etc. But 
it is not easy to establish a precise metamodel throughout the whole design space for complex 
nonlinear problems, especially for a high-fidelity CFD analysis. What’s worse, with a large number of 
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design variables, the difficulty of having a good metamodel increases. Although a direct solution is to 
provide more training points, the resulting computational consumption would be unacceptable, a 
situation that is referred to as “the curse of dimensionality”. 

The Mid-range Approximation Method (MAM), which originated from the work of Haftka et al. [6] and 
was later developed by Toropov [7] and Toropov et al. [8], proves to be efficient to build better quality 
metamodels in large-scale problems with a reasonable number of training points [9,10]. Compared with 
the global-range approximation methods that build metamodels through the entire design space, the 
mid-range approximation methods establish metamodels in a subspace of the whole design space to 
reduce the difficulty of having a metamodel with good quality. The subspace of the whole design space 
is later referred to as the trust-region, which would be translated and scaled by the trust-region strategy 
during the design process. This method has been successfully used in turbomachinery design [11] and 
automotive structure design [12]. However, there are still few studies on aerodynamic shape 
optimizations of aircraft using the latest developments in the mid-range approximation methods. 

In this paper, an efficient solution for aerodynamic shape optimization is presented based on several 
developments in the mid-range approximation method within a trust-region optimization framework. 
The trust-region strategy has been enhanced to include more optimization states for different types of 
problems. A Metamodel Assembly (MA) technique and its gradient-enhanced version are developed. 
Its performance is proved by a detailed comparison of metamodel performance by using the 
Vanderplaats scalable beam case [13]. Then an aerodynamic shape optimization of the Common 
Research Model (CRM) wing [14] is offered to demonstrate the proposed method. 

2. Optimization Framework 

2.1 Mid-range Approximation Method 

MAM is an iterative optimization technique that could transform the original optimization problem into 
a sequence of approximate sub-optimization problems. This method can be seen as the application of 
the bilevel optimization techniques. The goal of its upper-level problem is to find a suitable trust-region 
that could build a good metamodel with a given number of training points and also include the optimum 
design. Then the lower-level problem is to solve the original problem in the current trust-region where 
all the physical experiments or simulations are replaced with metamodel predictions, which is referred 
to as the approximate sub-optimization problem.  

A typical optimization process of MAM is shown in Figure 1. As the trust-region is moved on and 
changed, the optimization gradually approaches the optimum of the original problem, too. In every new 
trust-region, MAM needs to re-build the metamodel by using several new design points. However, it is 
normal to have some existing points inherited from previous iterations in the current trust-region. Using 
these existing points could save the computational cost in the evaluation of the physical simulations. 
Therefore, a non-collapsible randomized Design of Experiment (DoE) method [15] is selected to 
sample DoE points efficiently one by one with a reasonably uniform spread while taking into account 
the existing ones. 

 

Figure 1 - Typical MAM optimization process  
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In this study, an improved trust-region strategy is offered to deal with the upper-level problem while a 
gradient-based optimizer, SLSQP (Sequential Least-Squares Quadratic Programming) algorithm [16], 
is used to solve the lower-level problem. To reduce the chance of falling into a local optimum, multiple 
approximate sub-optimizations could be conducted in every iteration of solving the upper-level problem. 
These sub-optimizations will start from several randomly initial points chosen in the current trust-region. 
Considering that all these sub-optimizations are solved based on metamodels, the resulting 
computational cost is relatively small. 

2.2 Trust-Region Strategy 

The choice of the trust-region strategy plays an important role in MAM for the performance and 
computational cost of the whole optimization. It provides a way to resolve the upper-level problem and 
determine the location and size of the trust-region in each iteration. In this paper, there are six input 
parameters for the considered trust-region strategy as follows: 

⚫ Metamodel Quality 

It shows the discrepancy between the metamodels and physical simulations. Depending on the 
user-defined settings, the metamodel quality could be categorized into three types: “bad”, “good” and 
“precise”. 

⚫ Trust-Region Size 

The trust-region size is the relative size of the current trust-region compared to the global design 
space. While the traditional trust-region strategy [17] divides it into two categories: “small” and “large”, 
the current strategy imports a new category “too small” to avoid the situation that all the sampled points 
have a similar performance that will bring ill-conditioned matrixes in the metamodel building stage. 

⚫ Optimum Location 

This input parameter shows the location of the optimum point in the current trust-region. The 
traditional trust-region strategy distinguishes its state into two categories: “internal” and “external”. 
However, considering that the metamodel quality outside the current trust-region may not be as 
accurate as the one inside, this paper limits the optimum point to be selected only in the current trust-
region. Hence, the current trust-region strategy discards the category “external” and subdivides the 
category “internal” into three types: “inside”, “near the boundary” and “at the boundary”. In this way, the 
input parameters could be generated based on more accurate information, and more detailed solutions 
could be provided for more detailed states. 

