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Abstract 

Safety-II assumes that individuals and organizations habitually adjust their performance to match current 

demands, resources, and constraints to compensate the incompleteness of procedures and instructions. It 

suggests that everything happens basically in the same way, regardless of the outcome. This work aims to 

analyze the aircraft touchdown procedure through this perspective, focusing on the everyday performance and 

the consequent variability. The Functional Resonance Analysis Method or FRAM provides a way to explain 

outcomes using the idea of resonance - an activity is described through a pool of functions and the outcomes 

arise from their day-by-day variability. To characterize the functions’ variability, Flight Data Monitoring (FDM) 

techniques are here used. To examine specific instantiations of the model and understand how the potential 

variability of each function can become resonant, the application of Monte Carlo Simulation (MCS) is proposed. 

To apply the MCS, a linear regression is performed in order to capture the relationship between the functions’ 

outputs and their inputs. This method is applied to the touchdown of 288 flights. The outcome is a model to 

assess the risk of a long touchdown of the current sample, including the organizational, human, and 

technological aspects of the complex aeronautical system. Note that long touchdown is a runway overrun 

precursor. 
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1. Introduction 

Progress in safety management made flying one of the safest ways to travel, reaching a rate of less 

than 0.5 commercial jets accidents per 1 million flights (Figure 1) [1]. 
 

 

Figure 1 - Evolution of the Number of Accidents and Fatalities [1] 
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The aircraft accidents rate reduction was substantial only until the 1980s in the so-called age of 

technology, in which safety concerns focused on guarding machinery, stopping explosions, and 

preventing structures from collapsing. The focus on technology as the main – or even only – source 

of both problems and solutions in safety was successfully maintained until 1979, when the accident 

at the Three Mile Island (TMI) nuclear power plant demonstrated that safeguarding technology was 

not enough. The TMI accident brought to the fore the role of human factors and made it necessary 

to consider human failure as a potential risk. Seven years later the loss of the space shuttle 

Challenger, reinforced by the accident in Chernobyl, required yet another extension, this time by 

adding the influence of organizational failures and safety culture to the common lore [2]. Safety 

began to be viewed from a systemic perspective and to encompass organizational factors as well as 

human and technological factors during the mid-1990s. The notion of an “organizational accident” 

was introduced. This perspective considered the impact of such things as organizational culture and 

policies on the effectiveness of safety risk controls. Additionally, routine safety data collection and 

analysis using reactive and proactive methodologies enabled organizations to monitor known safety 

risks and detect emerging safety trends. These enhancements provided the learning and foundation 

which led to the current safety management approach. The “organizational accident” paradigm 

assists by identifying the latent conditions on a system-wide basis, rather than through localized 

efforts, to minimize active failures by individuals [3]. 

Safety-I management focus on aviation is to analyze the events from latent circumstances to the 

flight crew errors, monitoring the potentially unsafe conditions in the daily operations. Latent 

circumstances are often related to deficiencies in organizational processes and procedures. Flight 

crew errors may be a result of an ineffective management due to, for example, deficient trainings, 

unspecific policies, or even airline pressures. In other words, the so-called Safety-I approach 

promotes a bimodal or binary view of work and activities, considering acceptable and unacceptable 

outcomes as two distinct and different modes of functioning: things go right because the system 

functions as it should and because people work as imagined, things go wrong because something 

failed (Figure 2). It is then possible to achieve safety only minimizing, or even blocking, the transition 

from normal to abnormal functioning [2]. 
 

 

Figure 2 - Safety-I Basis [2] 

Although this conception paved the way to outstanding improvements in safety research, they seem 

to be not so effective for socio-technical systems: that are incompletely understood, whose 

descriptions can be complicated, and that changes are frequent and irregular rather than infrequent 

and regular [4]. Safety-II aims to fill this gap by assuming that everything basically happens in the 

same way, regardless of the outcome (Figure 3). This concept accepts that individuals and 

organizations habitually adjust their performance to match current demands, resources, and 

constraints in order to compensate the incompleteness of procedures and instructions. Following 

Safety-II, the definition of safety shifts to consider not only the adverse outcomes, but also positive 

and negative events, to achieve a holistic view of the system and in-depth understand its functioning. 

