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Abstract

In the context of the cell centered finite volume approach, care must be taken when performing the recon-
struction of property gradients at cell interfaces. The present work analyzes three different gradient reconstruc-
tion procedures, using three different turbulent simulation test cases, namely the zero-gradient flat plate, the
subsonic NACA 0012 airfoil and the transonic OAT15A airfoil. The analysis is concerned mainly with the usage
of quadrilateral meshes. The gas dynamics equations are solved using an implicit implementation of Roe’s
second-order upwind scheme. The RANS closure problem is solved by using the negative Spalart-Allmaras
turbulence model. The solution quality of each gradient discretization procedure is analyzed and compared
to experimental data and other numerical solutions available in the literature. For the cases considered here,
excellent agreement is obtained between the computed solutions and the expected results, regardless of which
gradient reconstruction scheme is used.

Keywords: Finite Volume, Gradient Reconstruction, Flat Plate, NACA 0012, OAT15A

1. Introduction
With the advent of the Industry 4.0, the demand for high-fidelity numerical simulations has been

steadily increasing over the past few years among all fields of application [1]. Therefore, any modifi-
cation to well established numerical methodologies that yields improvements over simulation results
are of great interest to the industry. In the realm of computational fluid dynamics (CFD), an approach
that has been greatly used throughout the decades and that has been demonstrated to be capable
of achieving great results is the finite volume method (FV). In the aerospace industry, FV is com-
monly used to solve systems of conservation laws, among others, the compressible Navier-Stokes
equations.

Multiple numerical schemes have been developed over the years in the context of the FV approach
[2]. Those that rely on a cell-centered formulation, though, have one particular trait in common: they
require the evaluation of flow properties, and also flow property gradients, at discrete cell interfaces,
where those values are not readily available. On a cell-centered formulation, the known discrete
properties are taken to be volumetric averages inside each cell. Hence, a reconstruction procedure
must be used in order to define suitable values for the unknown properties at each cell interface.
Depending on the property in question, the definition of a reconstruction procedure is not necessarily
straightforward. This is especially troublesome when the reconstruction of property gradients are
considered. On the subject of fluid dynamics, some of the properties that fall into this category are,
for instance, the gradients of the velocity components, required in the calculation of the viscous forces.
Furthermore, if compressibility effects are taken into account, then the gradient of the fluid internal
energy must also be reconstructed during the evaluation of Fourier’s law in the energy conservation
equation.

It has been previously reported in the literature that the use of different gradient reconstruction
techniques can drastically change the outcome of viscous fluid simulations [3]. The effects vary from
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changing the overall robustness of the CFD algorithm being employed, to modifying or dissipating
fluid structures that are present in the solution field. Unfortunately, though, no single gradient recon-
struction procedure has been found so far to be well suited for all situations. The present study is
inserted exactly in this context, and aims to provide numerical data for better understanding the ef-
fects of different gradient reconstruction techniques over the solution of compressible turbulent flows
when applied to quadrilateral meshes. Thus, CFD users can make a more informative decision re-
garding what gradient reconstruction procedure to use for a given problem configuration.

In the current work, the three-dimensional flow dynamics are modeled using the compressible
Reynolds-averaged Navier-Stokes (RANS) equations [2].These equations are discretized in a cell-
centered FV framework by using Roe’s flux-difference splitting scheme for the reconstruction of the
convective fluxes [4, 5, 6]. A second-order, total-variation diminishing (TVD), version of the scheme is
implemented by using a piece-wise linear reconstruction of the solution [7], coupled with Venkatakr-
ishnan’s limiter [8]. In order to solve the closure problem, inherent to the RANS equations, the nega-
tive Spallart-Allmaras (SA-neg) turbulence model is employed [9, 10, 11]. Discrete cell gradients are
computed using a volume-weighted Green-Gauss approach. Property gradients at cell interfaces,
however, are computed using three different reconstruction procedures: A00, A0E and AJ0, whose
naming conventions follow Ref. [3], and that will be described in the forthcoming sections.