⚫ Feasibility 

The feasibility of the optimum point is one of the important criteria for optimization convergence. 
The trust-region strategy also uses this parameter as an indicator to adjust the trust-region. 

⚫ Search Direction 

The search direction derives from the movement history of the trust-region. If the optimum points 
are always found “at the boundary” and the trust-region keeps moving in the same direction, it is 
necessary to enlarge the trust-region to contain more design space and improve the optimization 
efficiency. 

⚫ Oscillation Level 

This parameter is to check if the trust-region, or the optimization, oscillates around certain points. 
If it is, a special treatment is required to adjust the trust-region while ending this oscillation. 

With these functions as input parameters, the trust-region strategy will set the optimum location as the 
centre of the new trust-region and apply the decision-making mechanism shown in Figure 2 to 
determine the new trust-region size. This decision-making mechanism has defined 13 optimization 
states according to the combination of the above six parameters, including 4 stop states (S1-S4), 6 
reduction states (R1-R6), 1 enlargement state (E1), and 2 keeping states (K1, K2). Different 
optimization states have different solutions to modify the trust-region. Normally, the stop states mean 
the optimization should be stopped. The reduction states mean the strategy should reduce the trust-
region size in the next iteration while the enlargement state should increase it. Similarly, the keeping 
states indicate the trust-region size should remain unchanged. With the subdivision and re-
classification of part parameters, the improved trust-region strategy has contained more optimization 
states with a flexible and controllable performance to suit different types of problems. 
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(a) The left part of the decision-making mechanism  

 

(b) The right part of the decision-making mechanism 

Figure 2 - Decision-making mechanism of the trust-region strategy 

2.3 Metamodel Assembly Technique 

Although the mid-range approximation method makes it possible to employ metamodel techniques in 
large-scale problems, the selection of metamodel techniques will greatly affect the optimization 
performance. As the number of design variables and design responses grows, the computational cost 
of the metamodel building and evaluation becomes a non-negligible part of the whole optimization. 
Especially for the mid-range approximation method, metamodels need to be re-built and evaluated in 
every iteration since the trust-region is moving as the optimization goes on, which raises higher 
requirements for the efficiency of the metamodel techniques.  

Considering these issues, this work has developed a metamodel assembly technique and its gradient-
enhanced version originating from the work in reference [18]. By using the MA method, multiple 
metamodels could be assembled into one single metamodel to combine their strengths properly. Such 
an approach has been widely studied in different applications with different metamodels, including 
polynomial regression (PR), radial basis function (RBF), Kriging (KRG), etc [19-21]. However, building 
and evaluation of these classical metamodels may involve a lot of matrix computations, whose 
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efficiency would be greatly worse in large-scale problems. What’s worse, some metamodel methods 
require a pre-optimization for their tuning parameters, known as hyperparameter optimization [22,23], 
making it impossible to be used in large-scale problems. 

In this way, the paper has selected five linear or intrinsically linear functions [24] as basic metamodels 
as follows: 
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where   is the basic metamodel, x  is the design variable vector from sampling points, n  is the number 

of design variables,  1, , nx x=x , la  is the tunning vector in the thl  metamodel, , 0 , 1 ,, , ,l l l l na a a =  a  

and 1, 2, , 5l = . The intrinsically linear function is nonlinear but could be converted to a linear function. 

Every basic metamodel has 1n +  tunning parameters, which are solved by the linear regression 

method as shown in the following formulation: 
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where P  is the number of training points, p  is the index of the selected training point, F  is the 

response function from the physical experiments or simulations, and pw  is the weight factor of the 

corresponding point px . If the gradient information is available, we could incorporate it to improve the 

metamodel quality with the following equation: 
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where   is a parameter to show how important the gradient information is compared with the response 

information. In this study,   is set to 0.5. Notice that by using the linear regression method, the required 

minimum number of training points is 1n +  if the gradient information is unavailable and 1 if the gradient 

information is provided, which allows this method uses as few samples as possible to build metamodels. 

When we finish the building of basic metamodels, the next step is to combine them using the following 

formulation: 

 ( ) ( )
1

, ,
nf

l l l

l

F b 
=

= x b x a  (4) 

where F  is the combined metamodel to replace the original function F , b  is the tunning vector of the 

metamodel assembly, nf  is the number of the basic metamodels which is 5 in this work, 

1 2, , , nfb b b =  b . Similarly, the tunning vector b  is solved by the linear regression method using the 

following formulation 
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If the gradient information is offered, the following extension could be used: 
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When the tunning vectors la  and b  are obtained, equation (4) is used to predict the response values 

for different test points.  

