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Abstract

An assessment of reduced-order models (ROMs) combined with machine learning regression algorithms for
aerodynamic data prediction is presented. The analyses focuses on the prediction of pressure distributions
on a 3D wing flying in the transonic regime based on computational fluid dynamics (CFD) data and given the
angle of attack and the Mach number as flight conditions. Proper orthogonal decomposition (POD) and Isomap
are the considered ROMs and are compared against a direct regression. A random forest (RF) and a Deep
Neural Network (DNN) are explored to predict approximate CFD solutions at untried flight conditions. The
paper describes the performance of efficient ROMs to ensure an improved treatment of the data to obtain an
accurate prediction of pressure distributions at a reduced computational cost. The nonlinear features of Isomap
as a manifold learning model combined with the DNN highlight the accurate determination of local, nonlinear
events. A comparative assessment of the proposed ROM+Interpolator predictor against the direct interpolation
is addressed, featuring the strengths and weaknesses of each approach.

Keywords: surrogate model; machine learning; reduced-order model; Isomap; POD; deep neural network;
random forest; aerodynamics.

1. Introduction
The modern aerodynamic design is heavily supported by computational fluid dynamics (CFD) sim-
ulations, which are very demanding in terms of computational resources and time budgets. As of
today, preliminary and intermediate technological development stages are driven by simplified models
that provide a reasonable quality of the aerodynamic data at a fraction of the cost of high-accuracy
strategies such as direct numerical simulations (DNS). The irruption of novel mathematical models in
the realm of reduced-order modelling (ROM) and machine learning (ML) pursue a more agile design
process and reduces the derived costs from using expensive computational resources [1]. However,
most of these models have shown a considerable lack of accuracy in the presence of complex flows,
such as wall-bounded turbulence due to its stochasticity, or shockwaves because of the abrupt change
in the flow state, and a lack of robustness when tested at different circumstances than the reference,
as a modification of Reynolds number or geometrical shape of the model.
Despite the intrinsic nonlinear nature of transonic phenomena, such flows are characterised by
recurrent flow patterns and physical features that can be learned from simulation or empirical data.
A powerful tool classically used for the order reduction of large-scale systems is proper orthogonal
decomposition (POD) [2], also known in the field of statistics as principal component analysis (PCA)
[3]. The POD provides the most efficient orthogonal basis to decompose the data in terms of
energy content, i.e. the variance of the quantity to be analysed. Its application in aeronautics and
fluid mechanics spans from a simplification of the Navier-Stokes equations into a system of linear
differential equations employing Galerkin projections [4], to the improvement of regression problems
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by combining it with an interpolator in the low-dimensional space [5] or combined with a CFD flux
residual minimisation scheme to improve the simulation in transonic regimes [6]. Low-order models
obtained from POD open a door to a vast space of applications; however, its underlying assumption
that the flow solutions lie in a low-dimensional linear subspace of the high dimensional space makes
highly nonlinear features insufficiently reproduced as could be the case of transonic three-dimensional
flows.
There exist a vast variety of dimensionality reduction algorithms. The Gauss-Newton with approximated
tensors (GNAT) method uses the GANT in a projection-based framework related to the residual
minimisation [7]. The discrete empirical interpolation (DEIM) [8] relies on a classical POD-Galerkin
approach although it facilitates the evaluation of nonlinear terms of the governing equations with
an additional POD basis. The Multi-dimensional scaling (MDS) is based on the singular value
decomposition (SVD) of the data distance matrix to project the data in a low-dimensional space
preserving the distance between the snapshots in the high-dimensional space [9].
In this study, Isomap [10], as a nonlinear manifold learner, is compared against POD and combined with
a regression model to predict transonic three-dimensional flows. Manifold learning aims at recognising
the topologically closed surface (namely, the manifold) over which the data lies or near it. The manifold
is a geometrical representation of the intrinsic relations that connect snapshots. This order reduction
technique finds the nonlinear degrees of freedom that underlie complex natural observations thanks to
the dimensionality reduction based on geodetic distances. Surprisingly, the application of Isomap in
fluid mechanics and aeronautics is not widely exploited, with some contributions identifying manifold
from flow-visualisation data [11], in the combustion field [12], and, recently, to comprehensively
understand the physics in shear flows [13]. Within the state of the art of Isomap applications to
surrogate modelling in aerodynamics, Franz et al. [14] developed Isomap+I, a parametric ROM to
predict shock waves on a 3D wing in the transonic regime. The encoding part of the algorithm to
reduce the dimensionality of the data is based on Isomap while a linear interpolation method is then
used to predict the manifold coordinates of unexplored flight conditions in the manifold space. The
inverse mapping to the high-dimensional space (decoder) is performed by a weighted average of
the high-dimensional snapshots based on the distance of their projection in the low-dimensional
embedding.
The present contribution relies on the previous work on manifold learning applied to aerodynamic data
[14], aiming at further improving the performance of the interpolation and the decoder, based on a
k−NN method to interpolate the pressure distribution of the nearest neighbours in the manifold space
based on a weighted average by the distance. The Isomap is combined with two regression models
(Isomap+I), namely a Random Forest [15] and a Deep (artificial) Neural Network [16]. Among the
wide variety of data fit surrogate models, DNNs outstand as an alternative to extract the nonlinear
features of the data. DNNs have been applied to optimisation in the design process of airfoils [17], the
control of shedding flows using a DNN as the control agent [18] or in nonlinear system identification
techniques such as NARMAX [19]. Several algorithms have been proven sturdy for aerodynamic data
prediction [20]; hence, this study will evaluate the usage of deep neural networks (DNN) compared
to more conventional methods such as tree-based regression models. A comparative assessment
of the proposed Isomap+Interpolator method against the POD+Interpolator interpolator method is
performed. The selected test case is a database of CFD simulations of a 3D-wing in the transonic
regime. The performance of each method is evaluated and described, pointing out the main strengths
and weaknesses of each approach.
The paper is structured as follows: First, the methodology is presented in Section 2., starting with a
brief theoretical background of Isomap and POD in §2.2, and followed by a concise description of
Random Forest and Deep Neural Networks in §2.3. Thereafter, the performance of the proposed
ROM+I is discussed and compared. A set of results is presented in Section 3. for customary flight
conditions and finally, the conclusions are drawn in Section 4..