Simulations are performed using an in-house code, BRU3D [5, 6], for three different cases. The
first one is a two-dimensional turbulent flat plate [11], which is mainly used as a sanity test case. The
second one is the subsonic NACA 0012 airfoil with a 15 deg. angle of attack [11]. Its main purpose
is to observe the influence that the different procedures have over the value of the aerodynamic
coefficients when a separation bubble is present in the solution. The final case is the transonic
OAT15A airfoil [12, 5, 6]. It illustrates the performance of each scheme when a shock wave is present
in the domain.

This introduction section is followed by a presentation of the numerical formulation used in the
present work. Then, a brief description of the test cases is made, accompanied by the obtained
results the concluding remarks.

2. Numerical Formulation
2.1 General Formulation of the Method
The system of conservation laws used here, which for now on will be referred to as the RANS

equations, can be written as

∂ Q⃗
∂ t

+ ∇⃗ · F⃗ (Q⃗,
−→
∇Q)≡ ∂ Q⃗

∂ t
+ ∇⃗ ·

[
F⃗e(Q⃗)− F⃗v(Q⃗,

−→
∇Q)

]
= 0 , (1)

where Q⃗ is the vector of conserved variables. Furthermore, F⃗ is a geometric vector of algebraic
vectors, such that

F⃗e(Q⃗)≡ E⃗e(Q⃗) î+ F⃗e(Q⃗) ĵ+ G⃗e(Q⃗) k̂ , (2)

and

F⃗v(Q⃗,
−→
∇Q)≡ E⃗v(Q⃗,

−→
∇Q) î+ F⃗v(Q⃗,

−→
∇Q) ĵ+ G⃗v(Q⃗,

−→
∇Q) k̂ , (3)

with

F⃗ ≡ F⃗e − F⃗v . (4)

Vectors E⃗ ≡ E⃗e − E⃗v, F⃗ ≡ F⃗e − F⃗v and G⃗ ≡ G⃗e − G⃗v are the flux vectors associated with the Cartesian
coordinate triad x, y and z, respectively. In the same manner, î, ĵ and k̂ are unit vectors aligned with
the same triad, respectively. The subscripts e and v refer to the inviscid and viscous components of
each flux vector. Notice that the functional relation that exists between each vector and Q⃗ and

−→
∇Q

is explicitly written. This is done in order to emphasize that only the viscous part of this formulation
requires the evaluation of

−→
∇Q. Lastly, t is the time coordinate. The mathematical definitions of each
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one of these vectors are well-known in the CFD literature and, therefore, are not repeated here. The
authors refer the interested reader to Ref. [13] for a complete description of the formulation.

In order to discretize Eq. (1), the FV framework is adopted. Thus, Eq. (1) is integrated over an
arbitrary Eulerian domain of constant volume V, and outer surface S, as follows:

∫
V

(
∂ Q⃗
∂ t

)
dV+

∫
V

(
∇ · F⃗

)
dV= 0 =⇒ ∂

∂ t

∫
V

Q⃗ dV+
∮

S
F⃗ ·

−→
dS = 0 . (5)

In Eq. (5), the Divergence Theorem, also known as the Green-Gauss Theorem, has been applied
in conjunction with the general form of the Leibniz rule. Moreover,

−→
dS ≡ n̂ dS, where n̂ is the unitary

normal vector that points in the outward direction of S.
The computational domain is assumed to be divided into multiple discrete cells of polyhedral

shape, composing an unstructured grid. The discrete conserved variables vector, Q⃗i, associated with
the i-th cell of finite volume Vi, is defined as

Q⃗i ≡
1
Vi

∫
Vi

Q⃗ dV . (6)

If each cell has n f faces, then Eq. (5) becomes

Vi
∂ Q⃗i

∂ t
+

n f

∑
k=1

(
F⃗k · S⃗k

)
= 0 =⇒ ∂ Q⃗i

∂ t
=− 1

Vi

n f

∑
k=1

(
F⃗k · S⃗k

)
, (7)

after applying a 1-point Gaussian quadrature rule. In the present case, this is a valid construct, since
the resulting formulation is second-order accurate in space. If higher-order schemes were used
instead, especially compact ones, then the surface integral might need to be numerically performed
by means of higher-order quadrature rules, to which the present formulation would need to be further
enhanced.