Compared with classical metamodel techniques like RBF and KRG, the MA technique proposed in this 
paper consists of several linear or intrinsically linear functions that are simple enough to be built and 
evaluated efficiently, which could relax the efficiency issues of the metamodel technique in large-scale 
problems. This is also proved by a detailed comparison of metamodel performance shown in Section 
3.1. Besides, parallel computing technology has been implanted in the proposed method to build and 
evaluate metamodels for different responses simultaneously. 

3. Benchmark and Application 

3.1 Vanderplaats scalable beam 

A benchmark test case known as Vanderplaats scalable beam [13] is studied in this section to 
demonstrate the proposed method first. As shown in Figure 3, the research subject is a cantilevered 
beam that consists of S segments with rectangular cross-sections. The number S can be chosen 
arbitrarily. 

 

Figure 3 - Vanderplaats scalable beam 

The detailed optimization model is shown in Table 1. In this optimization problem, the design objective 
is to minimize the beam volume V. The stress σi and aspect ratio hi / bi of every segment are considered 
as the design constraints. The tip deflection yS due to the external load F = 5×104 N is seen as a global 
constraint. The design variables are the widths bi and heights hi of these rectangular cross-sections. 
The total length L is 500 cm which means the length of every segment li is 500 / S cm. All the responses 
and their gradient information could be calculated by analytical functions given in reference [13]. 

Table 1 - Optimization model of Vanderplaats scalable beam 

 Objective / Constraint / Variable Description Quantity 

minimize 
1

S

i i i

i

V b h l
=

=    Beam volume 1 

with respect to 1 cm ≤ bi ≤ 10 cm Widths S 

 5 cm ≤ hi ≤ 100 cm Heights S 

 Total number of design variables    2 × S 

subject to σi ≤ 14000 N / cm2 Stress constraints S 

 hi / bi ≤ 20 Aspect ratio constraints S 

 yS ≤ 2.5 cm Tip deflection constraint 1 

 Total number of design constraints 2 × S + 1 

Here we suppose that the considered problem has 256 segments, which means there are 1 design 
objective, 512 design variables, and 513 design constraints. That could be seen as a typical large-
scale problem discussed in this paper. Two MAM optimization cases have been conducted. The first 
one doesn’t use gradient information which is labelled as MAM and the second one does utilize 
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gradients which is labelled as GEMAM (Gradient-Enhanced MAM). In each iteration of the upper-level 
problem, the MAM case samples 1024 training points to build metamodels while the GEMAM case 
samples 6 training points. And three approximate sub-optimizations have been conducted in every 
iteration to reduce the possibility of local optimal. The initial trust-region size in both cases is set to 
25 %. To verify the optimization performance of the proposed method, a gradient-based optimization 
case using the SLSQP algorithm is also offered as a reference. The desired accuracy of SLSQP is 1

×10-6. 

The optimization results from three cases are compared in Table 2 and their optimization histories are 
plotted in Figure 4. For this problem, Both the MAM case and GEMAM case arrive at a solution that is 
quite similar to the gradient-based method, with relative errors of less than 0.05%. All design 
constraints have been satisfied. For the MAM case, the proposed method has successfully obtained a 
good solution at an acceptable cost of 19549 response evaluations. The other classical gradient-free 
methods like the Genetic Algorithm (GA) [27] or Simulated Annealing Algorithm (SAA) [28] might need 
several times or even tens of times the same computational resources to find a similar solution for this 
problem that has 512 design variables. As for the GEMAM case, the gradient information is used to 
build metamodels, which could improve the metamodel quality and reduce the required number of DoE 
points. Compared with the SLSQP case, a slightly better solution has been achieved with a lower 
computational cost. Notice that for both MAM and GEMAM cases, every iteration plotted in Figure 4 
contains three approximate sub-optimizations starting from random initial points, which make the 
optimization less likely to be trapped in local optimal. But every optimized point from approximate sub-
optimizations needs to be re-evaluated by physical simulation solvers. If we use a smaller number of 
approximate sub-optimizations in every iteration, the overall computational cost used by GEMAM could 
be further reduced. These results prove that the proposed method can provide an efficient solution for 
large-scale problems with good accuracy. 