2. Methodology
The employed methodology and database are described in this section. First, the database and the
geometry of the considered model are outlined. Next, the POD and Isomap ROMs are described. A
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Figure 1 – (a) Distribution of the data set within the flight envelope: training ( ), test ( ), and validation
( ) sets. Visualisation cases at (α1,M1) = (4.75◦,0.864) and (α2,M2) = (10.0◦,0.944) are highlighted
( ). (b) Three-dimensional representation of the wing geometry coloured with the Cp distribution for

visualisation case 1. Visualisation planes at η = 0.1,0.5,0.9 are highlighted ( )

brief description of Random Forest and Deep Neural Networks is also provided, including the process
to optimise the hyperparameters driving the models.

2.1 CFD model and database
The selected test case is a database of CFD simulations of the XRF1 model. The XRF1 model is an
Airbus™ provided research test case to show the application of different technologies to a long-range
wide-body aircraft. The work presented here has been performed in the frame of the Group for
Aeronautical Research and Technology in Europe (GARTEUR) within the AD/AG60 research project.
The aerodynamic data is obtained from Reynolds Average Navier-Stokes Simulations (RANS) of
the full aircraft model to ensure a realistic condition by the interaction of the different aerodynamic
subsystems. This work focuses on the wing with an underlying unstructured grid featured by 113,761
points and the pressure coefficient Cp distribution on its surface for each of the grid points. The dataset
is composed of 531 different flight conditions solved by the inviscid DLR TAU solver [21] at a fixed
Reynolds number (Re = 2.5×107). The flight condition parameters swept the whole flight envelope of
the proposed aircraft, ranging the values of the Mach number (M) from 0.5 to 0.96, and computing the
polar for angles of attack (α) spanning from 0◦ to 15◦ [see figure 1(a)].
The 531 flow solutions composing the database are divided in three sets: train set, 495 solutions
used to train the ROM and regression model [( ) in figure 1(a)]; test set; 124 cases randomly selected
from the whole database to test the trained models [( ) in figure 1(a)]; and validation set, 36 specific
cases customarily selected to check the performance of the prediction [( ) in figure 1(a)]. The cases
within the validation set are never considered for neither training nor optimization of hyperparameters,
as later explained. These cases are selected to challenge the model, with three possible angles
of attack for each considered Mach number. For now on, two cases within the validation set are
chosen for visualisation purposes. The so-called visualisation cases are (α1,M1) = (4.75◦,0.864) and
(α2,M2) = (10.0◦,0.944), which consider a challenging flight condition due to the high mach number
and angle of attack [( ) in figure 1(a)].
It is to be noted that the load factor nz (= L/W , being L the Lift and W the weight of the aircraft) implies
an additional challenge for the prediction model since its value is fixed at nz = 2.5g. Such a particular
flight condition implies the upward deflection of the wing geometry with the consequent modification of
the wing test with respect to the standard nz = 1g condition, as shown in figure 1(b). The alteration of
the wing geometry prevents the irruption of shockwaves on the upper surface of the wing; however,
there are strong Cp changes and separation regions for several points of the considered flight envelope.

