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Abstract

Reducing the length of departure queues at runway entry points is one of the most important requirements
for de- creasing air traffic congestion. This study designeds an aircraft departure model for arrival traffic
interference at runways using a time-varying fluid queue. The proposed model enables us to estimate the
aircraft waiting time in the departure queue, and evaluate the impact of arrival traffic at a related runway. As
a case study, this paper models the departure queue at runway 05 of Tokyo International Airport during an
entire day of operations and applies the arrival traffic influence of runway 34R to the model. Using actual traffic
data of departures and suppositions of additional arrival aircraft, the model quantitatively clarified that aircraft
experience increasing departure waiting time on days at runway 05 due to arrival traffic at runway 34R without
integrated arrival and departure air traffic management.
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1. Introduction
Congestion reduction at major airports improves operational efficiency and safety while also reducing
fuel consumption and delays for arriving and departing air traffic. When runways have limited capac-
ity, this causes a bottleneck for all air traffic. Thus, integrating arrival and departure aircraft traffic
management at the runway is effective for accommodating increasing air traffic demand while miti-
gating air traffic congestion in and around the airport. The characteristics of the air traffic depend on
airport-specific aspects such as runway configurations, taxiways, aprons/ramps, gates, and terminal
buildings, as well as the geometrical and operational constraints at the surface and in the surrounding
airspace.
Airports is aircraft departure management is a key operation for airports, and “departure metering,”
which assigns suitable holds for departure aircraft at their gates [1, 2], is particularly important. The
goal of departure metering is to reduce the departure queue at runway entry points while maintaining
the runway throughput [3]. As far as the authors are aware, there have been few studies characteriz-
ing the stochastic features of the aircraft departure process.
To predict aircraft waiting times at a departure queue, several studies propose queuing models to an-
alyze the taxi-out process of the departure air traffic [3, 4, 5]. In Reference [4], the authors express a
single departure runway queue usingD(t)/Ek(t)/1 queuing model, assuming that the aircraft arrive at
the queue according to a time-dependent schedule and that the service rate follows a time-dependent
Erlang distribution. In Reference [5], the authors model airport surface operations of departure air
traffic from a single ramp to multiple departure runways using a fluid-flow queuing model. The ex-
pected queue length is determined using the flow conservation principle. These queuing networks
were used to estimate taxi-out times at three case study airports in the United States [3]. The results
showed that the taxi-out times of 60% to 70% flights were estimated within a margin of error of 5
minutes. The accuracy of these estimates, however, impacts the performance of departure metering.
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For example, departing aircraft take off from takeoff-only runways approximately every two minutes at
Tokyo International Airport (RJTT). Thus, For this reason, estimation margin of error should be less
than a minute in order to minimize the departure queue at the runway entry point. Furthermore, we
need a departure queue model which allows us to input the time-varying number of departure aircraft
entering the runway in a unit time to achieve integrated arrival and departure control. This departure
queue model should also enable us to estimate the optimal departure rate at the runway entry points
and to control time-varying arrival and departure rates at the runway approximately 30 to 40 minutes
before the corresponding landing and takeoff.
With this background in mind, this study took on the challenge of proposing a new departure metering
approach for integrated arrival and departure management. To improve accuracy, the push-back and
taxi time are estimated using a Machine Learning (ML) model. Based on these times, the departure
queue is estimated at the runway entry points. The spot-out time of departure aircraft is controlled