Table 2 - Optimization results for Vanderplaats scalable beam problem with 256 segments  

Method Objective Relative Error Iterations Response Evaluations Gradient Evaluations 

SLSQP 63691.58 ----- 215 217 216 

MAM 63683.73 0.0123% 19 19549 0 

GEMAM 63668.54 0.0362% 19 172 172 

 

Figure 4 - Optimization histories of Vanderplaats scalable beam problem with 256 segments 

Next, using the same problem, we have compared the performance of different metamodels. The 
considered metamodels include MA, KRG and MLS (Moving Least-Squares) [29]. MA is the metamodel 
assembly technique developed in Section 2.3. KRG is a popular and typical approximation technique 
in classical metamodels. And MLS is one of the most frequently used choices of metamodel technique 
in studies using the mid-range approximation method [10,11,30].  
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In this study, 11 cases are extracted in which the number of segments ranges from 10 to 100. That 
means the range of the number of design variables is between 20 and 200, and the range of the number 
of responses that should be replaced by metamodels is between 22 and 202. The building time, 
evaluation time and prediction error of metamodels are extracted as indicators to demonstrate 
metamodel performance. Considering the existence of multiple responses, the average values of these 
indicators among all the responses are used for the final comparison. Furthermore, to eliminate the 
influence of randomness in the selected DoE method, we have repeated this process including building 
and evaluation 50 times for all 11 cases and then, similarly, their average values are extracted.  

For all 11 test cases, two trials have been conducted. The first trial builds metamodels only with 
responses and the second trial builds metamodels with responses and their gradients. For the first trial, 
the number of training points is set to twice the number of design variables. And for the second trial, 
the number of training points is fixed at 6. The corresponding labels of these metamodels in the second 
trial are named GEMA (Gradient-Enhanced MA), GEKRG (Gradient-Enhanced KRG) and GEMLS 
(Gradient-Enhanced MLS), respectively. All these trials in all cases are tested in a single-core 
computational environment. 

Figure 5 and Figure 6 give the results of the metamodel performance comparison in the first and second 
trials. In both trials, the MLS method has the least building time and the largest evaluation time while 
the KRG model has the largest building time and the second larger evaluation time. The MA technique 
has the second larger building time and the least evaluation time. Considering that all metamodels will 
be re-built once and evaluated several times at every MAM iteration, the evaluation time of metamodels 
should be the most important part to affect the overall computational cost. Therefore, the MA technique 
which has the least evaluation time should be a suitable choice.  

Besides, as the number of design variables increases, the MA technique is the least affected one. 
When the number of design variables increases by one order of magnitude (from 20 to 200), the 
building time of MA increases by nearly two orders of magnitude in both trials and its evaluation time 
increases by just approximately one order of magnitude. But for KRG trials, its building and evaluation 
time rise almost 10000 times and 1000 times. In GEKRG trials, its building and evaluation time both 
increase 100 times. Following this trend, the computational cost of the building and evaluation of KRG 
metamodels would increase rapidly to be unacceptable for the large-scale problems with hundreds of 
design variables. As for the MLS method, although its building time could be ignored compared with 
other methods, the issue in its evaluation time is more serious than the KRG method. 

Finally, the MA technique also has the best performance in the prediction error. However, this might 
only suit the current problem since KRG and MLS both need hyperparameter optimizations in advance 
to get a good metamodel quality. In these trials, we disable the hyperparameter optimizations and use 
a fixed set of hyperparameters, which leads to poor performance on the prediction error of KRG and 
MLS. The hyperparameter optimizations need to re-build and re-evaluate the metamodels several 
times. Considering their rapid increase in the building and evaluation time, the KRG and MLS 
metamodels using hyperparameters optimizations are not suitable for large-scale problems. 

Based on the discussion above, the developed MA method and its gradient-enhanced version are 
proved to be a useful and efficient metamodel technique that could be used in the mid-range 
approximation method for large-scale problems. 

 

 

Figure 5 - Metamodel performance comparison without gradient information 
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Figure 6 - Metamodel performance comparison with gradient information 

3.2 Aerodynamic shape optimization 

In this section, the proposed method is applied to a wing aerodynamic shape optimization problem. As 
shown in Figure 7, the wing is extracted from the CRM wing-body geometry and its leading edge (LE) 
at the wing root section is set as the origin of coordinates. The wing span is 26.327 m. The reference 
chord and reference area are 7.005 m and 167.198 m2, respectively. The orange dot in the figure is 
the reference point used in this problem, which is (8.460, 0.000, 0.054) m. The flight design condition 
is shown as follows: 

60.85, 40 10 , 0.50LMa Re C= =  =  

The left part in Figure 8 gives the wing CFD grid. This multi-block structure grid has 3.396 million cells. 
All cells near the wall have been adjusted to make the maximum dimensionless wall distance y+ less 
than or equal to 1. Using this grid, one CFD evaluation based on Reynolds-Averaged Navier-Stokes 
(RANS) equations might take hours. To minimize the number of CFD evaluations required in the 
optimization, the gradient information should be applied to build metamodels in MAM. Therefore, a 
RANS-based CFD solver using Spalart-Allmaras (SA) turbulence model, namely ADflow [31], is 
selected to analyze the aerodynamic performance of design configurations. ADflow has been 
differentiated with the adjoint method and can finish gradient computations efficiently.  

