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Abstract 

For a small low-cost Unmanned Aerial Vehicle (UAV), the accurate aerodynamics and flight 

dynamics characteristics wouldn’t be obtained easily, and the control coupling is serious, so the 

robustness of its flight controller must be considered carefully. In order to solve the problem, a 

Lateral-Directional (Lat-Dir) flight control method based on Deep Reinforcement Learning (DRL) are 

proposed in this paper. Firstly, based on the nominal state, three control laws are designed: classical 

Proportional Integral Derivative (PID) control, Linear Quadratic Gaussian (LQG) control based on 

modern control theory, and Deep Reinforcement Learning (DRL) control based on Twin Delayed 

Deep Deterministic Policy Gradient (TD3) method. In order to solve the problem of incomprehensible 

physical meaning of neural network in DRL, a simplified control strategy network is derived based 

on the inspiration of PID controller. In order to solve the problem that the reward function of DRL is 

difficult to be determined, the weights of the optimal quadratic function designed by LQG method are 

adopted, and the weights of control output considering discretization is added also. Then, the three 

controller are applied to nominal flight state and deviation state respectively, and the numerical flight 

simulation is carried out. The results show that, in the nominal state, the performance of DRL is close 

to the LQG and better than the PID. In the deviation state, which the lateral and directional static 

stable derivatives are changed artificially from stable to neutral stable, the rise time and adjustment 

time of the DRL change slightly, while the LQG degrades seriously and appears instable, and it is 

proved that the proposed DRL control method has better performance robustness. 

Keywords: Unmanned Aerial Vehicle (UAV), flight control, Deep Reinforcement Learning (DRL), 
strategy network, reward function 

 

1. General Introduction 
The aerodynamics and flight dynamics characteristics of a small UAV are difficult to obtain accurately 

due to some technical and cost reasons. And the dynamics characteristics would change greatly in 

different flight states and are sensitive to external disturbance. Especially for the lateral-directional 

(Lat-Dir) flight, a typical MIMO system with serious coupling between flight and control. Because the 

classical PID flight control law design method is based on SISO system, it usually needs to be 

designed iteratively several times to obtain satisfied results. The modern control method represented 

by Linear Quadratic Gaussian (LQG) can provide better performance for MIMO systems in theory. 

However, an accurate dynamics model is necessary prior to LQG design. If the model deviates from 

the designed state, its performance would not be guaranteed. 

Reinforcement learning is a goal oriented algorithm for strategy learning through interaction with the 

environment. Its basic idea is: the agent learns how to map the state to action through interaction 

with the environment, so as to maximize the rewards [1]. The delay of reward and trial-and-error 

makes reinforcement learning independent of the environment and has certain forward-looking 
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optimization characteristics. Therefore, reinforcement learning can be used to achieve the best 

adaptive control effect[2]. Reinforcement learning has been applied in multirotor UAV control[3][4], UAV 

trajectory tracking[5], control allocation[6], adaptive flight control[7] and so on. 

Deep reinforcement learning techniques for motion control have recently taken a major qualitative 

step, since the successful application of Deep Q-Learning to the continuous action domain [8]. In ref. 

[9], a model-free approach called Deep Deterministic Policy Gradient (DDPG)  was developed. Using 

the same learning algorithm, network architecture and hyper-parameters, the DDPG algorithm 

robustly solves more than 20 simulated physics tasks, including classic problems such as cartpole 

swing-up, dexterous manipulation, legged locomotion and car driving. 

In ref. [10], a Proximal Policy Optimisation (PPO) algorithm is employed to train a sweep-wing UAV 

landing in three simulated environments with steady-state wind and turbulence. The performance of 

each model is assessed in simulation by obtaining the mean reward across a range of conditions. 

The flight test demonstrates that models trained with atmospheric disturbances perform better in the 

real world, achieving higher mean rewards than the baseline models that are trained without 

simulated wind. 