2.2 Reduced-Order Modelling
Reduced order modelling is a mathematical field aiming at reducing the computational complexity or
data handling requirement of a computational model, while preserving the expected fidelity and intrinsic
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physics of the problem within a controlled error. Proper Orthogonal Decomposition is a conventional,
well-established, linear ROM, whereas Isometric feature Mapping (Isomap) is a manifold learner with
nonlinear features. Both proposed approaches consist of three steps: first, data is gathered from CFD
simulations; second, the so-obtained data is embedded into a low-dimensional space using Isomap
[22] or a POD [2]. This encoding part, which is fully data-driven, is carried out with the aim of revealing
a hidden low-dimensional space that allows to relate the new coordinates to physical features of the
flow. Finally, a decoding part that enables return to the high-dimensional space and to reconstruct the
original flow field is developed.
For now on, consider that N = 531 flight conditions have been simulated, extracting the pressure
coefficient on their wing surface. Each Cp distribution is an observation (point) in the high-dimensional
space RP, where each dimension (feature) contains information about a point of Cp. Let X ∈ RP×N

be the data matrix containing the stated information and xi ∈ RP be each of its rows, i.e. Cp for
i = 1, . . . ,N. The dataset in X is complex by nature and being able to extract a meaningful small number
of coordinates that capture the main characteristics of the flow is challenging.

2.2.1 Proper Orthogonal Decomposition
The POD is a numerical, data-driven method to reduce the complexity of numerically-solved problems
by reducing the dimensionality [2]. The first idea behind the POD is to find an optimally compressed
description of the sequence of data X ∈ RP×N , which is achieved by the Singular Value Decomposition
factorisation. The compact SVD is commonly applied due to its computational efficiency, in which the
tank of the matrix X (d ≤ min{P,N}) determines the number of eigenvectors and eigenvalues upon
decomposition,

X = UΣV∗ =
d

∑
i=1

σiuiv∗i (1)

where U = [u1,u2, . . . ,ud ] ∈ RP×d and V = [v1,v2, . . . ,vd ] ∈ RN×d are a orthogonal semi-unitary matrices,
such that U∗U = V∗V = Id, and Σ = diag(σ1,σ2, . . . ,σd) ∈ Rd×d and σ1 ≥ σ2 ≥ . . . ≥ σd > 0. For the
proposed database in this study, d coincides with the number of simulated flight conditions N, which is
the dimension of the low-dimensional basis given by U. Truncation of the number of modes is also
possible by choosing a reduced rank r < d so that only the r most energetic modes are conserved
upon reconstruction. Thud, the reconstruction error is defined as the following,

RE =
∑

r
i=1 σi

∑
d
i=1 σi

(2)

A conventional approach to select r is the so-called elbow criterion which identifies the number of
POD modes nPOD at which adding further modes does not imply a significant improvement in the
reconstruction in terms of energy content. For this work, the threshold was set to RE ≥ 99% as later
further described.

2.2.2 Isometric feature Mapping
Isomap is a nonlinear, dimensionality-reduction algorithm that computes the low-dimensional embed-
ding of the data points that best preserve the geodesic distances measured in the high-dimensional
input space. The following description is based on the Isomap algorithm implemented in the
scikit-learn library for python [23], which has been used to carry out this investigation. This
algorithm first relies on a conventional k-nearest neighbour (kNN) search to compute the matrix of
Euclidean distances dX(i, j) between data points xi and x j for all i, j = 1, . . . ,N to identify the k closest
observations to xi, and to construct the neighbouring graph G over these data points such that two
nodes i and j are connected by an edge of weight dX(i, j) if they are neighbours. Given the pairs
of vertices within G, Floyd’s algorithm [24] is invoked to calculate the shortest paths between them,
creating the matrix DG. Finally, the low-dimensional embedding is obtained Γ ∈ RN×p, p << P, using a
classical Multi-Dimensional Scaling (MDS) [9] on the matrix of shortest path distances DG so that the
Euclidean pairwise distances resemble those in the neighbouring graph dG(i, j). From an optimisation
perspective, this problem is equivalent to finding the matrix Γ that minimises the cost function
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Liso =
∥∥∥ΓΓ

⊤−B
∥∥∥2

F
, where B =−1

2
H⊤ (DG ⊙DG)H and H = IN − 1

N
IN , (3)

being B the Gram matrix in the input space, H the centring matrix, IN the identity matrix of dimension
N, ⊙ the Hadamard (element-wise) product and ∥ · ∥F the Frobenius norm.
The value of Γ that minimises Liso, for a given dimension p, is the matrix of the p eigenvectors
[Γ1, . . . ,Γp] corresponding to the p largest (positive) eigenvalues of the matrix Λ arising from the
eigen-decomposition of the Gram matrix B, namely B = VΛV⊤ and Γ = V(p).
The performance of the low-dimensional embedding is quantified by the residual variance [22] as in
(4). This metric is the ratio of the residual sum of squares to the total sum of squares based on the
matrix of Euclidean distances between each pair of points in the low-dimensional embedding DΓ and
the shortest distance matrix DG, namely

RV = 1−R2(vec(DG) ,vec(DΓ)), (4)

where R2 refers to the squared correlation coefficient and vec(·) is the vectorisation operator. Since
the value of RV quantifies the information that remains unexplained by the low-dimensional embedding
of the original data, the objective is to minimise for a given p and k.
The proposed back-mapping from the low- to the high-dimensional space is a purely data-driven
approach based on k−NN method. Any data point xi ∈ RP has its low-dimensional counterpart yi ∈
Rp, i = 1, . . . ,N, so that f : Rp −→RP is defined as the unknown back-mapping function. To reconstruct
the Cp distribution for any y ∈ Rp, the K−Nearest Neighbors y(1), . . . ,y(K) and their high-dimensional
counterparts, namely x(1), . . . ,x(K), are identified, computing the reconstruction as a weighted average
of the neighbours with increasing importance based on the distance to the considered point.