Safety-I aims to limit performance variability, whereas Safety-II requires it to be proactively managed, 

rather than simply constrained [2]. 
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Figure 3 - Safety-II Basis [2] 

The Functional Resonance Analysis Method or FRAM [5] provides a way to describe outcomes using 

the idea of resonance arising from the variability of everyday performance [6]. The purpose of this 

work is to apply a customized FRAM for operational risk assessment related with an aircraft landing 

procedure - the touchdown. 

2. Methodology 

FRAM is a method-sine-model, whose purpose is to build a model of how things happen rather than 

to interpret what happens in the terms of a model. It is built over the following four principles. First, 

failures and successes are equivalent in the sense that they have the same origin. In other words, 

things go right and go wrong for the same reasons. Thus, to understand what goes right when the 

daily work is carried out is as important as understanding what failed in the system. 

Second, the everyday performance of socio-technical systems, including humans individually and 

collectively, is always adjusted to match the conditions. Workers usually need to make some 

tradeoffs between being efficient and to make sure the work can be completed as precisely as 

possible. These kinds of adjustments are named as efficiency-thoroughness tradeoffs (ETTOs). 

They are necessary and understandable; however, any changed system behavior may raise 

variabilities in the system [7]. 

The third principle states that many of the outcomes we notice – as well as many that we do not – 

must be described as emergent rather than resultant. To be more specific, minor variabilities always 

exist in normal system operations and do not affect system safety. Nevertheless, a particular external 

environment may integrate variabilities and magnify their influence to generate an undesired 

outcome [7]. 

Fourth, the relations and dependencies among the functions of a system must be described as they 

develop in a specific situation rather than as predetermined cause–effect links. This is done by using 

functional resonance [5]. 

FRAM does not imply that events happen in a specific way, or that any predefined components, 

entities, or relations must be part of the description. Instead, it focuses on describing what happens 

in terms of the functions involved. These are derived from what is necessary to achieve an aim or 

perform an activity, hence from a description of work-as-done rather than work-as-imagined. But 

functions are not defined a priori nor necessarily ordered in a predefined way such as hierarchy. 

Instead, they are described individually, and the relations between them are defined by empirically 

established functional dependencies [5]. 

However, notwithstanding the potential value of FRAM in system modelling and safety, researchers 

have suggested integrating quantitative approaches to FRAM to enhance its strengths. Patriarca et 

al (2017) presented a semi-quantitative application of FRAM by integrating Monte Carlo Simulations 

(MCS) [4]. Kaya et al (2021) used this semi-quantitative approach to FRAM and a criticality matrix to 

explore how the system-based perspective would enrich the quantified risk-orientated analysis in a 

tram operating system [8]. 

The following paragraphs present the four (4) steps to perform our customized and quantitative 

FRAM analysis, applied to a risk assessment. Figure 4 illustrates this methodology. 
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Figure 4 - Customized FRAM Steps 

2.1 Functions Identification and Description 

FRAM’s first step deconstructs the complex sociotechnical system into “functions”, that represent a 

task or an activity that is required to produce a certain outcome. The first step identifies these 

functions that are needed for everyday work to succeed and characterized by six different aspects 

as follows. Aspects are traditionally placed at the corners of a hexagon, which represents the function 

itself (Figure 5). 
 

 
Figure 5 - A Hexagon Representing a Function 

The Input (I) activates or starts a function and/or is used or transformed by the function to produce 

the Output (O), which is the result of the function. The output can be either an entity or a state change 

and serves as input to the downstream functions. Preconditions (P) are mandatory conditions that 

must exist before carrying out the function. They do not necessarily imply the function execution. 