Equation (7) is the finite volume discrete form of the RANS equations and must be true for all
cells in the domain. For a mesh of constant geometry, the face area vectors, S⃗k, are known at all
times. Consequently, only two procedures are yet to be established: the reconstruction scheme used
for the evaluation of the face flux vectors, F⃗k, as well as a procedure for integrating ∂ Q⃗i

∂ t over time.
Here, Roe’s second-order TVD scheme, coupled with Venkatakrishnan’s limiter [8], is employed in the
discretization of all inviscid fluxes [5, 6], including the ones related to the turbulence model. The inte-
gration of the temporal derivatives is performed by using an implicit time-march scheme, as described
in Refs. [5, 6]. These schemes were chosen as part of an effort to improve the overall robustness of
the solution process. Thus, the only remaining issue is to define a scheme for computing the viscous
fluxes.

The calculation of the viscous components of
−→
F k requires the reconstruction of both Q⃗ and

−→
∇Q at

the k-th cell face. In the present work, a standard centered approach is followed. Therefore, if i and j
are the indexes of two adjacent cells, then:

Q⃗k =
Q⃗ki + Q⃗k j

2
, (8)

in which Q⃗ki and Q⃗k j are the piece-wise reconstructed properties of i and j, respectively, evaluated at
the centroid of k [7].

Based on the same idea, (
−→
∇Q)k is also reconstructed as a function of the directly adjacent cell

discrete properties. The definition of this function is what sets the gradient reconstruction proce-
dures apart from each other. In the next subsection, the three gradient reconstruction procedures
considered here are briefly presented.

2.2 Gradient Reconstruction Procedures
2.2.1 Weighted Green-Gauss Gradient Computation
As previously mentioned, the evaluation of a property gradient at a cell interface usually revolves

around the definition of a function with local stencil, responsible for reconstructing the gradient value
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at the desired location. The selection of a suitable reconstruction scheme can depend on the problem
configuration, mesh geometry and even on the available computational resources. In the present
work, three different gradient reconstruction procedures are considered: A00, A0E and AJ0, following
the naming conventions from Ref. [3]. It must be made clear that other schemes do exist [3, 14, 15],
but only these three are analyzed here due to their simplicity and overall efficiency.

Before proceeding with a proper description of each scheme, it is important to define a method for
computing the discrete cell property gradient, of which all three distinct schemes herein considered
are a function of. If A is a property whose discrete values, Ai, are known at each cell, then its gradient,
(∇A)i, can be computed as

(
−→
∇A)i ≡

1
Vi

∫
Vi

−→
∇A dV=

1
Vi

∮
S

A
−→
dS =

1
Vi

n f

∑
k=1

Ak S⃗k , (9)

which is referred to as the Green-Gauss approach for defining discrete cell gradients [16]. The term
Ak can, then, be computed by using some sort of average between the adjacent known values, since
it is related to the diffusive components of the original partial differential equation. Here, a volume-
weighted average is used, as follows:

Ak =
ViAi +V jA j

Vi +V j
. (10)

More robust, but more computationally expensive, schemes for computing cell-averaged property
gradients are also available in the literature, such as the Linear Preserving Gradient (LPG) and the
Least Squares (LS) methods [17].

2.2.2 Procedure A00
The first gradient reconstruction procedure presented here, A00, is perhaps the simplest formula-

tion possible. It consists of a simple average between the two directly adjacent cell values:

(
−→
∇A)k =

(
−→
∇A)i +(

−→
∇A) j

2
≡ (∇A)k . (11)

This reconstruction can also be improved by, instead, using a weighted average [3], without loss of
computational efficiency. However, only the formulation shown in Eq. (11) is considered here.

Although extremely cheap to compute, the usage of this scheme results in a stencil that effectively
does not utilize information from the i and j cells [16, 18]. In turn, high-frequency errors can develop in
the solution [3]. To solve this problem, the formulation from Eq. (11) is augmented by the introduction
of extra terms that ensure dependency on cell-averaged data of the two cells that share the interface.
Schemes A0E and AJ0 are inserted in this category.