to maintain the ideal departure rate at the runway entry point to minimize the estimated departure
queue. In this paper, we developed departure queue model [8] which allows us to input the actual
time-varying departure rate and estimate the departure queue for integrated arrival and departure
operations. The departure queue model applies G(t)/GI/s(t) fluid queues [6, 7] assuming a single
server, where the arrival and service processes of the queuing system follow general distributions.
In our model, the number of servers corresponds to the rate of runway usage. The G(t)/GI/s(t)
queue allows us to model time-varying arrival rates and varying numbers of servers (i.e., available
runway capacity), using realistic assumptions when considering the management of departing traffic
at airports. In the process of developing our proposed time-varying fluid queue into a multi-server
model, this paper examines the aircraft departure waiting time under interference of arrival air traffic
at a single runway. Based on the analytical results, we discuss the potential of integrated arrival and
departure air traffic management at single runway operations.
Incoming and outgoing air traffic at airports is typically modeled using queuing models. Reference [9]
provided a wide-ranging review of the literature on stochastic modeling applications within aviation
including past studies on the formulation of queuing systems for air traffic. These studies suggested
that developing data-driven and stochastic modeling approaches according to empirical data could
be one of the most valuable research opportunities in this research area. In line with this, one of the
authors used operational data and modeled arrival air traffic by comparing estimation results against
actual data. In Reference [10], the arrival delay at an airport is analyzed using a G/G/c queuing
model, using data from two years of radar tracks and flight plans from Tokyo International Airport
(RJTT). A shift from traffic flow to arrival time management here indicates capacity enhancements.
This initial approach was improved [11] by considering extended arrival management. Approaching
the airport, the management of the required inter-arrival times between assigned aircraft (minimum
separation standards) and airspace capacities are limiting constraints. The analysis identifies bottle-
neck areas where the efficient management of inter-arrival times could mitigate operational delays.
The focus of Reference [12] was the evaluation of different tactical control strategies for RJTT arrivals
100 NM around the airport using the proposed queuing in comparison to a M/G/c/K queuing model.
In this study, an improved arrival strategy was suggested considering service times and variances of
service times in the airspace areas. The effectiveness of the proposed arrival strategy was verified
using an agent-based simulation study [13].
However, these queuing models assumed a steady state. In this study, we designed an aircraft depar-
ture traffic model for runway entry points using G(t)/GI/s(t) fluid queue, with time-varying departure
rate and available runway capacity. We demonstrate our model for RJTT departure runway 05 under
arrival interference at runway 34R in this paper. Using actual traffic data of departures at runway 05
and assuming increasing arrival air traffic at runway 34R in future operations, the model quantitatively
clarified that aircraft experience increasing departure waiting time due to increasing arrival interfer-
ence without integrated arrival and departure air traffic management at multiple runways at the target
airport.
This paper is organized as follows. Section 2.introduces the airport operations at RJTT and explains
the influence of arrival traffic on runway 05 departures. The analysis considers recorded aircraft track
data for 36 days of operations. This data was recorded in 2019 and 2020 before COVID-19 required
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the introduction of restrictions on air traffic. Section 3.introduces a G(t)/GI/s(t) fluid queue for the
aircraft departure traffic at runway 05. Section 4.applies the model to an entire day of departure traffic
at runway 05 and estimates the waiting time of the aircraft in the departure queue there. In addition,
we expand the model to include the impact of arrival traffic and compare the estimates for waiting
time. In Section 5., we discuss future extension of the model to departure and arrival mixed runways.
Finally, Section 6.outlines our future works and provides conclusions.