2.3 Regression model for Cp prediction
The regression model is the mathematical “black-box” tool used to predict Cp surface distributions
on the wing model under untried flight conditions. This work considers two well-established machine
learning methods with different working principles: a tree-based random forest model and a fully-
connected deep neural network.

2.3.1 Random Forest
The Random Forest (RF) belongs to the category of tree-based algorithms, being one of the best
and mostly used supervised learning methods. In the field of aerodynamics, in particular, RF has
been used to predict unsteady aerodynamic data at quasi-stall condition [25] or to determine a full
three-dimensional flow around a body from CFD data [26]. Tree-based algorithms empower predictive
models with high accuracy, stability and ease of interpretation, with good capabilities in capturing
non-linear relationships within the data.
Decision trees are usually presented by a set of questions that then split the learning sample into
smaller parts. The aim of this method is not only to find the models that produce accurate predictions
but also to extract knowledge intelligently. The RF algorithm [15] works by creating a “forest” of
decision trees that are randomly initialised. These trees are composed of a root (first node), internal
nodes, and leaves. The main advantages of using these algorithms are that they are non-parametric
and can model any complex relations between inputs and outputs without prior assumptions and they
are robust to noise and outliers. An additional advantage of RF models is their adaptability to be
further increased in size and complexity for progressively demanding problems, which is a feature that
can not be exploited in other regression models such as neural networks.
Conversely, one of the major drawbacks of RF models is the sensibility to hyperparameter selection.
RF performance is directly linked to a proper selection of the hyperparameters driving the internal
optimisation process [27]. To control and optimise the learning outcomes of these algorithms, their
hyperparameters must be tuned. The main hyperparameters that have been tuned are: the number of
trees that are created for the prediction; the bootstrap of the data, which determines if all the data is
fed to the all the trees or it is bootstrapped; the maximum tree depth, which determines the degree
of non-linearity that the model will be capable of reproducing at the cost of possible overfitting; the

5



An assessment of ROM and ML models for steady transonic flow prediction on wings

minimum samples split, which is the minimum number of samples required to spit an internal node of
a tree; and the minimum samples leaf, which is the minimum number of samples required to be a leaf
node.

2.3.2 Deep Neural Network
Deep learning (DL) [28] is part of a broader family of machine learning methods based on artificial
neural networks (ANN) [16]. Deep neural networks are a specific architecture within DL, which are
inspired by information processing and distributed communication nodes in biological systems. These
mathematical models are characterised by using “neurons” which form layers of linear transformations
with non-linear activation functions. These entities work by iterating and trying to minimise the loss
function using gradient descent. The main advantages of these algorithms are their resilience to
overfitting and the capacity to learn more of the data compared to other ML algorithms.
To construct a DNN, it is necessary to previously design the architecture of the network. There exist
a multitude of transformations that can be applied to the inputs as linear operations, convolution
operations or graph operations; as well as a multitude of activation functions. In this work, the chosen
DNN is a multilayer perceptron (MLP) made up of different linear layers with the ReLU activation
function. More precisely, the MLP at hand is made up of one input layer, 10 hidden layers, and an
output layer. The input layer receives the flight condition in form of a vector (M,α), and this is fed
to the hidden layers. Each hidden layer is identical and composed of 1024 neurons. After passing
through them, the output layer returns the regression values.
To train the network it is necessary to define a number of epochs, a loss function, and a gradient
descent optimiser. In this case, the number of epochs is 1.5× 104, a high enough value to ensure
convergence of the regression model while avoiding overfitting. Regarding the loss function, the
classical Mean Squared Error (MSE) is chosen. Finally, the optimiser is set to be the Adam Optimiser
[29], a stochastic gradient descent method that is based on adaptive estimation of first-order and
second-order moments. In each epoch, the loss is computed and a gradient descent optimisation is
computed aiming at minimising it.