In ref. [11], the flight test and verification of a neural network longitudinal controller for a fixed-wing 

UAV that is trained offline by DDPG algorithm are carried out. The flight test verification is performed 

utilizing a reference autopilot LQR controller and a safety monitoring algorithm. When detected that 

the predicted state of the aircraft is propagated to unsafe zone by neural network, it will switch from 

neural network to LQR controller automatically. The switching logic uses formal verification method 

and reachability analysis to expand the known safety zone, so as to extend the operation time of the 

neural network controller. 

In ref. [12], a versatile Gazebo-based reinforcement learning framework has been designed and 

validated with a continuous UAV landing task. The UAV landing maneuver on a moving platform has 

been solved by means of the novel Deep Deterministic Policy Gradients (DDPG) algorithm. Several 

experiments have been performed in a wide variety of conditions for both simulated and real flights, 

demonstrating the generality of the approach. 

Ref. [13] combines deep reinforcement learning (DRL) with meta-learning and proposes a novel 

approach, named meta twin delayed deep deterministic policy gradient (Meta-TD3), to realize the 

control of unmanned aerial vehicle (UAV), allowing a UAV to quickly track a target in an environment 

where the motion of a target is uncertain.  Compared with the deep deterministic policy gradient 

(DDPG) and twin delayed deep deterministic policy gradient (TD3) algorithms, the Meta-TD3 

algorithm has achieved a great improvement in terms of both convergence value and convergence 

rate. In UAV target tracking problem, Meta-TD3 only requires a few steps to train，which enables a 

UAV to adapt quickly to a new target movement mode more and maintain a better tracking 

effectiveness. 

In ref. [14], a novel UAV autonomous tracking and landing approach based on a deep reinforcement 

learning strategy is presented in this paper, with the aim of dealing with the UAV motion control 

problem in an unpredictable and harsh environment. Instead of building a prior model and inferring 

the landing actions based on heuristic rules, a model-free method based on a partially observable 

Markov decision process (POMDP) is proposed. In the POMDP model, the UAV automatically learns 

the landing maneuver by an end-to-end neural network, which combines the Deep Deterministic 

Policy Gradients (DDPG) algorithm and heuristic rules. A Modular Open Robots Simulation Engine 

(MORSE)-based reinforcement learning framework is designed and validated with a continuous UAV 

tracking and landing task on a randomly moving platform in high sensor noise and intermittent 

measurements. The simulation results show that when the moving platform is moving in different 

trajectories, the average landing success rate of the proposed algorithm is about 10% higher than 

that of the PID method. As an indirect result, a state-of-the-art deep reinforcement learning-based 

UAV control method is validated, where the UAV can learn the optimal strategy of a continuously 

autonomous landing and perform properly in a simulation environment. 

Ref.[15] infers that, Artificial Intelligence (AI) is expected to revolutionize all areas of space 

operations in the coming years. The work presents a novel framework that uses the highly 

researched artificial intelligence paradigm, reinforcement learning, to perform online learning. The 
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spacecraft attitude control problem is used as a benchmark, with experimental results for using 

reinforcement learning to train neural network spacecraft attitude controllers. Additionally, 

experimental results in a simulation environment are also shown to compare and contrast two state-

of-the-art single-agent continuous control reinforcement learning algorithms, PPO and TD3, to 

motivate their use in the online learning scenario. It is shown that the off-policy algorithm of TD3 

produces a more desirable controller than PPO in the formulation given, likely due to its explicit 

exploration and sample efficiency. 

Although artificial intelligent control methods represented by Deep Reinforcement Learning (DRL) 

are booming, but there are still some problems for engineering applications, such as difficult to 

determine the structure of neural network, high computational power requirements of hardware, poor 

real-time performance and so on. 

This paper presents an algorithm of Lat-Dir flight control law based on improved DRL, which is easy 

to be realized in engineering. In this algorithm, the reward function is designed inspired by LQG 

control method, and the structure of neural network is inspired and simplified by PID control method. 