A Free Form Deformation (FFD) method [25] is applied to parameterize the wing shape. The FFD 
method puts the original object into a flexible control box, like the right part shown in Figure 8, and then 
builds a mathematical mapping relationship between object and box. Through this relationship, one 
can modify the wing surface arbitrarily by adjusting the position of the control points in the control box. 
The position of these control points could be treated as the design variables in the optimization. When 
a new perturbed shape is generated, a mesh deformation algorithm using the inverse distance 
weighting interpolation method [26] is used to propagate the surface changes to volume grids. 

 

 

Figure 7 - CRM wing geometry 
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Figure 8 - CFD grid (left) and FFD control box (right) 

Table 3 illustrates the detailed optimization model of wing aerodynamic shape optimization. The 
considered problem has 1 design objective, 232 design variables and 135 design constraints. The 
optimization tries to seek the minimum drag coefficient CD subject to a lift constraint (CL = 0.50) and a 
pitching moment constraint (CM ≥ -0.19). The lift constraint ensures that the computational condition 
will not deviate from the required design condition during the optimization. To satisfy this constraint, 
the angle of attack (AoA) is included in the optimization as a design variable. The pitching moment 
constraint limits the pitching moment to be greater than a given value in case the trim drag coefficient 
would deteriorate in the following design of the complete aircraft.  

Table 3 - Wing aerodynamic shape optimization model 

 Objective / Constraint / Variable Description Quantity 

minimize CD Drag coefficient 1 

with respect to AoA Angle of Attack 1 

 XFFD FFD control points 220 

 Xtwist Wing twist 11 

 Total number of design variables    232 

subject to CL = 0.50 Lift constraint 1 

 CM ≥ -0.19 Pitching moment constraint 1 

 Xtwist, root = 0 Wing root constraint 1 

 XLE, Upper = -XLE, Lower LE constraints 11 

 XTE, Upper = -XTE, Lower TE constraints 11 

 t ≥ t0 Thickness constraints 110 

 Total number of design constraints 135 

The geometry design variables and constraints are shown in the right part of Figure 8. The control box 
consists of 11 control sections distributed along with wing span-wise direction (Y axis). For each control 
section, there are 20 control points, shown as orange spheres in the figure, 10 on the upper surface 
and 10 on the lower surface. By using the FFD method, the modification of each control point could 
efficiently change the wing surface nearby. During the optimization, the displacement of these control 
points in the Z axis is treated as local shape variables XFFD. And the rotations of these control sections 
around the Y axis are seen as the global shape variables Xtwist to control the wing span-wise twist 
distribution. The rotation axis of each control section is located on the wing leading edge.  

Then several geometry constraints have been imported according to some engineering considerations. 
Firstly, the twist at the root section is fixed to keep the angle of wing incidence unchanged. Then, we 
find that if the perturbation of XFFD occurs in the leading edge or trailing edge (TE), the wing span-wise 
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distribution could also be slightly affected. To reduce the influence of interaction between XFFD and Xtwist, 
one LE constraint and one TE constraint have been put on every control section, shown as the green 
and blue lines in Figure 8. These LE / TE constraints limit the control points at these positions to move 
the same distance in the opposite direction. Then Xtwist could be the only factor to influence the wing 
span-wise twist distribution. Finally, in order not to reduce the wing volume, 110 wing thickness 
constraints have been evenly distributed in the wing plane, see the red thick line in Figure 8. These 
thickness constraints restrict the thickness at the corresponding position to be equal to or larger than 
their initial values during the optimization. 

The same MAM settings have been used in this problem. The initial size of the trust-region is set to 
25%. In each iteration of the upper-level problem, we would sample 6 training points to build GEMA. 
To reduce the probability of falling into a local optimum, three approximate sub-optimizations have 
been conducted in every iteration. The whole optimization works in a High-Performance Computing 
(HPC) environment with 144 cores [32].  

As shown in Figure 9, the proposed method successfully finished the optimization in 86 iterations with 
a computational cost of 481 response and gradient evaluations. The consumed number of response 
and gradient evaluations is approximately 2.07 times the number of design variables. The detailed 
aerodynamic coefficients between the baseline and optimized configurations are listed in Table 4. All 
constraints including the lift and pitching moment constraints have been satisfied. The design objective, 
drag coefficient CD counts, decreases by 8.32 counts, which is a 4.85% improvement in wing drag 

performance. In this paper, all drag coefficients CD are given in counts. CD counts = CD × 10-4. 