The function needs the Resource (R) when it is carried out, or consumes it, to produce the output. 

Controls (C) supervise, regulate, or monitor the function. They are exemplified by guidelines, 

regulations, or even social expectations. Temporal requirements or constraints of the function, 

regarding both duration and starting point, are given by Time (T). 

2.2 Performance Variability Characterization 

The idea of the second step is to characterize the variability of the functions that constitute the FRAM 
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model. One way to do that is to distinguish among different types of functions, for instance 

technological, human, and organizational. Technological functions are carried out by various types 

of ‘machinery’. Since they are designed to be highly predictable and reliable, the default assumption 

of the FRAM is that they do not vary significantly during the scenario that is analyzed. 

Human functions are carried out by humans, either as individuals or in small groups. In a FRAM 

analysis it is important to recognize that the frequency of human performance variability is high, and 

that its amplitude is large. High frequency means that performance can change rapidly, sometimes 

even from moment to moment. Large amplitude means that differences in performance can be large, 

sometimes dramatically so – for better or for worse. The variations in both frequency and amplitude 

depend on many different things, including working conditions. 

Organizational functions are carried out by groups of people, where the activities are explicitly 

organized. For a FRAM analysis, the frequency of organizational performance variability is typically 

low but that its amplitude is large. Organizational performance changes are slow, as exemplified by 

alterations to rules, regulations, or policies; the differences in performance, that is, the amplitude, 

can be large. 

Having considered some of the possible sources of variability, the next question is how performance 

variability will show itself – either in the sense of how it can be observed or detected – or in the sense 

of how it may affect downstream functions. A simple solution to describe the consequences of 

performance variability is to note that the Output from a function can vary in terms of timing and 

precision. It can occur too early, on time, too late or not at all. Regarding precision, it can be precise, 

acceptable, or imprecise. Since it refers to the coupling between upstream and downstream 

functions, precision is relative rather than absolute. If the Output is precise, it satisfies the needs of 

the downstream function. An acceptable Output can be used by the downstream function but 

requiring some adjustment. An imprecise Output is something that is incomplete, inaccurate, 

ambiguous or in other ways misleading. 

Instead of evaluating functions variability in a subjective way, this work uses Flight Data Monitoring 

(FDM) techniques to estimate the variabilities. The FDM program, also known as Flight Data Analysis 

(FDA) or Flight Operation Quality Assurance (FOQA), is designed to enhance flight safety by 

identifying an airline’s operational safety risks and taking the necessary actions to reduce these risks. 

When a safety event is highlighted by the program, statistical analysis will assess whether it is 

isolated or part of a trend. Appropriate corrective action is then taken if necessary [9]. 

Essentially, information coming from aircraft sensors, onboard computers and other instruments are 

recorded into a crash-survivable Flight Data Recorder (FDR) and occasionally also into easily 

accessible Quick Access Recorders (QAR). They are able to record over 3,000 parameters as binary 

raw data files, which are sequenced in frames and subframes. Each subframe is divided into a 

number of “words”, each one with a fixed number of bits. A parameter is recorded on one or several 

bits of one or more words. To save memory space, a parameter value is generally not recorded as 

such, but converted using a conversion function defined by the aircraft manufacturer [9]. 

When the aircraft arrives at the gate, data are either extracted by maintenance staff via optical disc 

or Personal Computer Memory Card International Association (PCMCIA) card, or automatically via 

a wireless link. To transcribe the recorded parameters into useful values, raw data must be 

processed to recover the actual values. Events are automatically weighted according to risk with 

fine-tuned algorithms. Analysts look for all high deviation magnitude events to assess any serious 

safety concern and take appropriate corrective action. All reliable events are stored into the database 

and are investigated on a regular basis to highlight any trend that could show a latent or potential 

risk [9]. 