Based on the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, deep reinforcement 

learning training is carried out to obtain the optimal control law matrix. 

Taking a small UAV as the example, the roll angle control law is designed by using PID, LQG and 
the improved TD3 DRL algorithm respectively, and numerical flight simulations are carried out in the 
nominal state and deviation state respectively. In the deviation state, the lateral and directional static 
stable derivatives are changed artificially to neutral stable, the lateral and directional damping 
derivatives are doubled, and the control efficiency of aileron and rudder are reduced by 50%. Since 
the deviations of aerodynamics parameters during flight is uncertain, the same control law derived 
from nominal state is adopted for the deviation state. 

2. Lat-Dir flight dynamics model of an example UAV 

2.1 General Lat-Dir flight dynamics model 

The stat- space form of the Lat-Dir flight dynamics model of a conventional UAV is: 

 = + +x Ax Bu Fw    (1) 

 = +y Cx Hv  (2) 

Where, A and B are the system matrix and control matrix respectively. Their specific expressions 
can be seen in ref. [16]. 

The state variables matrix 𝒙 is: 

 
T[ , , , ]p r =x    (3) 

Where, 𝛽, 𝑝, 𝑟, 𝜙 are sideslip angle, roll rate, yaw rate and roll angle respectively. 

In order to reduce the cost and gross weight, the angle of attack and sideslip angle sensor are not 
available for a conventional low-cost small UAV, and only IMU (inertial measurement unit) is applied 
to measure the angular velocity and attitude angle. Therefore, the ordinary observation variables 
matrix 𝒚 of a small low-cost UAV is: 

 
T[ , , ]p r =y    (4) 

So, the output matrix C is: 

                                                            

0 1 0 0

0 0 1 0

0 0 0 1

 
 

=
 
  

C    (5) 

𝒖 is the control variables matrix, which consist of aileron 𝛿𝑎 and rudder 𝛿𝑟 for a conventional UAV, 
namely: 

 
T[ , ]a r =u    (6) 

𝒘 and 𝒗 are the process noise and measurement noise respectively, which are independent 
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Gaussian white noise respectively: 

 ~ (0,1)w N    (7) 

   ~ (0,1)v N    (8) 

In order to evaluate the robustness of the controller in the design process, the influence of 
uncertainty should be considered. According to the characteristics of uncertainty error, multiplicative 
perturbation is applied to describe the 𝑨 and 𝑩 matrices in Eq. (1) in the following form: 

 0 *=  AA A     (9) 

     0 *= BB B    (10) 

Where: the subscript "0" represents the nominal state. ∆𝐴 and ∆𝐵 represents the amplitude of the 

perturbation. The operation symbol "*" represents the multiplication of the elements at the 
corresponding position of the left and right matrix. 

2.2 Characteristics of the example UAV 

Taking a small conventional layout UAV as an example, its outline is shown in the figure below: 

 

Figure 1 – The outline of the example UAV 

Its main parameters are shown in the table below: 

Table 1 - Main parameters of the example UAV 

Parameter Value Parameter Value 

Span / m 1.6 Gross mass / kg 2.92 
Chord / m 0.208   
Length / m 1.5 Wing load / (kg/m2) 8.8 

Wing Area / m2 0.332 Aspect ratio 7.71 
Ixx / (kg.m2) 0.119 Izz / (kg.m2) 0.423 
Iyy / (kg.m2) 0.311 Ixz / (kg.m2) -0.015 

 

The Lat-Dir aerodynamics characteristics are shown as Table 2 and Figure 2: 
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Figure 2 - The static Lat-Dir aerodynamics characteristics of the example UAV 
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Table 2 - Main Lat-Dir aerodynamics parameters of the example UAV 

Parameter Value Parameter Value 

CY / (1/rad) -0.4407 CYa -0.0412 

Cl  / (1/rad) -0.0169 Cla -0.2695 

Cn / (1/rad) 0.1427 Cna -0.0043 

CYp -0.0747 CYr 0.0881 

Clp -0.5130 Clr -0.0009 

Cnp -0.0985 Cnr -0.0412 

CYr 0.3843   
Clr 0.0740   
Cnr -0.1950   

 