2. Data Analysis of the Surface Operations
2.1 Airport Operation at Tokyo International Airport (RJTT)
RJTT is Japan’s largest airport in terms of the number of runways, of which it has four. From the
viewpoint of passengers, RJTT is the world’s fourth busiest airport [14]. Figure 1 shows an airport
map of RJTT.

Figure 1 – RJTT surface configuration [15].

As you can see from Figure 1, the runway configuration at RJTT features parallel crosses with two
north-to south runways (34L/16R and 34R/16L) and two southwest-to-northeast crosswind runways
(22/04 and 23/05). The runways used depends on the wind direction. In northerly wind conditions,
aircraft arrive at either runway 34L or runway 34R, and departing aircraft takeoff from either runway
05 or runway 34R depending on their origin and destination airports. Runway 05 is used only for
departure operation, allowing a maximum of 28 departures per hour. Runway 34R is used as a
departure and arrival mixture runway. This runway allows a maximum of 12 departures per hour.
Figure 2 shows the runway usage for departures and arrivals at RJTT in the northerly wind conditions.
In the southerly wind conditions, the arrival runway used is either runway 16R or runway 16L, and
traffic departures are from runway 22, 16R or 16L. The operation that arrival traffic use runway 34L
or runway 34R, departure traffic use runway 05 or 34R comprise a large percentage of the airport’s
operations, about 70%. In this paper, we focus on the northerly wind condition operations, especially
the runway used only for departures, runway 05.
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Figure 2 – RJTT northerly wind operations

This paper uses 36 days of actual radar data recorded between September 2019 and February 2020,
the same data as used in previous work [8]. This radar data consists of departure and arrival aircraft
trajectories including time, latitude, longitude, and altitude on the surface and at approach and climb
phases at each second for corresponding aircraft types and call signs. All data was provided by the
Japan Civil Aviation Bureau (JCAB) of the Japanese Ministry of Land, Infrastructure, Transport, and
Tourism for limited use in this study. Figure 3 shows aircraft track data on the RJTT surface departing
from runway 05 in a single day.

Figure 3 – RJTT departures from runway 05
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2.2 Arrival and Departure Traffic Interference at RW05

Figure 4 – Positional relationship between Runway 05 and Runway 34R.

RJTT’s runway 05 is used only for departures in northerly wind conditions. However, this does not
mean there is no inference from arrival aircraft. Figure 4 shows the positional relationship between
runways 05 and runway 34R. In northerly wind conditions, runway 34R is used for departure and
arrival traffic. This means that runway 34R arrival aircraft flies over a portion of runway 05. Accord-
ingly, runway 05 departures cannot start their takeoff when runway 34R arrivals are approaching the
airport until this arrival traffic passes through the point at the intersection of the runway 34R landing
course and runway 05, due to the rules of runway operation. Consequently, runway 34R arrival traffic
interferes with runway 05 departures.

Figure 5 – Distribution of runway 05 departure for a single day.
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Figure 6 – Distributions of runway 34R arrival for a single day.

Figures 5 and 6 show the distributions of runway 05 departures and runway 34R arrivals in a single
day. These figures show that there are many instances in which runway 05 departures and runway
34R arrivals are occurring concurrently.

3. Model Description and Formulation
3.1 Modeling Departure Queue at RW05
This study describes the aircraft departure queue at a single runway, runway 05 at RJTT, by means
of a G(t)/GI/s(t) fluid queue model as follows. The entrance to the queuing system is the point on
the taxiways 0.5 NM from the runway entry points. In addition, the exit of the queuing system is the
departure runway end. Thus, our model covers the runway and taxiway within 0.5 NM distance from
the runway entry points, as in prior research [8]. In addition, we include the impact of runway 34R
arrivals on the queuing system as illustrated in Figure 7.
Time-varying arrival rate λ (t) is counted from the point the departure aircraft enter the queuing system
0.5 NM away from the runway 05 entry points. Accordingly, the inter-arrival time is defined as the time
between two consecutive departure aircraft entering the system. Service time is given as the sum
of Runway Occupancy Time (ROT) and spacing time with the proceeding departure aircraft at the
runway entry points. The number of servers s(t) is defined as the number of departure aircraft which
are allowed to use the runway. In this paper, s(t) is given as a time-varying parameter, particularly,
s(t) = 1.0, when the runway 34R arrival traffic state is the same as actual data. If the modeled runway
34R arrival rate is higher than the actual rate, s(t)< 1.0 in contrast. The determinant procedure details
are described in Section 4.2.
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(a) S(t) = 1.0 (b) S(t) = 0

Figure 7 – Modeling the RJTT runway 05 departure queue.