2.4 Model tuning: minimisation of reconstruction error and optimisation of hyperparameters
A maximisation of the model performance is carried out by optimising the hyperparameters driving
each model. The hyperparameters, in the case of regression models, are the inner specifications of
the algorithms that regulate the learning process. For the POD and Isomap algorithms, it was also
decided to consider some parameters to be optimised to minimise their reconstruction error while
maximising the overall performance of the surrogate model.
For POD, The number modes to be truncated depends on the data. The considered dataset does not
exhibit an evident number of points at which truncation makes physical sense. It was decided to set the
minimum number of modes as that required to reconstruct at least 99% of the energy content (based
on Eq. 2). The minimum number of modes that need to be maintained is nPOD|min = 320, computed
after performing the POD decomposition of 100 randomly selected train set within the whole database.
The upper limit in the number of POD modes is the rank d of the snapshot matrix X (d = 371) as
described in §2.1 for the train set.
Regarding Isomap, several parameters need to be tuned with few mathematical or physical foundations
on the selection criteria. Those parameters are the number of neighbours to construct the neighbouring
graph, k; the number of Isomap variables, n; and the neighbours employed in the back-mapping, κ.
Selecting a small k could split the manifold into a disjoint sub-manifold thus losing its real structure,
while a high k may connect points that are far in the high-dimensional space due to the non-convexity
of the manifold. In this work, the methodology presented by [30] is considered to determine a valid
range of values [kmin,kmax] to perform the search. The lower bound of the interval, kmin, is selected as
the smallest k so that the neighbouring graph G is connected, whereas the upper bound, kmax, must
hold the following relation based on the number of edges E and nodes N in G:

2E
N

≤ k+2, (5)
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Figure 2 – Flow chart of the regression process for three ROM options: no ROM model ( ), POD
( ), and Isomap ( ). The encoder and decoder blocks for POD ( ) and Isomap ( ) are separated.
Input/Output data are depicted inside grey blocks ( ), the regression model is depicted inside the

blue block ( ).

For the proposed database, the range k is highly dependant on the number of components; nonethe-
less, the selected range of k ∈ [5,20] provides very small values of the residual variance. The range of
valid Isomap coordinates n is chosen based on the minimisation of the residual variance. The influence
of n above n = 2 results to be negligible for increasing number of k. Hence, the preferred range is
n ∈ [2,4]. Concerning κ , the selection is merely based on experience and trial and error based on the
database, selecting a range κ ∈ [2,10]. The lower limit, κmin, ensures a weighted average of the two
closest neighbours in the low-dimensional space, while the upper limit, κmax, prevents the algorithm to
find neighbours that are not close inside the manifold structure.
The second part of the hyperparameter optimisation deals with the regression algorithm. On the one
hand, the DNN regression model is not further improved since the results were reasonably optimised,
considering the architecture described in §2.3.2. On the other hand, for tree-based methods, the
importance of hyperparameter tuning is notorious [27]. The Optuna framework [31] is used to run the
Bayesian optimisation process. A total of O(ζ ) (being ζ 1% of the overall dimension of the parameter
space for each case) iterations are performed in which the RF is trained with a random split of the
data set to prevent overfitting. The Bayesian optimiser is driven by the minimisation of the the Mean
Squared Error (MSE) and the coefficient of determination (R2).

2.5 Global surrogate model: learning process
The surrogate model learning process for the Cp prediction on the surface of a wing in the transonic
regime is outlined in figure 2. The surrogate model receives as input the flight condition (α,M) and
provides a surface distribution of Cp. The learning process depends on whether ROM is considered or
not. For the case in which a direct interpolation is pursued (no ROM applied), the regression model
(DNN or RF) is fed with the Cp snapshots of the train set and the corresponding flight condition (α,M).
The regression model aims at minimising the mean square error (MSE) of the predicted Cp values.
The process for POD and Isomap follows a similar flowchart. The snapshots are first processed
through the encoding block in which the data is projected in the low dimensional space. The low-
dimensional snapshots are provided to the regression model, which learns to predict such reduced
representation of Cp for a given flight condition. The predicted Cp is computed in the decoder block in
which the data low-dimensional data is transformed back to the high-dimensional space of the original
snapshots.
The advantage of this process lies in the considerable reduction of the amount of data to be processed
by the regression model. The direct interpolation approach is constrained by the size of the data,
which is given by a RP space, being P = 113,761 the number of grid points. On the other hand, for
POD, the data dimension is reduced to RNPOD , with 320 ≤ NPOD ≤ 371 being the number of POD modes
considered for the snapshot reconstruction. Furthermore, the Isomap model reduces the data to
RNiso for 2 ≤ Niso ≤ 4, which is the number of Isomap coordinates to create the manifold in the low
dimensional space. It is to be noted that the selection of the final value of Niso and NPOD is driven by
the Bayesian optimisation of hyperparameters described in §2.4.
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3. Results
The proposed surrogate models are evaluated in this section. First, the models without ROM are
analysed and their performance is discussed. Then, the same regression models are tested for POD
and Isomap embedding, fitting the data in the low-dimensional space. The results are shown in the
same fashion for all the evaluated cases for clearness, consisting of a regression plot, the chordwise
Cp distribution at η = 0.1,0.5,0.9 and the surface distribution of the prediction deviation from the actual
simulation data, Cp −C̃p. The results are depicted for visualisation cases described in §2.1, namely
C1 : (α1,M1) = (4.75◦,0.864) and C2 : (α2,M2) = (10.0◦,0.944). The global metrics for the validation set
are given in table 1. The metrics for each validation case independently are attached in table 2 in the
appendix.