According to the above parameters, the state-space matrices A, B and C of the example UAV in 
cruise flight state are obtained as follows: 

 

0.4822 0.0307 0.9786 0.6233

29.8780 35.0892 5.5870 0

55.2576 0.6286 3.9710 0

0 1 0.0349 0

− − 
 
− −

 =
 − −
 
 

A    (11) 

 

0.0226 0.0482

10.8249 0.0348

0.1726 1.4383

0 0

− 
 
− −

 =
 − −
 
 

B    (12) 

 

0 1 0 0

0 0 1 0

0 0 0 1

 
 

=
 
  

C    (13) 

The deviation of aerodynamic characteristics caused by flight state change, inaccurate results of 
calculation and other reasons can be expressed by the perturbation matrix ∆𝐴 and ∆𝐵 in the state 
space equation. Their values are: 

 

N 1 1 1

N N N 1

N N N 1

1 1 1 1

Y

l lp lr

n np nr

C

C C C

C C C







 
 
 

 =  
 
 
 

A    (14) 

 

1 1

N N

N N

1 1

a a

r r

 

 

 
 
  =
 
 
  

B    (15) 

It indicates that the UAV runs in nominal state if the elements in  ∆𝐴 and ∆𝐵 are all equal to 1. 
Considering the aerodynamics parameters deviation caused by different flight states and the 
imprecision of CFD results, the coefficient range of the disturbance matrix of the state equation is 
shown as follows: 

Table 3 - Main aerodynamics parameters deviation range of the example UAV 

Parameter Value Parameter Value 

𝑁𝐶𝑌𝛽
 [0.2, 2] 𝑁𝐶𝑙𝑟

 [0.2, 2] 

𝑁𝐶𝑙𝛽
 [-0.5, 3] 𝑁𝐶𝑛𝑟

 [0.2, 2] 
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𝑁𝐶𝑛𝛽
 [0, 2] 𝑁𝛿𝑎 [0.5, 2] 

𝑁𝐶𝑙𝑝
 [0.2, 2] 𝑁𝛿𝑟 [0.5, 2] 

𝑁𝐶𝑛𝑝
 [0.2, 2]   

 

The process noise matrix F is as follows: 

 
T[0.05,0.05,0.05,0]=F    (16) 

According to the error characteristics of the sensors, the measurement noise matrix H is obtained as 
follows: 

 
T[0.001,0.001,0.003]=H    (17) 

3. Control law design 

In order to fully study the performance of intelligent control method, especially in unconventional 
control conditions with drastic parameters and state change, this section takes the roll angle control 
of UAV as an example, and designs the control law by using the classical PID method, the modern 
LQG method and the improved TD3 DRL method respectively for comparison. 

3.1 Classic PID method 

By using the cascade PID control method, the control law of the roll angle control loop of the UAV 
can be designed as follows: 

 c c( )p K  = −φ    (18) 

 
c c

g
tanr

V
=    (19) 

 
a p pI c

1
( )( )K K p p

s
 = + −    (20) 

 r r c( )K r r = −    (21) 

The structure diagram of the control law is： 

 
Figure 3 – Structure diagram of classical PID controller 

Where, K Kp, KpI and Kr are the gains of PID controller. rc is the theoretical yaw rate corresponding 

to the zero sideslip angle determined by the coordinated turning condition. 𝑔 is the acceleration of 

gravity, 𝑔 ≈ 9.8m/𝑠2. 

By applying both locus and bode diagram methods, the controller gains for the example UAV can be 

obtained as follows: K= Kp=0.8, KpI=0.4, Kr=0.6.  

