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Abstract

This study proposes a preflight diagnosis method using disturbance observer outputs for health monitoring
of multicopter actuators faults. While operating multicopters, determining whether it can perform the flight
mission or not is essential. For this reason, we use the disturbance observer’s output as a feature for fault
diagnosis using artificial neural network. Disturbance observer outputs are used for feature extraction because
angular acceleration changes by the rapid attitude movements from actuators faults have the same effect
from disturbances. Disturbance observer outputs are obtained according to the actuator fault rates, and the
performance of the proposed fault diagnosis is verified via numerical simulations.
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1. Introduction
A unmanned aerial vehicle (UAV) can perform vertical takeoff and landing (VTOL) and hover flight
operations. Multicopter UAVs with more than four actuators have actuator redundancy and fault
tolerance advantages [1]. However, multicopter UAVs have the disadvantage of having difficulty
performing stable flight missions if a problem occurs with the actuator during flight. Multicopter UAVs
attain flight using the thrust of actuators only; therefore, thrust faults are directly linked to the total
system safety. For this reason, researchers have studied about fault detection and diagnosis (FDD).
In addition, since the performance of fault tolerance control is determined according to the FDD model
result [2][3], study on a high-accuracy FDD model is being actively conducted. This study uses a
disturbance observer in the feature extraction for detecting fault actuator and diagnosing multicopter
actuator health.
Generally, the disturbance observer observes uncertainty or disturbances that occur in the system
to compensate the baseline controller [4]. Disturbance observers have been used for robust control;
however, this paper uses disturbance observer outputs for feature extraction because rapid angular
acceleration changes by actuator faults are similar to disturbances. Yujiang Zhong et al. [5] validated
the actuator fault detection and diagnosis using estimated disturbance by adaptive augmented state
Kalman filter. It is possible to detect and diagnose a single actuator and simultaneous fault, but
it is difficult to require an accurate model for the corresponding aircraft. Junghoon Kim et al. [6]
developed an actuator fault diagnosis model using the output value of the disturbance observer. The
configuration is simple by adding only a disturbance observer, but there is a limitation in that only one
actuator is diagnosed. A proposed method in this study is easy to configure as only a disturbance
observer needs to be added, and fault detection and diagnosis of all actuators are possible.
This paper is organized as follows: Section 2 intruduces the thrust model of a multicopter UAV and
shows the feature extraction process using the disturbance obersver. Section 3 proposes actuator
fault diagnosis model and analyzes its performance based on the performance index. Section 4 offers
conclusions of the paper with future work.
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2. Feature Extraction
This section explains acquiring training data and extracting the features needed to develop the fault
diagnostic model.

2.1 Actuator Fault Injection
In order to develop an actuator fault diagnosis model using supervised learning, data from various
fault situations are needed. In this study, the data is acquired through numerical simulations where
the actuator faults occur during flight. Here, training data were acquired while the multicopter hovers
with injecting actuator faults. In addition, the command values sent to the actuators were modified to
simulate faults wherein normal thrust could not be provided due to propeller damage or faults in the
motor [7]. The thrust generated by a single actuator Ti is as follows [8].

Ti =CT hiΩ
2
i (1)

where CT is the actuator thrust coefficient, and Ωi is actuator’s rotation speed. hi(i = 1 ∼ 6) is a
variable that satisfies 0 ≤ hi ≤ 1 representing the each actuator efficiency. hi = 1 means a normal
condition, and hi = 0 means a complete fault. The actuator torque Qi due to rotation generated by a
single actuator is as follows.

Qi =CQhiΩ
2
i (2)

where CQ is the actuator torque coefficient.