The FDM program is applied reactively through analysis of past incidents or accidents; proactively 

through analysis of the airline’s activities; and predictively through data gathering to identify possible 

negative future outcomes or events [9]. Still, it is employed through a Safety-I perspective – looking 

for specific deviations. 
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The functionalities of this technique are here used to characterize the variability of the FRAM 

functions, understanding how the system works on a daily basis and estimating how each function 

varies in the “real world”. In this work, FDR raw data from a typical jet is processed into Comma-

Separated Values (csv) files and analyzed via R functions. R is a programming language and free 

software environment for statistical computing and graphics [10]. 

FDR parameters like latitude, longitude, altitude, airspeed, and groundspeed are used, which is 

performed in an eight samples per second (8 sps) basis. Parameters that are recorded in a smaller 

sampling rate are interpolated. Some of them are linearly interpolated to enhance their precision and 

others remained constant until the next sample. 

2.3 Variability Aggregation 

FRAM models the potential couplings among functions, not showing the effects of a specific 

scenario. This step focuses instead on examining specific instantiations of the model to understand 

how the potential variability of each function can become resonant, leading to unexpected results, 

as stated by the functional resonance process. It is therefore necessary to identify the functional 

upstream-downstream couplings. The variability of a function results as a combination of the function 

variability itself and the variability deriving from the outputs of the upstream functions, depending on 

the function type and the linked aspects type. 

This step may be addressed qualitatively, based on potential for dampening performance variability 

ranges from +1 to +3 and for increasing performance variability ranges from -1 to -3 [4]. However, 

this step is addressed quantitatively here, through a statistical coupling between the functions’ 

outputs variabilities. 

MCS is a useful tool for modelling phenomena with significant uncertainty (or variability) in inputs 

and has a multitude of applications, including risk analysis. It is a fairly simple mathematical 

procedure, with random inputs and random outputs: y = f(x1, x2, ⋯ , x𝑛), where the input values are 

sampled and the output values are recorded and analyzed as illustrated in Figure 6 ([11],[12]). 
 

 

Figure 6 - Simplified Monte Carlo Simulation Procedure 

The main advantage of the MC method is the low level of complexity. Another important advantage 

is the ease of comprehension by decision-makers. ‘What-if’ scenarios and the sensitivity of the 

outputs to input assumptions can be quickly analyzed. The disadvantages of using MC include 

computational intensity, especially with complex models requiring large numbers of simulation runs, 

although with growing computing power, this becomes less of a problem. Another potential drawback 

is that MC implicitly assumes that all the input parameters are independent, which may not be the 

case, especially with complex models [11]. Correlated inputs must be identified in advance and 

simulated as such. 

This step is accomplished through the following stages. First, a linear regression between the 

function output and its inputs is performed. Many problems in engineering and science involve 

exploring the relationships between two or more variables. Regression analysis is a statistical 

technique that is very useful for these types of problems by assuming that the expected value of the 

output (Y) is a linear function of the input(s) (𝐗 or regressor variable(s)). When the model contains 
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more than one regressor variable, it is called a multiple regression model as shows Equation (1) [13]. 

𝑌 = 𝛽0 +  𝛽1 ∙ 𝑥1 + 𝛽2 ∙ 𝑥2 + ⋯ + 𝛽𝑛 ∙ 𝑥𝑛 + 𝜀 (1) 

y = 𝐗. β + ε 

The second stage consists of refining the model regressor variables selection. An important problem 

in many applications of regression analysis involves selecting the set of regressor variables to be 

used. Even with the use of previous experience or theoretical considerations to specify the regressor 

variables to use in a particular situation, sometimes not all these candidate are necessary to 

adequately model the response Y. In such a situation, it is interesting to screen the candidate 

variables to obtain a regression model that contains the “best” subset of regressors [13]. Several 

criteria may be used for evaluating and comparing the different regression models obtained. A 

commonly used one is based on the value of R2 or the value of the adjusted R2, R2
adj. This criterion 

is a statistical measure of how close the data are to the fitted regression line, varying between 0 (the 

output cannot be explained by the inputs) and 1 (the output is perfectly explained by the inputs). In 

general, the higher the R2, the better the model fits your data. 