 

Figure 9 - Convergence history of wing aerodynamic shape optimization 

Table 4 - Aerodynamic performance at the design condition 

Configuration AoA (º) CL CD counts CM L / D 

Baseline 1.898 0.50 171.52 -0.1954 29.15 

Optimized 2.070 0.50 163.20 -0.1900 30.64 

To give an understanding of how the proposed method works, we plot the optimization history of trust-
region size and metamodel quality as shown in Figure 10. These two functions are key indicators of 
the trust-region strategy. In the first 20 iterations of optimization, the trust-region size gradually reduced 
with a more and more accurate metamodel. MAM has initially identified the trust-region including the 
optimum. The lift coefficient and the pitching moment coefficient approached the boundary of 
constraints as shown in Figure 9. Then the decreasing speed in the drag coefficient slowed down. To 
further reduce the drag coefficient, the optimization turned to give a thoroughly searching with mild 
steps. The trust-region would be slightly reduced in this stage to maintain the metamodel quality at a 
good level. Finally, the optimization stopped with a normal convergence where prediction errors are 
below 10-5 and optimal designs from approximate sub-optimizations are nearly identical to the actual 
optimum design. 
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Figure 11 shows a comparison of aerodynamic performance between the baseline and optimized 
configuration. The contours of pressure coefficient CP on the upper wing surface are given first. The 
area of pressure concentration in the middle wing where the shock exists has greatly reduced. The 
optimized design has a smooth and nearly parallel pressure distribution. The following CP distributions 
and airfoil shapes at six span-wise sections also prove the good performance of the optimized design. 

 

Figure 10 - Optimization history of trust-region size and metamodel quality 
 

 

 

Figure 11 - Comparison of aerodynamic performance between the baseline and optimized 
configuration 
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4. Conclusion 

This paper has presented an efficient solution for high-fidelity large-scale aerodynamic shape 
optimization problems based on several developments in the mid-range approximation method within 
a trust-region optimization framework. The mid-range approximation method is a bilevel optimization 
technique that converts the original optimization problem into a sequence of approximate sub-
optimization problems. It provides a way for designers to utilize metamodel techniques in high-fidelity 
large-scale problems.  

The trust-region strategy has been improved to contain more optimization states with a flexible and 
controllable performance to suit different types of problems. It defines 13 optimization states based on 
the combination of six indicators. Different optimization states give different solutions to upper-level 
problems. Then the upper-level problem could be solved efficiently and robustly. 

The metamodel assembly technique and its gradient-enhanced version have been developed to further 
improve the performance of the mid-range approximation method. Compared with part classical 
metamodels like KRG and MLS, the proposed metamodel assembly technique could efficiently build 
and evaluate metamodels and have relatively good prediction quality in the selected trust-region 
without extra hyperparameter optimizations. This has been confirmed by multiple trials in the 
Vanderplaats scalable beam problem with different numbers of segments from 10 to 100. 

The proposed method has been applied to a benchmark case and a wing aerodynamic shape 
optimization problem. The benchmark case is a Vanderplaats scalable beam problem with 256 
segments, which has 1 design objective, 512 design variables and 513 design constraints. The 
proposed method has successfully found the optimum solution at a reasonable computational cost. 
With the gradient-enhanced metamodel assembly technique, the computational consumption is even 
better than the selected gradient-based method SLSQP. The aerodynamic shape optimization of the 
CRM wing consists of 1 design objective, 232 design variables and 135 design constraints. The final 
solution has a 4.85% improvement in wing drag performance. The shock region has been greatly 
reduced. These results demonstrate the effectiveness of the proposed method in high-fidelity large-
scale aerodynamic shape optimization problems.  

5. Contact Author Email Address 

For further communication, the corresponding authors’ email addresses are shown as follows: 

Yu Zhang, mailto: guardmdo@mail.nwpu.edu.cn 

Dongsheng Jia, mailto: d.jia@qmul.ac.uk 

6. Copyright Statement 

The authors confirm that they, and/or their company or organization, hold copyright on all of the original 
material included in this paper. The authors also confirm that they have obtained permission, from the 
copyright holder of any third-party material included in this paper, to publish it as part of their paper. 
The authors confirm that they give permission, or have obtained permission from the copyright holder 
of this paper, for the publication and distribution of this paper as part of the ICAS proceedings or as 
individual off-prints from the proceedings. 

References 

[1] Viana F A C, Simpson T W, Balabanov V, and Toropov V V. Metamodeling in multidisciplinary design optimization: 

how far have we really come?. AIAA Journal, Vol. 52, No. 4, pp 670-690, 2014. https://doi.org/10.2514/1.J052375. 