2.2 Multicopter Dynamic Model

Figure 1 – A multicopter system coordination

A configuration of the multicopter is shown in Figure 1, which is considered as a six degrees-of-
freedom. Xb,Yb,Zb axes are originated at the mass center of the multicopter. The X axis is the forward
direction of the multicopter. The multicopter model applied in this study is a hexacopter type and uses
six actuators. Therefore, the total thrust can be expressed as follows:

ΣTi =CT

6

∑
i=1

hiΩ
2
i (3)

When the rotation speed of each actuator is changed, torque is generated for each axis, and roll,
pitch, and yaw rotations occur. Figure 2 illustrates the actuator rotation direction and position of the
actuators.
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Figure 2 – Multicopter actuator rotation direction

The roll, pitch, and yaw moments are calcuated as follows.
τφ = d1CT (−h1Ω2

1 +h2Ω2
2 +h4Ω2

4−h5Ω2
5)+dCT (h3Ω2

3−h6Ω2
6)

τθ = d2CT (−h1Ω2
1−h2Ω2

2 +h4Ω2
4 +h5Ω2

5)

τψ =CQ(−h1Ω2
1 +h2Ω2

2−h3Ω2
3 +h4Ω2

4−h5Ω2
5 +h6Ω2

6)

(4)

where τφ ,τθ , and τψ are torque output of the roll, pitch, and yaw, respectively. d is the arm length
from the center of the multicopter to the actuator, d1 = dcos(60), and d2 = dsin(60).

2.3 Disturbance Observer output as a feature
If some of the actuators are faulty, the balance of force is lost instantly, and the multicopter’s angular
acceleration changes. This phenomenon has a similar effect as changes caused by disturbances.
This motivates us to use a disturbance observer as the feature extractor. Figure 3 illustrates a block
diagram of the disturbance observer [9].

Figure 3 – A diagram of the disturbance observer

In Figure 3, C(s) is a baseline attitude controller of the multicopter which is configured with the PID
controller in this study. The internal structure of the disturbance observer is composed of the multi-
copter’s nominal model, Pn(s), and the Q-filters QA(s) and QB(s). To design the disturbance observer,
the nominal model is needed. The nominal model is represented as a simple double integrator from
the linearized single-axis moment dynamics, Jxφ̈ = τx, Jyθ̈ = τy, and Jzψ̈ = τz as follows.

Pn(s) =
1

Js2 (5)

where J is the moment of inertia in each axis. Suppose that the Q-filter has the same relative degree
as Pn(s) as
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QA(s) = QB(s) =
a0/τ2

s2 +(a1/τ)s+(a0/τ2)
. (6)

In Equation 6, τ is a positive constant which determines the bandwidth of the Q-filter. As τ gets larger,
the bandwidth becomes smaller [10]. The disturbance observer receives the control command u and
the multicopter’s attitude y. After that, it estimates the disturbance d̂ by using the inverse dynamics
of the nominal model Pn(s). The system model P(s) can be calculated from the multicopter’s attitude
dynamics in each axis. Figure 4 shows the outputs of the disturbance observer in all actuator fault
cases according to the roll and pitch axis.

Figure 4 – The disturbance observer outputs in the case of all actuator faults

The disturbance observer outputs are separated according to the degree of fault, and data from
the same degree of fault are grouped. In addition, it is confirmed that they are classified according
to the fault actuator. This clear distinction means that the disturbance observer outputs indicate the
actuator fault rates and are useful for training the actuator fault diagnostic model.

3. Fault Detection and Diagnosis Model
For the FDD model, detailed knowledge of the system’s internal dynamics is not required. Instead,
training data is a source of information about the system. The FDD model learning requires labeling
previously occurring fault cases in the training data. This study learns a fault diagnosis model using
artificial neural networks (ANN).