Third, the correlation between the regressor variables is checked using the Pearson Method. 

Correlation is a dimensionless quantity that can be used to compare the linear relationships between 

pairs of variables in different units [13]. Pearson’s correlation coefficient is the test statistics that 

measures this statistical relationship, or association. It assigns a value between -1 and 1, where 0 is 

no correlation, 1 is total positive correlation, and -1 is total negative one. 

Based on the Pearson’s correlation coefficient, the multivariate probability distribution of the inputs 

is modeled by a copula. For a continuous random variable x1 with distribution function FX1, the 

random variable U=FX1(x1) is uniformly distributed. For two continuous random variables x1 and x2, 

the distribution of the vector (FX1(x1), FX2(x2)) is supported on the unit square and has uniform 

marginals. Any such distribution is called a (bivariate) copula. This notion may be extended to as 

many dimensions as necessary. There are many kinds of multi-dimensional copulas ([14],[15]). In 

this work, the normal copula, which is one of the most common copulas, is employed. 

Finally, Monte Carlo integration is conducted to estimate the final probability. This approach 

capitalizes on the data from small sample, extrapolating it to a big one. 

2.4 Variability Management 

This last step is not addressed here. It consists of monitoring and managing the performance 

variability, identified by the functional resonance in the previous steps. Performance variability can 

lead both to positive and negative outcomes. The best strategy consists of amplifying the positive 

effects, i.e., facilitating their happening without losing control of the activities, and damping the 

negative effects, eliminating, and preventing their occurrence. 

3. Case Study 

Runway overrun is a type of runway excursion in which the aircraft departs the end of the designated 

runway once it is unable to stop within the runway limit. It can occur on takeoff or landing [16]. During 

landing, its precursors have been identified under a Safety-I perspective as adverse weather, wet or 

contaminated runway surface, deficiencies in airport facilities, and flight crew operational deviations 

such as: 

• Unstable approaches: an approach during which an aircraft does not maintain at least one 

of the following variables stable - speed, descent rate, vertical/lateral flight path and in landing 

configuration, or receive a landing clearance by a certain altitude. 

• Long touchdowns: occurs when an aircraft touches the ground too far away of the aiming 

point, which is usually 1,000 feet from the runway threshold. RBAC (Regulamento Brasileiro 

da Aviação Civil) no154 defines that the runway aiming point must be between 500 and 1,300 

feet, depending on the runway’s length or Landing Distance Available (LDA) [17]. 
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• Inadequate or late use of deceleration devices, such as ground spoilers, engine thrust 

reverser, normal or even emergency brakes. 

This work contemplates the long touchdown precursor, analyzing the touchdown point and its 

correlated functions through the Safety-II perspective. 

 

3.1 Functions Identification and Description 

Figure 7 shows a diagram with the functions considered relevant to explain the performance 

variability of the “To Touchdown”, whose output is the focus of the current analysis. The diagram 

was drawn using the FRAM Model Visualiser. 
 

 

Figure 7 - FRAM Diagram for Touchdown 

“To Provide Runway Infrastructure” is an organizational and background function. It represents 

the external environmental of the aircraft landing procedure, whose variabilities may integrate and 

magnify the foreground functions’ variabilities generating an undesired outcome. The flight crew uses 

a runway to land the aircraft, whose characteristics like length, aiming point and typical wind may 

influence the touchdown point. 

The designated runway is intercepted by the minimum distance between the aircraft position at 50 

feet Above Ground Level (AGL), provided by its linearly interpolated latitude and longitude, and its 

threshold, given by an external database. This database contains circa of 23,000 runways, specified 

by their airport ICAO Code, direction, length, aiming point position, width, altitude, threshold latitude 

and longitude. 