[2] Yin H, Fang H, Wen G, Gutowski M, and Xiao Y. On the ensemble of metamodels with multiple regional optimized 

weight factors. Structural and Multidisciplinary Optimization, Vol. 58, No. 1, pp 245-263, 2018. 

https://doi.org/10.1007/s00158-017-1891-1. 

[3] Liem R P, Mader C A, and Martins J R R A. Surrogate models and mixtures of experts in aerodynamic performance 

prediction for aircraft mission analysis. Aerospace Science and Technology, Vol. 43, pp 126-151, 2015. 

https://doi.org/10.1016/j.ast.2015.02.019. 

[4] Han Z, Xu C, Zhang L, Zhang Y, Zhang K, and Song W. Efficient aerodynamic shape optimization using variable-

fidelity surrogate models and multilevel computational grids. Chinese Journal of Aeronautics, Vol. 33, No. 1, pp 31-

47, 2020. https://doi.org/10.1016/j.cja.2019.05.001. 

[5] Liu D Z, and Toropov V V. Implementation of discrete capability into the enhanced multipoint approximation method 

for solving mixed integer-continuous optimization problems. International Journal for Computational Methods in 

Engineering Science and Mechanics, Vol. 17, No. 1, pp 22-35, 2016. https://doi.org/10.1080/15502287.2016.1139013. 



EFFICIENT MID-RANGE APPROXIMATION METHOD FOR AERODYNAMIC SHAPE OPTIMIZATION 

14 

 

 

[6] Haftka R T, Nachlas J A, Watson L T, Rizzo T, and Desai R. Two-point constraint approximation in structural 

optimization. Computer Methods in Applied Mechanics and Engineering, Vol. 60, No. 3, pp 289-301, 1987. 

https://doi.org/10.1016/0045-7825(87)90136-8. 

[7] Toropov V V. Simulation approach to structural optimization. Structural Optimization, Vol. 1, No. 1, pp 37-46, 1989. 

https://doi.org/10.1007/BF01743808. 

[8] Toropov V V, Filatov A A, and Polynkin A A. Multiparameter structural optimization using FEM and multipoint 

explicit approximations. Structural Optimization, Vol. 6, No. 1, pp 7-14, 1993. https://doi.org/10.1007/BF01743169. 

[9] Polynkin A A, and Toropov V V. Mid-range metamodel assembly building based on linear regression for large scale 

optimization problems. Structural and Multidisciplinary Optimization, Vol. 45, No. 4, pp 515-527, 2012. 

https://doi.org/10.1007/s00158-011-0692-1. 

[10] Taherkhani A R, Gilkeson C, Gaskell P, Hewson R, Toropov V V, Rezaienia A, Thompson H. Aerodynamic CFD 

based optimization of police car using bezier curves. SAE International Journal of Materials and Manufacturing, Vol. 

10, No. 2, pp 85-93, 2017. https://doi.org/10.4271/2017-01-9450. 

[11] Caloni S, Shahpar S, and Toropov V V. Multi-disciplinary design optimisation of the cooled squealer tip for high 

pressure turbines. Aerospace, Vol. 5, No. 4, pp 116-136, 2018. https://doi.org/10.3390/aerospace5040116. 

[12] Mortished C, Ollar J, Benzie P, Jones R, Sienz J, and Toropov V V. Multidisciplinary optimisation of an automotive 

body-in-white structure using crushable frame springs and sub space metamodels in trust-regions. Advances in 

Structural and Multidisciplinary Optimization, pp 1572-1584, 2018. https://doi.org/10.1007/978-3-319-67988-4_118. 

[13] Vanderplaats G N. Numerical optimization techniques for engineering design: with applications. Vanderplaats 

Research & Development, Inc, pp 643-648, 1984. 

[14] Vassberg J C, DeHaan M A, Rivers S M, and Wahls R A. Development of a Common Research Model for applied 

CFD validation Studies. 26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, AIAA 2008-6919, 2008. 

[15] Korolev Y M, Toropov V V, and Shahpar S. Large-scale CFD optimization based on the FFD parametrization using 

the multipoint approximation method in an HPC environment. 16th AIAA/ISSMO Multidisciplinary Analysis and 

Optimization Conference, Dallas, TX, AIAA 2015-3234, 2015. 

[16] Kraft D. A software package for sequential quadratic programming. Technical Report DFVLR-FB, Vol. 88, No. 28, pp 

1-33, 1988. 

[17] Keulen F Van, and Toropov V V. New developments in structural optimization using adaptive mesh refinement and 

multipoint approximations. Engineering Optimization, Vol. 29, No. 1-4, pp 217-234, 1997. https://doi.org/ 

10.1080/03052159708940994. 