2.2.3 Procedure A0E
The A0E scheme, also known as the edge-normal scheme, is one of the possible solutions for the

previously mentioned A00 problem. It consists in exchanging the gradient component in the direction
that connects the i and j cell centroids with a finite difference construct [3, 18]. Following Fig 1, the
A0E formulation can be written as

(
−→
∇A)k = (∇A)k +

[
A j −Ai∣∣⃗ri j

∣∣ − (∇A)k ·
r⃗i j∣∣⃗ri j
∣∣
]

r⃗i j∣∣⃗ri j
∣∣ . (12)

Hence, cells i and j are effectively reintroduced to the stencil of (
−→
∇A)k.

2.2.4 Procedure AJ0
Another approach is to use a jump term construct, AJ0, in which information from the discontinu-

ous solution at the face center is introduced to the face gradient reconstruction [3, 14]. The equation,
then, becomes
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Figure 1 – Mesh schematic diagram picturing cells i and j. Focus is given to the k-th face of the i-th
cell. Face normal unitary vector, n̂k, as well as relevant distance vectors, r⃗, are also shown. The dots

are used to represent the cell centroid locations.

(
−→
∇A)k = (∇A)k +

α∣∣⃗ri j · n̂k
∣∣ (Ak j −Aki

)
n̂k , (13)

where Aki and Ak j are the piece-wise linear reconstructed A properties of cells i and j, respectively,
evaluated at the face centroid. Furthermore, n̂k is the face normal unitary vector pointing outwards
from the current cell. Lastly, r⃗ik is a vector that points from the centroid of cell i to the centroid of face
k, as seen in Fig. 1. For the A0E scheme, the jump coefficient, α, is taken to be α = 4/3.

It can be shown that multiple gradient reconstruction techniques can be cast into the form of
Eq. (13) [14]. In fact, the A0E scheme can be written by using Eq. (13) with the following α:

α = (n̂k · êi j)
∣∣n̂k · êi j

∣∣ , (14)

where

êi j ≡
r⃗i j∣∣⃗ri j
∣∣ . (15)

The above expression for the A0E scheme is the one that is effectively implemented here.

3. Description of Test Cases
In this section, a brief description of each test case is presented.

3.1 Zero-Pressure Gradient Flat Plate
The flat plate case follows NASA Langley’s Turbulence Modeling Resource (TMR) setup [11].

Hence, it is an incompressible case solved by using a compressible fluid formulation. The problem
consists of a simple rectangular domain with a length of 2.33 m and a height of 1 m. The first 0.33
m of the bottom boundary is a symmetry plane. An infinitely thin flat plate, which is modeled as an
adiabatic no-slip wall, lies in the other 2 m. The origin of the domain is located at the leading edge of
the plate, with the X axis parallel to the plate surface, pointing towards the right side of the domain.
Moreover, the Z axis points upwards. The top boundary is a non-reflective farfield, implemented
using Riemann invariants. The freestream Mach number is set to M∞ = 0.2, at a static temperature
of T∞ = 300 K and Reynolds number Re∞ = 5×106, computed based on the reference length ℓre f = 1
m. The right boundary is a simple back-pressure output, which is set to enforce the freestream static
pressure p∞ = 114.47 kPa. The left boundary is a non-reflective subsonic intake, with a total pressure

5
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Figure 2 – Boundary condition placement for the two-dimensional zero-pressure gradient flat plate
case.

of pt = 1.02828 p∞, and a total temperature of Tt = 1.008 T∞. A diagram that illustrates the problem is
shown in Fig. 2.

Since BRU3D is a 3-D code, the quadrilateral mesh is obtained by using hexahedral meshes with
a single cell depth-wise. The mesh employed here is the finest hexahedral mesh available in the TMR
website [11], and is composed of 544 cells in the X direction and 384 cells in the Y direction. Cells are
clustered in the region near the leading edge of the flat plate, as seen in Fig. 3.