Regarding the wind, some fleets are equipped with inertial and air data (barometric) systems. Thus, 

the values for the wind vector are computed on board and the result may be recorded. Its 

components, Headwind and Crosswind, are then given by Equations (2) and (3), respectively. Note 

that the barometric part of this calculation may be affected by the ground effect resulting in values 

for wind that are affected by noise. Despite this fact, the recorded values are the best an analyst can 

have for wind component values [18]. 

𝐻𝑒𝑎𝑑𝑤𝑖𝑛𝑑 = 𝑊𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑 ∙ 𝑐𝑜𝑠(𝑊𝑖𝑛𝑑𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 − 𝑇𝑟𝑢𝑒𝐻𝑒𝑎𝑑𝑖𝑛𝑔) (2) 
 

𝐶𝑟𝑜𝑠𝑠𝑤𝑖𝑛𝑑 = 𝑊𝑖𝑛𝑑𝑆𝑝𝑒𝑒𝑑 ∙ 𝑠𝑖𝑛(𝑊𝑖𝑛𝑑𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 − 𝑇𝑟𝑢𝑒𝐻𝑒𝑎𝑑𝑖𝑛𝑔) (3) 

“To Cross the Runway Threshold” is a human function that initiates the analysis as soon as the 

aircraft crosses the runway threshold. Theoretically, this crossing is performed at a height of 50 feet 

in landing configuration with the reference speed (vref) after a stabilized approach. An approach is 

stabilized when some criteria are met. 
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First, the aircraft must be on the correct flight path, normally given by a three-degree approach path 

[19]. The flight crew usually assumes the aircraft control at the Decision Altitude (DA) in a precision 

approach or Minimum Descent Altitude (MDA) in a non-precision approach, using the control column 

and the thrust lever to guarantee the correct flight path. They perform a visual approach and may 

use the runway markings as a navigation aid, which is, sometimes, non-standard. ICAO Annex 14 

as well as RBAC no154 contains recommendations regarding the runway markings, like aiming point 

and touchdown zone indication. 

Second, the aircraft speed should not be more than vref + 20 knots indicated airspeed and not less 

than vref [19]. Still, the airspeed must be equal to vref at the runway threshold to ensure the estimated 

Unfactored Landing Distance (ULD). This is the distance used by an aircraft in landing and braking 

to a complete stop (on a dry runway at sea level) after crossing the runway threshold at 50 feet with 

the reference speed (vref) in landing configuration [20]. It is determined during certification flight tests 

with maximum brake application and without the use of thrust reverser. Corrections for airport 

elevation, aircraft weight, wind and icing conditions are available at the Aircraft Operating Manual 

(AOM). 

Third, the aircraft must be in the correct landing configuration [19]. The flight crew must extend the 

landing gear and set the Slat/Flap position to obtain the correct configuration. 

Thus, “To Cross the Runway Threshold” outputs are aircraft height, speed, and Flight Path Angle 

(FPA) at the runway threshold, whose references are respectively 50 feet, vref, and -3o. The thrust is 

also an output, as idle must be established at runway threshold. This function’s outputs are captured 

at the minimum distance between the aircraft position, provided by its linearly interpolated latitude 

and longitude, and the already identified runway threshold. 

Once the threshold cross point is determined, height is given by the Radio Altitude, or the Pressure 

Altitude corrected by the runway altitude. Speed increment (vref) is given by actual airspeed minus 

vref, which depends on ice conditions, aircraft gross weight and flap position. FPA may be given by 

Equation (4). The difference between the pitch attitude and the angle of attack is not used to avoid 

the effect of wind on the descent performance estimation [21]. Thrust is given by the Thrust Lever 

Angle (TLA) position, which is zero (0) at idle. 