Isomap+RF POD+RF RF Isomap+DNN POD+DNN DNN

Model Size 360 MB 390 MB 11.4 GB 40 MB 45 MB 485 MB

R2 MSE* R2 MSE* R2 MSE* R2 MSE* R2 MSE* R2 MSE*

Mean 0.958 0.800 0.888 2.439 0.918 1.626 0.953 0.924 0.862 2.387 0.960 0.798
Mean∗ 0.965 0.720 0.898 2.209 0.924 1.550 0.959 0.847 0.908 1.737 0.962 0.756
Median 0.976 0.392 0.921 1.597 0.932 1.189 0.964 0.576 0.914 1.520 0.973 0.494
std 0.054 0.956 0.098 2.576 0.059 1.099 0.053 0.949 0.295 4.282 0.035 0.786

Table 1 – Key Performance Indicators of the surrogate models. Size of the trained model and descriptive
global statistics of the validation set: mean, median and standard deviation (std) for the correlation
coefficient R2 and the Mean Square Error MSE (MSE* = MSE×100). Mean∗ operator excludes the
maximum and minimum value from the mean operation.

3.1 Direct interpolation: performance of RF and DNN
The performance of a direct interpolation of the simulation data is assessed in this section. The results
are presented for cases C1 and C2 in figures 3 and 4, respectively. For C1, at lower Mach number
and angle of attack, the prediction is reasonably accurate for both regression models. The Random
Forest, however, is not able to replicate the Cp distribution in the presence of the abrupt pressure
changes as it is the case at η = 0.5 (figure 3,b) and η = 0.9 (figure 3,c). The prediction error, Cp −C̃p,
increases in the wing area closer to the fuselage from the mid-chord streamwise position towards the
trailing edge and along the pressure depression that span through the wing. Conversely, the DNN
perfectly captures the nonlinear nature of the pressure drop phenomena, predicting quite accurately
the pressure changes on the upper surface of the wing. The prediction error slightly accentuates in the
vicinity of these pressure depression; nonetheless, the DNN is robust where the RF fails at predicting.
Regarding case C2, the regression models follow a very similar behaviour. This case is characterised
by high M and α values, almost at the edge of the flight envelope and with fewer surrounding points
for a proper interpolation. The error is negligible for most of the wing’s upper area towards the tip;
however, for the root section, in which the high angle of attack seems to considerably affect the
pressure distribution, the prediction fails to follow the Cp at the upper surface for both models.
Despite the restrictions to avoid overfitting in the RF hyperparameter tuning, it is to be remarked the
considerable difference in size of the model with respect to the DNN. The trained RF for a direct
Cp prediction requires 11.4GB of memory storage whilst the DNN is able to overperform at a small
fraction of the memory requirement, 485MB. This technological constrain is very relevant for a realistic
implementation of these kind of models and points out the incapacity of tree-based algorithms to
expand from a flight condition (M,α) to a full surface distribution of Cp.

3.2 Interpolation in the low-dimensional space
A first reflection regarding the computational requirement of each model is required. The ROM models
comply with their task of reducing the complexity of the problem from a data management perspective
and this is undeniable from the size of ROM+Regression models compared to those of the direct
interpolation from the previous section. The POD reduces the output data array from the regression
model from 113761 elements to NPOD elements, which implies a factor of ∼ 300. On the other hand,
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Figure 3 – Cp distributions predicted at C1 : (α1,M1) = (4.75◦,0.864) without ROM. (a-c) Chordwise Cp

distribution at η = 0.1,0.5,0.9 for TAU ( ), RF ( ) and DNN ( ). (d) Regression plot for RF ( ) and
DNN ( ). (e,f) Prediction error in Cp distribution for RF and DNN, respectively.
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Figure 4 – Cp distributions predicted at C2 : (α2,M2) = (10.0◦,0.944) without ROM. (a-c) Chordwise Cp

distribution at η = 0.1,0.5,0.9 for TAU ( ), RF ( ) and DNN ( ). (d) Regression plot for RF ( ) and
DNN ( ). (e,f) Prediction error in Cp distribution for RF and DNN, respectively.