3.2 Time-Varying Fluid Queue
In this section, we formulated the G(t)/GI/s(t) aircraft departure queue based on Whitt et.al. [6, 7]
and Eri et. al.[8].
Firstly, we defined Λ(t). This is the sum total of the departure traffic, that is, input into the queuing
model over the time interval [0, t], which is as follows with t ≥ 0 as the arrival rate for λ (t) integration.

Λ(t)≡
∫ t

0
λ (u)du (1)

Secondly, the cumulative distribution function (CDF) for service time G(x) is an integration of the
probability density function (pdf) for service time g(u) when x ≥ 0.

G(x) =
∫ x

0
g(u)du (2)

Here, Ḡ(x) and hG(x) are defined as follows.

Ḡ(x)≡ 1−G(x) (3)

hG(x)≡
g(x)
Ḡ(x)

(4)

Next, we determined two key performance descriptors B(t) and Q(t). Time-varying function B(t) is
the quantity of flow in service at time t, and Q(t) is also a time-varying function indicating the quantity
of flow waiting in the queue at t.
Firstly, we defined B(t). The quantity of flow in service at time t, with service in progress for time
y ≥ 0, B(t,y), is defined as follows.

B(t,y) =
∫ y

0
b(t,x)dx (5)

Here, B(t)≡ B(t,∞).
Secondly, we defined Q(t). The quantity of flow waiting in the queue at t, which has been in the queue
for time y ≥ 0, Q(t,y) is defined as follows.

Q(t,y) =
∫ y

0
q(t,x)dx (6)

Here, Q(t)≡ Q(t,∞). Next, X(t) was determined as the total quantity of the flow in the queuing system
at t, and defined as follows.

X(t) = B(t)+Q(t) (7)
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Using Equations 5 and 6, the initial conditions B(0,y) and Q(0,y) depend on the densities b(0,x) and
q(0,x).
With the above descriptions, the G(t)/GI/s(t) model is composed of the five functions: λ (t), s(t), G,
b(0, ·), q(0, ·).

3.3 Conditions of Flow in the System
In the queuing system, there are two types of situations, Q(t) = 0 or Q(t)> 0. We named Q(t) = 0 the
"Underload (UL) condition" and Q(t) > 0 the "Overload (OL) condition." This section describes the
details of the two conditions.

3.3.1 UL condition
In the UL condition, one of the key performance descriptors is Q(t) = 0, and we want another key
output B(t). In addition, we would like to know when UL changes to the OL condition. We defined this
point as T2.
Firstly, B(t) can be determined as follows using equations. 1, 2, 3, and 5.

B(t) =
∫ t

0
Ḡ(x)λ (t − x)dx+

∫
∞

0

Ḡ(x+ t)
Ḡ(x)

b(0,x)dx (8)

≤ Λ(t)+B(0)

Assuming that there is no initial quantity in service, B(0) = 0, which when plugged into equation 8
gives the following.

B(t) =
∫ t

0
Ḡ(x)λ (t − x)dx (9)

Secondly, we determined T2 using B(t) as defined in equations 8 and 9. The results showed that the
UL condition begins at time t2 when 1) B(t2)< s(t2) or 2) B(t2)= s(t2), Q(t2)= 0 and λ (t2)≤ s′(t2)+σ(t2),
where s′(t2) = ds(t2)/dt. The UL condition ends at time T2, switching to the OL condition. T2 is defined
as follows.

T2 ≡ inf{u ≥ t2 : B(u) = s(u) and λ (u)> s′(u)+σ(u)} (10)

Here, the quantity of flow finishing service and leaving the queuing system at time u, σ(u) in equation
10 is defined as follows when t ≥ 0.