𝐹𝑃𝐴 = 𝑎𝑡𝑎𝑛 (
𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑆𝑝𝑒𝑒𝑑

𝐺𝑟𝑜𝑢𝑛𝑑𝑠𝑝𝑒𝑒𝑑
) (4) 

“To Perform Flare” is a human function, given by the descent rate reduction to accomplish a smooth 

landing. It is normally performed near to the ground (less than 50 feet AGL) through the increase of 

aircraft pitch attitude simultaneously with the reduction of engine thrust. The detection of the point 

where the flare was initiated is the major challenge to evaluate this function as it is highly dependent 

on the aircraft handling and can be well pronounced or smoothly driven. A proposal is to monitor the 

time it takes during landing from 50 feet to the touchdown point [18]. 

Flare reflects this time, being a consequence of the “To Cross the Runway Threshold” outputs as 

well as its internal variability, given by the pitch attitude increase () and the thrust reduction (TLA). 

 is measured by the difference between the maximum pitch attitude before touchdown and the 

pitch attitude at 50 feet AGL. TLA is determined by the difference between the TLA at the maximum 

pitch attitude before touchdown and the TLA at 50 feet AGL. 

“To Touchdown” is a human function that follows the “To Cross the Runway Threshold” and uses 

the “To Perform Flare” as precondition. Regarding the “To Provide Runway Infrastructure”, the flight 

crew lands the aircraft using the runway markings as reference and consuming the runway length 

(LDA). Its output, the touchdown point, is given by distance between the runway threshold and the 

aircraft position at the first air-ground transition. It starts the functions that decelerate the aircraft. 

3.2 Performance Variability Characterization 

A total of 288 flights were analyzed. The functions’ outputs were captured for each flight and fitted 

to the most adequate probability distribution, using the skewness-kurtosis plot as proposed by Cullen 
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and Frey (1999) as reference [22]. This step used the “fitdistrplus” R package [23]. 

One of the “To Cross the Runway Threshold” output is height. Normally, the aircraft crosses the 

runway threshold under 50 feet. Figure 8 reveals a box plot of this output, and the density plot of 

each fitted distribution with the data’s histogram. Figure 9 exposes its skewness-kurtosis plot. The 

sample has a median around 37 feet and some outliers under 10 feet as well as over 70 feet. The 

outliers over 70 feet touched more than 300 feet after the aiming point. Height is fitted to a Weibull 

distribution with a shape () of 3.087609 and a scale () of 42.966164. 
 

              

Figure 8 – Aircraft Height at the Runway Threshold (Boxplot and Histogram) 

 

Figure 9 - Aircraft Height at the Runway Threshold (Skewness-Kurtosis Plot) 

Similar analysis is then performed to each functions’ output in order to characterize their variabilities. 

Outputs that are restricted to positive values are fitted to distributions like Weibull, Gamma or 

Lognormal. The “non-positive” outputs are fitted to Normal or Logistic. 

Regarding the touchdown point, the sample has a median of almost 1,500 feet and some outliers 

touching the ground more than 3,000 feet past the runway threshold. The outliers are a result of a 

shallower approach angle followed by a high and overspeed landing. However, none of them were 

outliers of the other functions’ outputs. In other words, the touchdown point’ outliers emerged from 

the combination of upstream functions’ outputs minor variabilities. 

3.3 Variability Aggregation 

To accomplish this step, the function to be used at the MCS must be estimated and refined. The 

“olsrr” R package [24] is used to build the linear regression model. The correlation between the output 

and its predictor variables (inputs) is then checked using the Pearson Method via the “corrplot” R 

package [25]. In the sequence, correlated random numbers are generated from a normal copula 

function via the “copula” R package ([26], [27], [28], [29]) and the simulation is conducted. 

The focus of this work is the touchdown point, for which the following predictors variables are 

proposed: height, vref, FPA, TLA, flare, , TLA, LDA, headwind and crosswind. Note that the 
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tailwind is given by a negative value of headwind, being considered a runway overrun precursor as 

usually increases the landing distance. The absolute value of the crosswind is employed as the wind 

direction, in this case, is irrelevant. 