3.2 Subsonic NACA 0012 Airfoil
The NACA 0012 Airfoil case follows, once again, NASA Langley’s Turbulence Modeling Resource

setup [11] for an angle of attack, αAoA, of 15 degrees. The domain has two boundary conditions:
no-slip adiabatic wall and non-reflective farfield, as shown in Fig. 4. The freestream conditions,
which includes the Reynolds number, Re∞, Mach number, M∞, reference chord, c, and reference
temperature, T∞, are shown in Tab. 1. The mesh used is the finest hexahedral “C”-shaped mesh
available in Ref. [11]. It contains 917504 cells, mainly clustered around the airfoil surface, as illustrated
in Fig. 4.

Table 1 – Freestream conditions for the subsonic NACA0012 airfoil case.

Re∞ M∞ c T∞ αAoA

6×106 0.15 1 m 300 K 15 deg.

3.3 Transonic OAT15A Airfoil
The final case is the transonic OAT15A airfoil, described in Ref. [12]. Here, the boundaries are

laid out in a similar manner to the previous case. That is, two continuous surfaces are employed.
The innermost one is the airfoil surface, where a no-slip adiabatic boundary condition is imposed.
Mereover, the outermost one is the freestream, where a non-reflective farfield is enforced. The
freestream conditions are presented in Tab. 2. The mesh is constructed with 410 cells distributed
along the airfoil chord. The farfield is located at 240 chords away from the airfoil surface. Cells are
clustered around the airfoil surface, in such a way that y+ ≈ 1 at the no-slip wall, as despicted in
Figs. 5 and 6.
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Figure 3 – Mesh used in the flat plate case, containing 544 x 384 cells.

Figure 4 – Boundary condition placement and overall view of the computational mesh for the
subsonic NACA 0012 airfoil case.

Table 2 – Freestream conditions for the transonic OAT15A airfoil case.

Re∞ M∞ c T∞ αAoA

3×106 0.724 1 m 246.66 K 1.15 deg.

4. Results and Discussion
In this section, the obtained results are presented, followed by a brief discussion. In all cases, the

solution is considered converged when a decrease of 10 orders of magnitude is obtained in the L∞

norm of the residue related to the continuity equation.
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Figure 5 – Overview of the mesh used in the
transonic OAT15A airfoil case.

Figure 6 – Zommed-in view of the mesh used in
the transonic OAT15A airfoil case.

4.1 Zero-Pressure Gradient Flat Plate
Values of skin-friction coefficient, c f , plotted along the length of the flat plate are shown in Fig. 7.

The skin friction coefficient is defined as

c f ≡
τw

1
2 ρ∞u2

∞

, (16)

in which τw is the fluid shear stress measured at the wall. Experimental data from Ref. [19], along
with von Kármán’s empirical curve [20], are also shown for comparison. The von Kármán empirical
curve is defined as

C fvonKrmn =
0.027

(Rex)
1
7

. (17)

Simulation data from Ref. [11] are also plotted. Such data was obtained with NASA’s CFL3D and
FUN3D codes using the Spalart-Allmaras turbulence model. In spite of the fact that slight changes
can be seen between experimental data and most of the simulation data, it is clear that the results
obtained by the three different gradient reconstruction schemes are virtually identical in the context
of the current case setup. Furthermore, when comparing the current data with simulation results
from CFL3D and FUN3D, it is also clear that they are extremely close to each other. Figure 8 shows
a zommed-in view of Fig. 7, which highlights the fact that the computed c f values differ from each
other by a maximum of, approximately, 0.1%. Therefore, it is safe to say that the differences observed
between the simulation data and the experimental results come from the quality of the turbulence
model itself, and not from the discretization schemes used.

4.2 Subsonic NACA 0012 Airfoil
Figure 9 shows the pressure coefficient, cp, plotted along the wall surface for the NACA 0012

airfoil case. Here, the pressure coefficient is computed as:

cp ≡
(p− p∞)

1
2 ρ∞u2

∞

. (18)

Additional simulation data from Ref. [11], using the CFL3D code, as well as experimental data from
Gregory & O’Reilly [21] and Ladson [21] are added for comparison. As it can be seen, the same
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Figure 7 – Skin friction coefficient, c f , distribution as a function of Rex, along the first 1.2 m of the flat
plate. Experimental data from Ref. [19] are added for comparison.
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Figure 8 – Zoomed-in view of Fig. 7, which highlights the small differences between all numerical
results.
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Figure 9 – Pressure coefficient, cp, distribution along the airfoil surface for the subsonic NACA 0012
case.

behavior previously described also repeats here. That is, no meaningful changes are captured be-
tween the schemes for the current case configuration and the present mesh topology. Furthermore,
excellent agreement is observed with the experimental cp data.