[18] Polynkin A A, and Toropov V V. Mid-range metamodel assembly building based on linear regression for large scale 

optimization problems. Structural and Multidisciplinary Optimization, Vol. 45, No. 4, pp 515-527, 2012. 

https://doi.org/10.1007/s00158-011-0692-1. 

[19] Viana F A C, and Haftka R. Using Multiple Surrogates for Metamodeling. Proceedings of the 7th ASMO-UK/ISSMO 

International conference on engineering design optimization, Bath, UK, 2008. 

[20] Han Z H, Görtz S, and Zimmermann R. Improving variable-fidelity surrogate modeling via gradient-enhanced kriging 

and a generalized hybrid bridge function. Aerospace Science and Technology, Vol. 25, No. 1, pp 177-189, 2013. 

https://doi.org/10.1016/j.ast.2012.01.006. 

[21] Yin H, Fang H, Wen G, Gutowski M, and Xiao Y. On the ensemble of metamodels with multiple regional optimized 

weight factors. Structural and Multidisciplinary Optimization, Vol. 58, No. 1, pp 245-263, 2018. 

https://doi.org/10.1007/s00158-017-1891-1. 

[22] Strijov V, and Weber G W. Nonlinear regression model generation using hyperparameter optimization. Computers and 

Mathematics with Applications, Vol. 60, No. 4, pp 981-988, 2010. https://doi.org/10.1016/j.camwa.2010.03.021. 

[23] Ollar J, Mortished C, Jones R, Sienz J, and Toropov V V. Gradient based hyper-parameter optimisation for well 

conditioned kriging metamodels. Structural and Multidisciplinary Optimization, Vol. 55, No. 6, pp 2029-2044, 2017. 

https://doi.org/10.1007/s00158-016-1626-8. 

[24] Box G E P, and Draper N R. Empirical model-building and response surfaces. Journal of the American Statistical 

Association, Vol. 83, No. 402, pp 569-570, 1988. https://doi.org/10.2307/2288890. 

[25] He X, Li JC, Mader C A, Yildirim A, and Martins J R R A. Robust aerodynamic shape optimization - from a circle to 

an airfoil. Aerospace Science and Technology, Vol. 87, pp 48-61, 2019. https://doi.org/10.1016/j.ast.2019.01.051. 

[26] Witteveen J A S, and Bijl H. Explicit mesh deformation using inverse distance weighting interpolation. 19th AIAA 

Computational Fluid Dynamics Conference, San Antonio, Texas, AIAA 2009-3996, 2009. 

[27] Deb K, Pratap A, Agarwal S, and Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE 

Transactions on Evolutionary Computation, Vol. 6, No. 2, pp 182-197, 2002. https://doi.org/10.1109/4235.996017. 

[28] Welsh D J A. Simulated annealing: theory and applications. Bulletin of the London Mathematical Society, Vol. 21, No. 

2, pp 204-205, 1989. https://doi.org/10.1112/blms/21.2.204b. 

[29] Lancaster P, and Salkauskas K. Surfaces generated by moving least squares methods. Mathematics of Computation, 

Vol. 37, No. 155, pp 141-158, 1981. https://doi.org/10.2307/2007507. 

[30] Gilkeson C A, Toropov V V, Thompson H M, Wilson M C T, Foxley N A, and Gaskell P H. Dealing with numerical 

noise in CFD-based design optimization. Computers and Fluids, Vol. 94, pp 84-97, 2014. 



EFFICIENT MID-RANGE APPROXIMATION METHOD FOR AERODYNAMIC SHAPE OPTIMIZATION 

15 

 

 

https://doi.org/10.1016/j.compfluid.2014.02.004. 

[31] Mader C A, Kenway G K W, Yildirim A, and Martins J R R A. ADflow: an open-source computational fluid dynamics 

solver for aerodynamic and multidisciplinary optimization. Journal of Aerospace Information Systems, Vol. 17, No. 9, 

pp 508-527, 2020. https://doi.org/10.2514/1.I010796. 

[32] King T, Butcher S, and Zalewski L. Apocrita - High Performance Computing cluster for Queen Mary University of 

London. Queen Mary University of London, Technical Report, pp 1-2, 2017. http://doi.org/10.5281/zenodo.438045. 


	1. Introduction
	2. Optimization Framework
	2.1 Mid-range Approximation Method
	2.2 Trust-Region Strategy
	2.3 Metamodel Assembly Technique

	3. Benchmark and Application
	3.1 Vanderplaats scalable beam
	3.2 Aerodynamic shape optimization

	4. Conclusion
	5. Contact Author Email Address
	6. Copyright Statement
	References