σ(t)≡
∫

∞

0
b(t,x)hG(x)dx (11)

In eq. 11, b(t,x) is defined as follows.

b(t,x) =


Ḡ(x)λ (t − x), x ≤ t

Ḡ(x)
Ḡ(x−t)b(0,x− t), x > t

(12)

In particular, if b(0, ·) = 0, which means that the input flow in service at t = 0 is 0, b(t,x) is defined as
follows when x ≤ t.

b(t,x) = Ḡ(x)λ (t − x) (13)

Consequently , T2 is defined by equation 10 in combination with equation 11, 12 or 13.
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3.3.2 OL condition
In the OL condition, we want three outputs: (i) Q(t), one of the key performance descriptors, (ii) T1,
which is defined as the point when the OL condition switches to the UL condition, and (iii) v(t), which
is defined as the "potential waiting time" of the fluid queue.
Firstly, Q(t) is defined as follows during the OL condition.

Q(t) =
∫ t

0
λ (t − x)dx+

∫
∞

0
q(0,x)dx (14)

≤ Λ(t)+Q(0)

Assuming that there are no aircraft in the waiting room initially, Q(0) = 0, which yields the following
when plugged into equation 14 .

Q(t) =
∫ t

0
λ (t − x)dx (15)

Secondly, we determined T1, the time the OL condition terminates and switches to the UL condition,
using Q(t) as define by equations 14 or 15. On the assumption that the OL condition starts at time t1
when 1) Q(t1)> 0 or 2)Q(t1) = 0, B(t1) = s(t1) and λ (t1)> s′(t1)+σ(t1). T1 is defined as follows.

T1 ≡ inf{u ≥ t1 : Q(u) = 0 and λ (u)≤ s′(u)+σ(u)} (16)

σ(u) is equivalent in equations 16 and 11. b(t,x) in the OL condition is defined as follows.

b(t,x) =


Ḡ(x)b(t − x,0), x ≤ t

Ḡ(x)
Ḡ(x−t)b(0,x− t), x > t

(17)

In equation 17, b(t,x) = b(t,0) when x = 0. b(t,0) is defined as follows.

b(t,0) = s′(t)+σ(t)

= s′(t)+
∫

∞

0
b(t,x)hG(x)dx

= s′(t)+
∫

∞

0

b(0,y)g(t + y)
Ḡ(y)

dy

+
∫ t

0
b(t −u,0)g(u)du (18)

Thirdly, we defined v(t) as follows when t ≥ 0.

v(t)≡ inf{u ≥ 0 : E(t +u)−E(t)≥ Q(t)} (19)

In equation 19, E(t) is the quantity of flow entering service during time interval [0, t], and it is defined
as follows when t ≥ 0.

E(t)≡
∫ t

0
b(u,0)du (20)

In equation 20, b(u,0) is defined by equation 18.
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3.4 Aircraft Departure Waiting Time
In this paper, we defined aircraft departure waiting time as vd p(t) = v(t) in equation 19.
In addition, we considered another descriptor Wd p to approximate the total waiting time of departure
aircraft during the estimation time period including m times OL periods. We defined Wd p as follows.

Wd p ≡
m

∑
i=1

v̄d p,ini (21)

In eq. 21, v̄d p,i is the mean of vd p(t) during the i th OL period. ni is the number of departure aircraft
entering the system during the i th OL period.

4. Estimating Departure Queues
4.1 Stochastic Features in the Queuing Model
4.1.1 Arrival Rates
In this section, we analyzed a day of departure operations at RJTT runway 05 using the departure
queue model described above. We examined stochastic features of operations on November 15th,
2019 by using the same methods and data, which will be described later, as a previous paper [8].
This study also considered how much impact arrivals on runway 34R have on departure traffic.
Aircraft arrival rate λ (t) is the number of departure aircraft passing the point 0.5 NM away from
the runway entry points in an hour.From the perspective of queuing system, this is the number of
departures entering the queuing model. The arrival rate is given as an average for each 10-minute
interval in this case study. Figure. 8 shows λ (t) as time-varying in 10-minute intervals throughout the
day, although the maximum runway throughput is fixed at 28 departures per hour.