3.2 Modern LQG method 

Linear Quadratic Gaussian (LQG) method is a common method in modern control theory. LQG is an 
improvement of linear quadratic (LQ) method, which can be used to design the optimal controller of 
systems with noise, thus LQG is more practical than LQ method. The typical structure of a LQG 
controller is shown in the figure below: 
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Figure 4 - Structure diagram of LQG controller  

The basic idea of LQG method is: Taking a given quadratic function as the objective function, the 
optimal full state feedback controller is constructed according to the solution of algebraic Riccati 
equation, and the state of the system can be estimated by a Kalman filter. 

The control law of LQG is: 

 LQG c
ˆ( )= − −u K x x    (22) 

Where, 𝒙𝑐 is the desired state variables matrix, �̂� is the observation of the system state 𝒙, K LQG is 
the gain of the controller. 

In order to determine the KLQG, the following quadratic objective function of LQG controller shall be 
constructed first: 

 
f T T

c c
0

min{ [( ) ( ) ] }
t

J dt= − − + x x Q x x u Ru    (23) 

Where, Q and R are the weighting matrices of system state and control output respectively. 

Solving the optimal quadratic objective function Eq. (23) is equivalent to solving the following 
algebraic Riccati equation[17]: 

 
T 1 T 0−+ − + =A P PA PBR B P Q    (24) 

Where, A and B are the same system matrix and control matrix of the controlled system as shown 
in Eq. (1), Q is the same weighting matrix as shown in Eq. (23). 

The unknown variable in Eq. (24) is P. After solving it, the control gain KLQG can be solved according 
to the following formula: 

 1 T

LQG

−=K R B P    (25) 

All the system state variables 𝒙 must be available before applying the LQG method. But as can be 
seen before, sideslip angle sensor is not equipped in the small low-cost UAV, that is to say, it is 
essential to derive the 𝒙 by the 𝒚 in Eq. (4). So a Kalman filter is employed, which uses the available 
observation variables 𝒚, together with the system matrix A and output matrix B of a dynamics 

system, to estimate the full system state variables 𝒙 optimally. 

The state-space equation of a Kalman filter is as follows: 

 ˆ ˆ ˆ( )= + + −x Ax Bu L y Cx    (26) 

 
T T T= + + −P AP PA FF LGL    (27) 

 
T=L PC    (28) 

Where: �̂�  is the observed value derived from the Kalman filter on the state of the UAV. The input of 
the Kalman filter is the observation output 𝒚 and control output u of the UAV, and the output of the 
Kalman filter is �̂�. Therefore, an output feedback control can be realized by using �̂� to replace the  𝒙 
in Eq. (22). 

For the roll angle control of the example UAV, it can be designed that: 

 (0, 0.5, 0.5, 1.2)diag=    Q    (29) 

 (0.1, 0.1)diag=  R    (30) 

where, the “diag” function refers to the construction of an array into a diagonal matrix. In this case 
the final gain of the roll angle controller derived by LQG method is: 



USING DEEP REINFORCEMENT LEARNING TO IMPROVE THE ROBUSTNESS OF UAV LAT-DIR CONTROL 

8 

 

 

                               
LQG

-0.640 -1.638 -0.054 -3.745

0.683 0.013 -1.508 0.528

 
=  

 
K          (31) 

3.3 Improved TD3 DRL method 

Reinforcement Learning (RL) is a kind of machine learning, which is closely related to dynamic 
programming and optimal control theory. The basic idea of RL is to explore the optimal strategy 
through the interaction between agent and environment, so as to maximize the rewards. When the 
deep neural network is used to store the optimal strategy information, it is called Deep 
Reinforcement Learning (DRL). In this paper, TD3 algorithm is used for DRL. There are two key 
points in applying the DRL algorithm to the design of flight control. One is to find a reward function 
to depict the designer's intention exactly. The second is to find suitable deep actor and critic neural 
network structures. 