3.1 Artificial Neural Network (ANN)
The ANN, known as a multilayer perceptron, consists of a feed-forward architecture of the input,
hidden, and the output layer[11]. The output layer nodes corresponds to the classes identified. Figure
5 shows the structure of the ANN with a single hidden layer.
where Ni, NH , and NO are the number of neurons in the input, hidden, and output layer, respectively.
In the each node provides a summation of input values xi, multiplied by the corresponding weight w(1)

i j
between input and hidden layers. The j-th neuron output of the hidden layer is as follows:

s(1)j =
NI

∑
i=1

w(1)
i j xi +b(1)j (7)
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Figure 5 – Typical structure of artificial neural network

The output is obtained by adding the bias term b(1)j . The function outputs the sum of the weighted

inputs. A sigmoid function is used in this study. y(1)j is the output of the hidden layer that s j has passed
through the sigmoid function; therefore, it can be written as:

y(1)j = f (s(1)j ) =
1

1+ e−s(1)j
. (8)

The output layer receives y(1)j as the input value. The sum of the outputs of the k-th node neuron of
the hidden layer is defined as follows:

s(2)k =
NH

∑
j=1

w(2)
jk y(1)j +b(2)k (9)

where w(2)
jk is the weight constant between the hidden and output layer, and b(2)k is the bias term of

the output layer. The results of the output layer passing through the sigmoid function are expressed
as follows:

y(2)k = f (s(2)k ) =
1

1+ e−s(2)k
(10)

Equations (7) – (10) can be expressed by:

y(2)k = f (
NH

∑
j=1

w(2)
jk f (

NI

∑
i=1

w(1)
i j xi +b(1)j )+b(2)k ) (11)

3.2 The Structure of the Actuator FDD Model
Fault detection learns which actuator is faulty by receiving the d̂roll and d̂pitch values. In the medical
examination, the failure actuator number and d̂roll and d̂pitch data are received from the failure actuator
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Figure 6 – A block diagram of the actuator FDD model

detection output, and regression learning is performed to output the health value of the actuator. The
proposed diagnosis model was learned using 7,200 data which is a summation of 200 data in each
section of 40%, 50%, 60%, 70%, 80%, and 90% for each actuator.

3.2.1 Fault Actuator Classification Result

Figure 7 – The results of the classification learning

This section analyzes the results of the proposed fault detection. Figure 7 exhibits a graph of the
disturbance oberserver outputs of roll/pitch during hovering when a each single actuator of the hex-
acopter has faulted. Actuator faults were injected by reducing the thrsut efficiency by 40% to 90%
according to Equation 1. The number in the legend means the number of the actuator that has
faulted. In Figure 7, it can be seen that learning has been performed for each actuator fault. Table 1
provides a detailed discussion on the performance evaluation metrics.

Table 1 – Confusion Matrix

True condition

Total population
Positive

Condition
Negative
Condition

Predicted
Condition

Positive prediction
True Positive

(TP)
False Positive

(FP)

Negative prediction
False Negative

(FN)
True Negative

(TN)

where "True Positive (TP)" means that the system predicts a faulty actuator as faulty. "True Negative
(TN)" represents that a non-faulty actuator is declared as non-faulty. "False Positive (FP)" means that
non-faulty actuator is regarded as faulty. Lastly, "False Negative (FN) implies that a faulty actuator is
declared as non-faulty.
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Accuracy is calculated as the ratio of predicted observations to the total population by :

Accuracy(%) =
T P+T N

T P+T N +FP+FN
×100 (12)

The performance of the fault detection is measured based on True Positive Rate (TPR), False Nega-
tive Rate (FNR), Positive Predictive Value (PPV), and False Discovery Rate (FDR). These parameters
have been generally used to judge the performance of the Fault detection [12]. These parameters
can be defined as follows:

True Positive Rate (TPR)
TPR is used to measure the percentage of actual positive candidates :

T PR(%) =
T P

T P+FN
×100 (13)

False Negative Rate (FNR)
When performing comparisons, FNR represents the probability of incorreclty rejecting the null hy-
pothesis :

FNR(%) =
FN

T P+FN
×100 (14)

The system with a higher TPR and lower FNR claims higher efficacy.

Positive Predictive Value (PPV)
PPV measures the probability of a false region being predicted as a false :

PPV (%) =
T P

T P+FP
×100 (15)

The PPV with a perfect test is 100 %.