Figure 8 – Arrival rate at the queuing system. [8]

4.1.2 Service Time
In this model, service time is defined as the sum of ROT and separation time at the runway entry
points. A service time histogram constructed using actual traffic data is shown in Figure 9. It’s
important to note that ROT includes the effects of runway 34R arrivals with their actual arrival rate,
because we did not separate ROT into runway 34R arrival impact and other factors. In addition,
these determinations are made using only service time shorter than 200 s in this study because the
departure separation grows wider when the departure rate at the runway is low. Figure 10 shows a
CDF of service time, G(x). We use stochastic distribution to estimate states and waiting times of the
departure queues in the following section.
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Figure 9 – Service time. [8]

Figure 10 – CDF of service time, G(x) [8]

4.2 Modeling Arrival Traffic Interference
In this section, we describe a method for describing about s(t), the number of departure aircraft
allowed to use the runway. As previously stated, runway 05 is only used for departure traffic and
service times include the impact of runway 34R actual arrivals. Consequently, s(t) = 1.0 is used
under actual runway 34R arrival rate conditions. In addition, we considered how s(t) changes when
the rate of runway 34R arrival is higher than actual data. Firstly, we defined the time r. r as the time
interval between runway 34R arrivals reaching the point Pr and passing through the intersection of the
runway 34R landing course and runway 05. Point Pr is a location on the runway 34R landing course
and the farthest location at which runway 05 departure is restricted from starting to take off when
runway 34R arrivals are flying over. Secondly, we considered runway 05 departure traffic behavior
with runway 34R arrivals. Assuming that departure traffic is ready to start its take-off roll at the exact
time arrival traffic reaches point Pr, departure traffic will wait for time r. In other words, service will be
stopped for time r in the departure queuing model. This means that s(t) = 0 for time r. On the other
hand, departure traffic will not be delayed by arrival traffic in situations such as when running on the
taxiway, entering the departure runway, or waiting on the runway due to a wake vortex. Departure
traffic is impacted by arrival traffic for the first time at to takeoff. Thus, we estimated the mean of the
time r̄ for which departure traffic is impacted by arrival traffic, including the arrivals’ influence on the
departure queuing system.
Let Ts be service time for departure traffic. When Ts ≥ r, the probability that departure traffic will be
ready to take off during the time an arrival aircraft is flying between point Pr and the intersection with
the runway 34R landing course and runway 05 is r/Ts. If departure traffic is affected by an arrival,
the times of infimum and supremum that departure cannot start takeoff are 0 and r. In addition, the
distribution of departure-restricted time is uniform from 0 to r, In other words, the mean of departure
restricted time is r/2. Hence, the overall average of departure restricted time r̄ in service time Ts is
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defined as follows.

r̄ =
r
Ts

× r
2
=

r2

2Ts
(22)

When Ts < r, we can calculate r̄ based on the above as follows.

r̄ =
2r−Ts

2
. (23)

4.3 Impacts of Arrival Traffic Interference on the Departure Queue
To apply the impact of arrival traffic interference on the departure queue to the queuing model, we
determined the distance of Pr from runway 05 and the value of r as follows. Initially, we fixed the
distance of Pr from runway 05. Based on interviews with some air traffic controllers, 3.5 NM from
runway 05 was determined adequate for the distance Pr. Thus, we positioned Pr on the runway 34R
arrival course 3.5 NM from runway 05. Furthermore, the distance between the runway 05 and runway
34R threshold is about 1.5 NM. Therefore, the threshold for the distance between Pr and runway 34R
is about 5.0 NM. Next, we calculated the value of r. A speed restriction of 160 kt is published on
runway 34R 5.0 NM from the final ILS approach, so we set the arrival aircraft speed at Pr as 160 kt.
In addition, we set the threshold for arrival aircraft speed at runway 34R as 140 kt.
This is an attribute for which most regular passenger aircraft flights at RJTT are classified in approach
category C or D. Moreover, the approach category C and D boundary speed threshold is 140 kt. As a
result, we calculated r ≒ 95 from the speed of the aircraft and distance Pr. Following our previous dis-
cussion, we considered how to apply the influence of arrival traffic to the departure queue specifically.
Regarding r̄, service time is given by a distribution, thus, we can calculate r̄ for each service time.
We used the mean r̄ , which it is about 31.1 seconds, with actual data for evaluation of the queuing
model. In this paper, statistical verification is planned for understanding the impact of arrival traffic.
Thus, we distributed the decrease of s(t) to a wide time frame. In the case of one arrival exceeding
the actual data value, 30 minutes, s(t) for 30 minutes is about 0.983, whereas the time for s(t) = 0 is
about 31.1 seconds. In addition, we set s′(t)≡ 0 because variation of s(t) is sufficiently small from the
above discussion.