3.3.1 Introduction of TD3 algorithm 

The emergence of Twin Delayed Deep Deterministic policy gradient algorithm (TD3) is intend to 
solve the problem that DDPG (Deep Deterministic Policy Gradient) is not easy to converge because 
the estimated value function is too large. Just as its name implies, TD3 develops double critic 
network and their target network from the basic DDPG, together with actor network (or called policy 
network) and its target network, there are 6 deep neural networks in TD3 algorithm. In this 
algorithm, the two sets of independent critic networks are used to estimate the reward function at 
the same time, and then the smaller value is selected as the update target to solve the 
overestimation. The delayed update technology is also used to make the update frequency of the 
critic network larger than actor network, so as to obtain more stable convergence performance. The 
empirical playback buffer is also used to store historical data, which improves the sampling 
efficiency. Random sampling technology can break up the correlation between samples and stablize 
the learning process of the agent. 

 
Figure 5 - Structure diagram of TD3 algorithm 

3.3.2 Reward function 

The reward function affects both the control objective and control performance. It abstracts the state 
and control variables of a dynamic system into a value, and carries out optimal control according to 
this value. Appropriate reward function can greatly save the design cost of intelligent control 
algorithm and achieve the desired control effect more efficiently. Based on the results of LQG 
control, this paper also selects the state variables 𝒙 and control variables 𝒖 of the Lat-Dir dynamic 
equation of UAV as optimization variables. In addition, considering the time difference 
characteristics of reinforcement learning, the difference of control variables �̇� is employed also. 

Thus, the reward function r of a single step 𝑖 is: 

 

T

T

c, TD3 c, TD3

1 1

[ ] [ ]
i i

i i i i i

i i i i

r
− −

   
= − − +    

− −   
 

u u
x x Q x x R

u u u u
   (32) 

And the reward of an entire episode 𝑅 is: 

S
Actor 

network
A

Critic 
network 1

Q1

Critic 
network 2

Q2

TD-Error 1

TD-Error 2

Minimize

Minimize

S 
Actor target 

network
A 

Critic target 
network 1

Noise

Critic target 
network 2

Min
Target

Q R
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1

n

i

i

R r
=

= −    (33) 

Where: the subscript 𝑖 represent the 𝑖𝑡ℎ step in an episode. The value of TD3Q  is equal with that of in 

Eq.(23) . In order to reduce the excessive control while getting greater reward, it is necessary to 
clap the control output together with the control rate. Therefore, in the reward function, iu  and 1i i−−u u

should be evaluated at the same time. and for the roll controller of the example UAV, TD3R  can be 

determined as: 

 TD3

0.1 0

0 0.01

 
=  

 
R    (34) 

3.3.3 Design of Policy network 

The main parameters of deep neural network include the number of network nodes, the number of 
layers, the type of activation function and so on. If the number of network nodes is too small, it will 
not be enough to describe the complex control response relationship of a UAV. Increasing the 
number of network nodes can obtain smoother output response, but it will consume more memory, 
which is not conducive to the deployment of the network on a practical flight control system. 
Moreover, when the number of nodes increases to a certain extent, it’s gain would not increase 
obviously, but the training difficulty of the network would increase dramatically. Therefore, 
reasonable network structure is one of the key technologies of DRL design. 

In order to obtain a reasonable policy network, firstly, the classical cascade PID control law in Eq. 
(18) (19)(20)(21)is rearranged as the following formula: 

 
a p pI p c pI c

1 1
( ) ( )K p K p K K K K

s s
    = + + − − −φ φ    (35) 

 r r c( )K r r = −    (36) 

Because 
1

p
s

= , the above formula can be written in the following matrix form： 

 PID=u K S    (37) 

Where： 

 
p pI p pI

PID

r

0

0 0 0 0

K K K K K K

K

 
=  

 

φ φ
K    (38) 

 

c

c

c

1
( )

p

r r

s



 

 

 
 

−
 
 

=  
− 

 
− 

 

S    (39) 

Noticing that a common full connection layer deep neural network structure is: 
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Figure 6 - Structure diagram of a common full connection layer deep neural network 

If the input of the network layer is 𝑺, the output is 𝒖, and the number of network layers is 1, at this 
time, the structure of the policy network can be depicted as Figure 7 (a): 

    
(a) policy network                     (b) Critic network 

Figure 7 - Structure diagram of the deep neuro network 

Furthermore, if the offset parameter 𝒃o = 0, and the activation function is 1, the formula of the policy 

network will have a form consistent with Eq. (37)(38)(39). The unique network parameter matrix 𝑾o 
is similar to 𝑲PID in Eq. (37)(38), but all the 10 elements are adjustable. 