9



An assessment of ROM and ML models for steady transonic flow prediction on wings

0 0.2 0.4 0.6 0.8 1

x̂

-1.5

-0.75

0

0.75

1.5

C
p

2 =0.1

(a)

0 0.2 0.4 0.6 0.8 1

x̂

2 =0.5

(b)

0 0.2 0.4 0.6 0.8 1

x̂

2 =0.9

(c)

-1.5 0 1.5

Cp

-1.5

0

1.5

~ C
p

(d)
(e) (f)

-0.5 0 0.5
Cp ! ~Cp

Figure 5 – Cp distributions predicted at C1 : (α1,M1) = (4.75◦,0.864) with Random Forest regressor.
(a-c) Chordwise Cp distribution at η = 0.1,0.5,0.9 for TAU ( ), POD+RF ( ) and Isomap+RF ( ).
(d) Regression plot for POD+RF ( ) and Isomap+RF ( ). (e,f) Prediction error in Cp distribution for

POD+RF and Isomap+RF, respectively.

the Isomap reduces the predicted array to just Niso elements translated in a reduction by a factor of
∼ 57000. The impact is tangible in the reduced size of the regression models and a reduction of the
training and predicting computational times.
Despite the fact that the dimensionality reduction of Isomap is more abrupt than for POD, its nonlinear
nature to construct the low-dimensional embedding results in a better overall performance for both
regression models as depicted in figures 5 and 7 for case C1, and figures 6 and 8 for case C2. The
performance of POD+RF is very similar to that of the direct interpolation for both cases; however,
the Isomap+RF further improves the performance by being able to capture the pressure depressions
and nonlinear phenomena at high Mach. The performance of the RF model is considerably improved
towards the tip (η = 0.9) in which the pressure distribution at the lower surface changes significantly
due to the combined effect of the load factor and angle of attack.
The DNN performs very well in case C1 in conjunction with Isomap and with similar weaknesses to the
other regression model when combined with POD. However, the combination of POD+DNN for the
case C2 is considerably detrimental when compared to POD+RF. The linear dimensionality reduction
derived from POD is not able to get the proper flow distribution from midspan towards the tip, where
the nonlinear phenomena associated with high Mach and geometric twist modifications become very
relevant. The Isomap+DNN, on the contrary, accurately follows the pressure distribution at the three
selected stations of η with a very uniform and small prediction error all over the upper wing surface.

4. Conclusions
An assessment of reduced-order modelling combined with machine-learning based regression models
has been performed for a three-dimensional wing flying in the transonic regime at high load factor
conditions. The considered database implies intrinsic challenges associated with the three-dimensional
flow nature, the presence of nonlinear events such as shockwaves and abrupt pressure changes due
to high Mach numbers; and the alteration of the wing geometry due to the flight condition at load factor
2.5g, which modifies the nominal aerodynamic response of the wing since the local angle of attack
changes along the wingspan.
The first conclusion of this work is the relevance of ROM for problems in which the data dimensionality
is considerably greater than the parameters driving the prediction process. The regression model
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Figure 6 – Cp distributions predicted at C2 : (α2,M2) = (10.0◦,0.944) with Random Forest regressor.
(a-c) Chordwise Cp distribution at η = 0.1,0.5,0.9 for TAU ( ), POD+RF ( ) and Isomap+RF ( ).
(d) Regression plot for POD+RF ( ) and Isomap+RF ( ). (e,f) Prediction error in Cp distribution for

POD+RF and Isomap+RF, respectively.
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Figure 7 – Cp distributions predicted at C1 : (α1,M1) = (4.75◦,0.864) with Random Forest regressor.
(a-c) Chordwise Cp distribution at η = 0.1,0.5,0.9 for TAU ( ), POD+DNN ( ) and Isomap+DNN (
). (d) Regression plot for POD+DNN ( ) and Isomap+DNN ( ). (e,f) Prediction error in Cp distribution

for POD+DNN and Isomap+DNN, respectively.

11



An assessment of ROM and ML models for steady transonic flow prediction on wings

0 0.2 0.4 0.6 0.8 1

x̂

-1.5

-0.75

0

0.75

1.5

C
p

2 =0.1

(a)

0 0.2 0.4 0.6 0.8 1

x̂

2 =0.5

(b)

0 0.2 0.4 0.6 0.8 1

x̂

2 =0.9

(c)

-1.5 0 1.5

Cp

-1.5

0

1.5

~ C
p

(d)
(e) (f)

-0.5 0 0.5
Cp ! ~Cp

Figure 8 – Cp distributions predicted at C2 : (α2,M2) = (10.0◦,0.944) with Random Forest regressor.
(a-c) Chordwise Cp distribution at η = 0.1,0.5,0.9 for TAU ( ), POD+DNN ( ) and Isomap+DNN (
). (d) Regression plot for POD+DNN ( ) and Isomap+DNN ( ). (e,f) Prediction error in Cp distribution

for POD+DNN and Isomap+DNN, respectively.