4.3.1 Time-Varying States in the Departure Queue
Using the stochastic features in Section 4.1, this section estimates the time-varying states B(t) and
Q(t). Simultaneously, we obtained the ith OL starting time t1,i = T2,i , termination time T1,i, and their
time intervals T1,i and t1,i.
First, Figure 11 shows the results for estimating time-varying states for the departure queue in a
single day with s(t) ≡ 1.0. Naturally, the result is the same as previous paper [8]. A total of 21 OL
periods times are counted. During the OL periods B(t) = s(t) and Q(t) > 0 as shown in Figure 11.
Given that λ (t) is the average arrival rate in a 10-minute time interval, the values of B(t) and Q(t) are
also given as the average for every 10 minutes. The maximum Q(t) value is 1.22, which means that
1.22 departures are waiting in the departure queue for 10 minutes on average.
Next, we obtained the results for estimates of time-varying states for the departure queue in a day
under s(t) = 0.983 when 54,000 ≤ t ≤ 55,800. These conditions mean that one more arrival is landing
on runway 34R in the time between 54,000 and 55,800 than in the actual data. The results of analysis
are described in the next section, along with comparisons to the queuing model results with different
s(t) conditions.

4.3.2 Comparing Departure Waiting Time in the Queue
In this section, we compared the departure waiting time in the queue with different s(t) values.
Table 1 summarizes the result of analysis with s(t)≡ 1.0, the value of the ith OL time intervals T1,i−t1,i,
the aircraft departure waiting time vd p,i and total aircraft departure waiting time in the intervals. The
maximum OL time interval is estimated to be 1950 seconds in the 7th OL interval between 10:00
and 1:00 a.m. (because T1,7 = 38,559 corresponds to 10:42:39 a.m.). The maximum departure
waiting time average in a 10-minute interval was 82 seconds in the 14th and 17th OL intervals, which
occurred between 15:00 and 19:00 (T1,14 = 55,305 and T1,17 = 64,882). As stated in previous paper
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Figure 11 – Time-varying states in the departure queue, λ (t), B(t), Q(t), and v(t) in the ith OL period
for a single day.

[8], the proposed model enables us to estimate the aircraft departure waiting time in the queue and
the OL start and end times.
The total aircraft departure time in Equation (21), Wd p, is given as the sum of Wd p,i in Table 1. Wd p =
9030 (seconds) ≈ 2.5 (hours) for the day.
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Table 1 – OL time intervals and departure waiting times for a single day

i T1,i
(s)

T1,i − t1,i
(s)

max.vd p,i
(s)

ni

(Aircraft)
Wd p,i
(s)

1 25,270 1768 73 17 734
2 28,296 1887 48 16 627
3 29,496 643 48 5 213
4 31,288 1248 63 13 774
5 34,296 1831 73 18 869
6 36,166 763 63 8 415
7 38,559 1950 48 14 454
8 40,947 1270 48 10 351
9 45,147 1942 48 17 553