There are three advantages in the policy network: (1) Taking the classical PID control law as a 
reference, and containing more adjustable parameters, the control effect would be better than the 
classical PID controller. (2) The network structure is very simple, and the training efficiency of 
reinforcement learning is higher. When deploying the network, the demand for the computing power 

of the flight controller is also reduced. (3) All observation measurements (all related to p, r, ) can be 
measured by common low-cost sensors, which is conducive to engineering application. 

3.3.4 Design of Critic network 

The structure of the critic network can be seen in Figure 7 (b). 

The critic network has three layers, and the number of nodes in each layer is 128. Its input is the 
measurement of the flight state 𝑺 together with the control output 𝒖 of the UAV, and its output is the 

𝑄 value of the network. In order to obtain the gradient of the critic more easily, the activation 
function of both the hidden layer and the output layer are all “relu” function. Therefore, the formula of 
the network is: 

 
T T

0 [ , ]=x S u    (40) 

 1 1 0 1relu( )= +x w x b    (41) 

 2 2 1 2relu( )= +x w x b    (42) 
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 o 2 orelu( )Q = +w x b    (43) 

As mentioned above, in the TD3 algorithm the two Q-value networks and their target networks adopt 
the same network structure described in Eq. (40)(41)(42)(43), but their update process is 
independent. 

3.3.5 Training of reinforcement learning 

The improved TD3 algorithm proposed in this paper is used for the reinforcement learning training of 
the roll angle control loop of the example UAV.  

The super parameters of TD3 algorithm are set as follows: 

Table 4 -  Super parameters of TD3 algorithm 

Parameter Value 

TRAIN_EPISODES 500 

TEST_EPISODES 1 

MAX_STEPS 500 

BATCH_SIZE 64 

EXPLORE_STEPS 10000 

HIDDEN_DIM 128 

UPDATE_ITR 3 

Q_LR 2.0e-4 

POLICY_LR 1e-4 

POLICY_TARGET_UPDATE_INTERV 3 

EXPLORE_NOISE_SCALE 0.05 

EVAL_NOISE_SCALE 0.05 

REWARD_SCALE 1 

REPLAY_BUFFER_SIZE 5e5 

GAMMA 0.995 

SOFT_TAU 1e-3 

The obtained learning curve is shown in Figure 8. Among them, “mean (1)” refers to the reward of a 
single episode, “mean (10)” and “std (10)” refer to the average reward and its standard deviation of 
10 adjacent episodes. 
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Figure 8 - Learning curve 

It can be seen from Figure 8 that, the best reward appears in the 459th episode, its value is -2.249. 
In this case, the trained optimal policy network parameter 𝑾o is:  
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o

1.415 0.437 0.053 3.324 0.112

0.143 0.234 0.091 0.082 0.018

− − − 
=  

− − − 
W   (44) 

4. Numerical flight simulation 

The designed PID, LQG and DRL controllers above are respectively applied to the example UAV to 
conduct the flight simulation for comparison, which the roll angle is controlled from initial 0 to desired 
10 degrees. The corresponding roll angle response history and so on of the nominal state and 
deviation state are shown in the following sections. 

4.1 Results of flight simulation 

4.1.1 nominal state  

The numerical flight simulation results of the three controllers of the example UAV in nominal state 
are shown in Figure 9. The flight dynamics model of the UAV is shown in Section 2, and note that 
the process noise and measurement noise are all considered in the simulation.  
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Figure 9 - Roll control responses with different control methods under nominal conditions 

4.1.2 deviation state  

The numerical flight simulation results of the same three controllers of the example UAV in deviation 
state are shown in Figure 10. Where the exact deviation of the parameters are shown in Table 5.  