False Discovery Rate (FDR)
The FDR provides vaule about how many trues have been detected as falses among the overall de-
tected cases :

FDR(%) =
FP

T P+FP
×100 (16)

Figure 8a shows the results of TPR and FNR, and Figure 8b shows the PPV and FDR. Table 2 sum-
marizes the TPR, FNR, PPV, and FDR. The 100 % of TPR was accomplished for all actuator fault
cases. Also, the proposed method obtained 100% of the PPV. It is confirmed that the proposed fault
detection accomplished high accuracy.

3.2.2 Fault Actuator Diagnosis Result
Figure 9 displays the results of the health-value regression learning. Figure 9a represents a com-
parison graph between true and regression learning. It shows little error between the true value and
the prediction. As the result of regression learning, it was calculated close to linear. It results from
the absence of disturbance other than the actuator fault. Figure 9b means the residuals of the pre-
diction for each actuator fault. In all cases, it is confirmed that the mean residuals of the predicted
and true values are 0. The following equations shows index calculation for examining performance
by expressing the difference between the true and prediction [13].
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(a) The result of TPR and FNR (b) The result of PPV and FDR

Figure 8 – The fault actuator detection results

Table 2 – The fault detection result by TPR, FNR, PPV, and FDR

Fault actuator number TPR (%) FNR (%) PPV (%) FDR (%)

Number 1 fault 100 % 0 % 100 % 0 %
Number 2 fault 100 % 0 % 100 % 0 %
Number 3 fault 100 % 0 % 100 % 0 %
Number 4 fault 100 % 0 % 100 % 0 %
Number 5 fault 100 % 0 % 100 % 0 %
Number 6 fault 100 % 0 % 100 % 0 %

Overall performance 100 % 0 % 100 % 0 %

Mean Absolute of Errors (MAE)
MAE refers the average values of the absolute difference between true and predicted values in a
dataset.

MAE =
1
N

N

∑
i=1
|yi− ŷ| (17)

where yi and ŷ are true and predicted values, respectively, and N means the total number of data.

Mean Square of Errors (MSE)
MSE represents the mean of the squares of the difference between the true and predicted values in
a dataset.

MSE =
1
N

N

∑
i=1

(yi− ŷ)2 (18)

Root Mean Square of Errors (RMSE)
RMSE is the square root of MSE. It measures the standard deviation of residuals.

RMSE =
√

MSE =

√
1
N

N

∑
i=1

(yi− ŷ)2 (19)

R-Squared Score
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(a) Comparison graph between true and regression
learning predictions (b) Prediction residuals

Figure 9 – The result of the health-value regression learning

R-squared represents the ratio of variance of the dependent variable. It is expressed as a number
from 0 to 1. if the closer to 1, the better the performance of the regression model.

R2 = 1− ∑(yi− ŷ)2

∑(yi− ȳ)2 (20)

where ȳ means the average vaule of y. Table 3 shows the performances of regression learning for
the health of the actuator.

Table 3 – The regression learning performance values by index

Index Performance values
MAE 0.030702
MSE 0.003347

RMSE 0.057853
R-Square 1.00

The value of R-square is 1.00, so it can be judged that the regression learning is outstanding. This
performance shows that the disturbance observer output can be highly fit for the fault diagnosis of
the actuator.

4. Conclusions and Future works
The fault diagnostic model of multicopter actuators was developed using artificial neural network. A
disturbance observer was used to extract features for utilizing learning model to perform actuator
fault detect and diagnosis. The disturbance observer outputs could be used as a reasonable basis
for judging the health of actuator fault diagnosis. To verify the performance, a model trained on 7,200
data was tested according to the performance index. As a result, in an ideal environment with no
disturbance other than actuator fault, the actuator fault detection and health prediction accomplished
high accuracy. In future research, tests will be performed in various environments to verify the per-
formance of the proposed FDD model. Considering disturbances such as wind, we plan to conduct
a study to improve diagnosis accuracy even when disturbances other than actuator fault occur.
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