10 46,896 643 48 7 298
11 49,966 705 63 6 321
12 51,747 645 28 5 121
13 52,872 667 48 6 252
14 55,305 1203 82 10 542
15 56,547 645 28 6 145
16 63,088 1835 63 16 716
17 64,882 638 82 6 418
18 67,366 763 63 5 259
19 69,759 1257 48 9 322
20 71,547 1344 63 13 541
21 73,270 568 28 4 103

Furthermore, the table below shows the result of the queuing model with other s(t) values.
Table 2 summarizes the results of analysis with s(t) values reflecting the impact of additional (1-3
aircraft) runway 34R arrivals when 36,600 ≤ t ≤ 38,400 (including almost all of the maximum OL time
interval, the 7th OL time interval). Comparison with the analysis with s(t) ≡= 1.0, showed that only
the 7th OL time result was different, so the table shown summarizes of the 7th OL time interval. a is
a the number of additional aircraft compared to actual data.
Table 3 summarizes the result of analysis with s(t) that reflect the arrival impact of the same number
of aircraft as the above analysis when 54,000 ≤ t ≤ 55,800 (including the time interval with maximum
departure waiting time for 10-minute average, the 14th OL time interval). In comparison with the
analysis with s(t) ≡ 1.0, only the 14th OL time result is different, so the table shown summarizes
results for the 14th OL time interval.
In the results of both analyses, Wd p grows with increases to the number of additional arrival aircraft.
This means that the model estimates that aircraft departing from runway 05 experience more and
more waiting time in the day with more arrival aircraft added.

Table 2 – Variation of OL time and watiing times with changing S(t) between 38,400 and 40,200.

a
(Aircraft)

T1,7 − t1,7
(s)

max.vd p,7
(s)

n7
(Aircraft)

Wd p,7
(s)

Wd p
(s)

0 1950 48 14 454 9030
1 1958 50 14 478 9055
2 1958 52 14 512 9089
3 1958 54 14 538 9115
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Table 3 – Variation of OL time and waiting times with changing S(t) between 54,000 and 55,800.

a
(Aircraft)

T1,14 − t1,14
(s)

max.vd p,14
(s)

n14
(Aircraft)

Wd p,14
(s)

Wd p
(s)

0 1203 82 10 542 9030
1 1208 83 10 555 9044
2 1213 84 10 572 9061
3 1218 85 10 585 9074

5. Discussion
In this paper, we proposed a departure aircraft queuing model for the impact of arrival aircraft, specif-
ically aircraft landing on another runway. The proposed model enables us to estimate the aircraft
departure waiting time in the queue and the OL start and end times, even if arrival aircraft rates are
higher than actual data. For integrating arrival and departure runway operation, we need to think
about improvements to the model for (1) arranging ideal arrival rates in the queuing system and (2)
reflecting the impact of arrivals on the same runway. In particular, we think the idea of arrival traffic
interference for departure of other runways can be applied to the arrival aircraft impact for same run-
way departure. For example, departure traffic is impacted by arrival traffic for the first time at to enter
runway, and so on.

6. Conclusions
This study proposed an aircraft departure model at a runway using a time-varying fluid queue with
time-varying for the number of servers. The proposed model enables us to design departure traffic
flow with arrival traffic for related runways and evaluate the impact of the arrival traffic on departures
by assessing the waiting time in the queue. As a case study, the fluid queue model was successfully
implemented into the aircraft departure queue at runway 05 of Tokyo International Airport. The results
showed that waiting time grows with the increases to the number of arrival aircraft.
This paper developed a methodology to model departure queues with arrival traffic landing on related
runways. In future studies, the authors plan to further develop the departure queue model and vali-
dation method and examine the best departure metering approach, which is applicable in the actual
airport operations and system design. More specifically, we have two issues: (1) arranging ideal
arrival rates in the queuing system and (2) developing a departure queuing model for reflecting the
impact of arrivals on the same runway. This will enable us to discuss future integrated control of
arrival and departure management.
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