Table 5 - Main aerodynamics parameters deviation of the example UAV 

Parameter Value Parameter Value 

𝑁𝐶𝑌𝛽
 1 𝑁𝐶𝑙𝑟

 2 
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 0 𝑁𝐶𝑛𝑟

 2 

𝑁𝐶𝑛𝛽
 0 𝑁𝛿𝑎 0.5 

𝑁𝐶𝑙𝑝
 2 𝑁𝛿𝑟 0.5 

𝑁𝐶𝑛𝑝
 2   
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Figure 10 - Roll control responses with different control methods under deviation conditions 

4.2 Results analysis 

According to the above flight simulation results, the performance of the three controllers in nominal 
state and deviation state is shown in the table below: 

Table 6 - Statistics of the performances of roll angle control 

Parameter 
PID LQG DRL 

nominal deviation nominal deviation nominal deviation 

Adjustment time (10% error band) (s) 6.78 9.76 1.86 >10 2.64 2.70 
Maximum overshoot 11.9% 22.8% 2.1% >20% 1.9% 7.8% 
Max roll rate (deg/s) 4.03 3.32 9.05 3.48 5.30 4.83 

Max aileron deflection angle (deg) 3.11 4.98 7.36 5.53 4.60 7.79 

 

4.2.1 nominal state 

In nominal state, the adjustment time of the classical PID control method is 6.78 seconds, and the 
maximum overshoot is 11.9%. Its performance is the worst of the three methods. This is because 
the structure of the PID controller is too simple, and based on SISO theory, the performance is 
reduced when it is applied to the MIMO problem of Lat-Dir flight control of UAV.  

The adjustment time of the LQG controller is 1.86 seconds, and the maximum overshoot is 2.1%. 
The performance is much better than that of PID. This is because the LQG controller make use of 
the full state information of UAV for feedback control, in this way, the poles of the dynamics system 
of the UAV can be assigned to any desired position in theory.  

The adjustment time of DRL controller is 2.64 seconds and the maximum overshoot is 1.9%, which 
is close to the performance of LQG controller. Furthermore, it can be found that the maximum roll 
rate and aileron deflection angle of DRL controller are only about 60% of that of LQG, namely, the 
cost of DRL controller is much smaller than that of LQG. Since Kalman filter is unnecessary for the 
DRL controller for state estimation, the DRL controller is better than LQG controller in engineering. 

4.2.2 deviation state 

In deviation state, the adjustment time of PID controller is increased to 9.76 seconds, and the 
overshoot is increased to 22.8%. Compared with the nominal state, it is increased by 44% and 10% 
respectively, and it can be seen that its performance degraded obviously.  

The performance of LQG controller degraded seriously, the adjustment time is larger than 10 
seconds, resulting in instability actually. This is because the effect of LQG controller depends on the 
state estimation output of Kalman filter. Under the condition of unknown disturbance and deviation, 
the Kalman filter can only use the data in nominal state. In this situation, the estimated state is quite 
different from the actual state, so the performance of LQG controller would not be guaranteed.  

The adjustment time of the improved DRL method is 2.70 seconds, and the overshoot is 7.8%. 
Compared with the nominal state, it only increases by 2% and 6% respectively, and the maximum 
roll rate is only 0.5deg/s lower than the nominal state. Therefore, it can be concluded that the DRL 
controller has little change in the deviation state compared with the nominal state and shows good 
performance robustness. 
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5. Conclusion 

Inspired by PID and LQG control method, this paper presents an improved TD3 deep reinforcement 
learning Lat-Dir flight control law design method. Flight simulations are carried out in the nominal 
state and deviation state respectively. The results show that the DRL controller based on improved 
TD3 algorithm has the advantages of clear physical meaning, simple structure of policy network and 
strong performance robustness. 
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