In order to spot the differences between the obtained results, a zommed-in view of Fig. 9 is shown
in Fig. 10. Focus is given to the region surrounding the suction peak. The maximum difference
between the predicted cp values is observed when the results obtained by the V 00 scheme are com-
pared with the ones from CFL3D. Even then, the relative difference is of only 0.27%, approximately.

Obtained lift and drag coefficients, cL and cD, are compared in Tab. 3. Experimental results are
interpolated from Refs. [21] and [22] and presented in the same table. It is clear that all numerical
results are consistent with each other. Therefore, identical flow behavior is being captured by all
numerical schemes with the SA-neg turbulence model. Any differences between the predicted co-
efficients and the experimental data are likely due to the turbulence model itself, and not due to the
numerical discretization.

Table 3 – Comparison between computed aerodynamic coefficients and experimental data for the
subsonic NACA 0012 airfoil case.

Source cL cD

CFL3D 1.5461 0.02124
BRU3D V00 1.5498 0.021234
BRU3D AJ0 1.5496 0.021257
BRU3D A0E 1.5496 0.021254
Exp. Gregory 1.5052 −
Exp. Ladson 1.4993 0.0180
Exp. Abbott 1.4976 −

4.3 Transonic OAT15A Airfoil
This is a transonic case and, therefore, shock waves are expected to develop in the numerical

solution. Distribution of cp along the chord of the OAT15A airfoil is shown in Fig. 11, compared to
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Figure 10 – Zoomed-in view of Fig. 9 in the region surrounding the suction peak.

experimental data from Ref. [12]. Once again, no difference is seen from the results obtained by each
scheme throughout the entire length of the airfoil. This is the case even in the region surrounding
the shock wave, as seen from Fig. 12, where an extremely zoomed-in view is presented in order to
visualize separate curves.

Computed aerodynamic coefficients, in the form of cL and cD, are shown in Tab. 4. Interpo-
lated data is extracted from the plots available in Ref. [12]. There is a significant disparity between
the computed coefficients and the experimental values. This is, however, a known limitation of the
Spalart-Allmaras turbulence model, due to its inability to correctly solve the shock wave location for
this case [5, 6].

Table 4 – Comparison between computed aerodynamic coefficients and interpolated experimental
data for the transonic OAT15A airfoil case.

Source cL cD

BRU3D V00 0.69178 0.013152
BRU3D AJ0 0.69163 0.013197
BRU3D A0E 0.69183 0.013183

Interp. Exp. Data 0.5949 0.0106

5. Concluding Remarks
Reconstruction of property gradients at cell interfaces is a small portion of the complete discretiza-

tion scheme. However, it can have a profound impact on the quality of finite volume-based schemes.
In the present work, essentially no differences are observed in the solutions obtained with the three
different schemes. It is quite likely that such behavior is a result of the use of “well behaved” quadrilat-
eral meshes for the three test-cases addressed here. Disparities between the computed values and
experimental data are likely due to limitations of the turbulence model employed, namely, the nega-
tive Spalart-Allmaras model, and not due to discretization errors. This argument is further enhanced
by comparisons with other codes that implement the same turbulence model. In these comparisons,
virtually identical results are obtained. Therefore, any of the three gradient reconstruction schemes
can, theoretically, be used in the simulation of cases similar to the ones investigated here.
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Figure 11 – Pressure coefficient, cp, distribution along the airfoil surface for the transonic OAT15A
case.
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Figure 12 – Zoomed-in view of Fig. 11 in the region surrounding the shock wave.
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It is important to stress, however, that these conclusions are only valid for the type of mesh con-
sidered here. Highly stretched hybrid meshes can lead to wildly different results, and the differences
between each reconstruction scheme might become more obvious. This is precisely what the authors
will address in future work.
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