The stepwise build regression method removed the FPA, TLA and headwind from the touchdown 

point model.  is also excluded due to its intrinsic relationship with flare. The function obtained for 

the simulation is given by Equation (5). The model fitted well to the dataset as the R2
adj is 0.9043 

(Figure 10). 

𝑇𝑜𝑢𝑐ℎ𝑑𝑜𝑤𝑛𝑃𝑜𝑖𝑛𝑡 =
19.00073 ∙ 𝐻𝑒𝑖𝑔ℎ𝑡 + 10.25366 ∙ ∆𝑣𝑟𝑒𝑓 + 3.66572 ∙ 𝑇𝐿𝐴 + 136.14892 ∙ 𝐹𝑙𝑎𝑟𝑒

+0.02538 ∙ 𝐿𝐷𝐴 − 8.68695 ∙ |𝐶𝑟𝑜𝑠𝑠𝑤𝑖𝑛𝑑|
 (5) 

 

 

Figure 10 - Model's Summary 

Figure 11 shows the correlation between the touchdown point and its predictor variables. It has a 

positive high degree association with the height and TLA at the runway threshold as well as with the 

flare and LDA (Runway Length); a positive moderate association with vref (DeltaVref); and a 

negative low degree with the crosswind. Namely, flare is the most relevant input of the model. 
 

 

Figure 11 - Correlation by Pearson of the Touchdown Point Model 

The influence of the LDA over the touchdown point may be unexpected at a first moment. 

Nevertheless, it is related with the runway aiming point position, that is a visual indication for the pilot 

and a reference for the glideslope. 

Based on the initial 288 flights predictor variables probability distributions and correlation, 10,000 

random numbers were generated (Figure 12). These numbers were then used for the MCS in 

accordance with Equation (5). Figure 13 shows the density plot of each fitted distribution with the 

data’s histogram as well as the cumulative distribution plot. Note that 50% of the simulated flights 
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touched the ground after 2,340 feet and only distances over circa of 3,750 feet are considered 

outliers.  
 

 

Figure 12 - Correlated Random Numbers of the Touchdown Point Predictor Variables 

 

    

Figure 13 - The Touchdown Point Simulated through Monte Carlo 

Figure 13 represents the “long touchdown” current risk of the sampled fleet, which comes from 

comparing the obtained values with the aiming point or, in a more elaborated way, with length of the 

runway. If acceptable, it can be monitored. If unacceptable, it can be managed. Through the model, 

it is possible to exercise mitigation actions and simulate their influence in the final output – the 

touchdown point. 

4. Conclusions and Perspectives 

This work analyzes the touchdown through the Safety-II perspective, focusing on the everyday 

performance and the consequent variability. The outcome is a model to assess the risk of a long 

touchdown during normal operation including the organizational, human, and technological aspects 

of the complex aeronautical system. The model uses the FRAM to have a clear description of the 

system functions, studying their interactions rather than the single probability of failure. 

First of all, this work defines a quantitative framework which aims to enhance traditional FRAM. It 

proposes the use of FDM techniques to characterize the functions’ variability, and a Monte Carlo 

basis to define quantitatively the system resonance. Considering the variability of each function 
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aspect, the model is able to highlight which outputs have larger influence in the final outcome – the 

touchdown point. It identifies potential sensitive areas in the system’s functioning to take mitigating 

actions. Eliminating the hazard, if possible, or introducing barriers are the traditional ways to manage 

this variability. 

Secondly, the model offers the opportunity to properly understand the real operating scenario. The 

risk of an unexpected or unwanted situation, like a long touchdown, in a typical operation may be 

estimated. Based on this risk, it is possible to evaluate the necessity of a damping strategy for the 

variability. Note that the model is valid for further operating scenarios, but the variables statistical 

distribution, copulas and functions must be calibrated to the reality under analysis. 

Further research will model the “Unstable Approach” as well as the “Inadequate or Late Use of 

Deceleration Devices”, covering the runway overrun precursors related with the flight crew 

operational deviations. 
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