expands the information from the parameters (α,M) to the final output, C̃p, which implies a considerable
amount of internal operations and coefficients. The inclusion of ROM reduced the computational
storage requirement by a factor of ∼ 300 and ∼ 57000 when using POD and Isomap, respectively.
The combination of ROM+Regression is also interesting from the physical perspective. The projection
of the data in the low-dimensional space allows identifying the main features within the data, avoiding
spurious information that could bias the Cp prediction. This was observed for the case Isomap+RF,
which performs better than the direct interpolation based on RF. For the POD, however, the linear
nature of the low-dimensional emending is not able to capture complex phenomena associated with
the considered flight conditions. The DNN over-performs compared to RF for almost all the considered
scenarios. The capabilities of DNN at a minimum computational cost and with little data available are
outstanding as commented in this article. Moreover, the tuple combining Isomap and DNN springs up
as an up-and-coming surrogate model.
Any comparison contains subjective biases associated with the computational load, the number
of parameters, the complexity of the database, and even the experience of authors with various
approaches. Also, each approach could have been further improved. e.g., the DNN architecture and
RF hyperparameter tuning. Yet, this study points already to desirable features of two different machine
learning surrogate models combined with dimensionality reduction algorithms.
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A Key performance indicators of the surrogate models for the validation cases

Isomap + RF POD + RF RF Isomap + DNN POD + DNN DNN
M α

R2 MSE R2 MSE R2 MSE R2 MSE R2 MSE R2 MSE

0.504 10.75 0.938 0.028 0.730 0.121 0.910 0.040 0.931 0.031 0.919 0.036 0.933 0.030
0.504 4 0.979 0.002 0.858 0.016 0.910 0.010 0.954 0.005 0.674 0.037 0.985 0.002
0.504 9.75 0.977 0.009 0.777 0.086 0.916 0.032 0.952 0.018 0.895 0.041 0.975 0.010
0.604 11 0.932 0.017 0.863 0.035 0.874 0.032 0.919 0.021 0.853 0.038 0.887 0.029
0.604 6.25 0.987 0.003 0.900 0.022 0.913 0.019 0.993 0.002 0.867 0.029 0.996 0.001
0.604 9.25 0.957 0.009 0.912 0.019 0.953 0.010 0.964 0.008 0.912 0.019 0.938 0.013
0.704 11.25 0.851 0.033 0.835 0.037 0.849 0.033 0.866 0.030 0.892 0.024 0.885 0.025
0.704 5.75 0.976 0.005 0.896 0.021 0.940 0.012 0.971 0.006 0.922 0.016 0.972 0.006
0.704 9 0.971 0.006 0.922 0.016 0.954 0.009 0.973 0.005 0.952 0.010 0.972 0.006
0.804 10.25 0.905 0.015 0.891 0.018 0.891 0.018 0.911 0.014 0.888 0.018 0.892 0.017
0.804 5.5 0.971 0.006 0.889 0.022 0.882 0.023 0.955 0.009 0.884 0.023 0.930 0.014
0.804 9 0.956 0.009 0.925 0.015 0.899 0.020 0.959 0.008 0.938 0.012 0.961 0.008
0.824 11.25 0.923 0.014 0.901 0.018 0.915 0.015 0.916 0.015 0.916 0.015 0.936 0.012
0.824 4.75 0.968 0.006 0.915 0.015 0.924 0.014 0.952 0.009 0.836 0.030 0.953 0.009
0.824 9.5 0.910 0.015 0.941 0.010 0.913 0.014 0.952 0.008 0.913 0.014 0.936 0.010
0.844 10.25 0.964 0.006 0.921 0.013 0.941 0.009 0.923 0.012 0.894 0.017 0.957 0.007
0.844 6.25 0.976 0.003 0.951 0.006 0.936 0.008 0.978 0.003 0.834 0.022 0.974 0.003
0.844 0 0.907 0.015 0.642 0.057 0.849 0.024 0.896 0.017 0.855 0.023 0.916 0.013
0.864 10.75 0.981 0.003 0.932 0.011 0.934 0.011 0.961 0.006 0.942 0.009 0.971 0.005
0.864 4.75 0.990 0.001 0.957 0.006 0.967 0.005 0.988 0.002 0.963 0.005 0.991 0.001
0.864 9.5 0.976 0.004 0.943 0.009 0.932 0.011 0.964 0.006 0.949 0.008 0.971 0.005
0.884 11.25 0.976 0.004 0.950 0.009 0.947 0.009 0.974 0.004 0.914 0.015 0.967 0.006
0.884 5.25 0.991 0.001 0.960 0.006 0.972 0.004 0.992 0.001 0.881 0.017 0.994 0.001
0.884 9.75 0.977 0.004 0.958 0.007 0.936 0.010 0.982 0.003 0.964 0.006 0.982 0.003
0.924 10.75 0.990 0.002 0.921 0.017 0.945 0.012 0.981 0.004 0.969 0.006 0.984 0.003
0.924 7.5 0.991 0.001 0.940 0.009 0.911 0.014 0.981 0.003 0.914 0.013 0.987 0.002
0.924 9.75 0.992 0.002 0.951 0.009 0.957 0.008 0.989 0.002 0.955 0.008 0.986 0.003
0.944 10.5 0.990 0.002 0.925 0.017 0.981 0.004 0.994 0.001 0.964 0.008 0.987 0.003
0.944 8.5 0.986 0.003 0.930 0.013 0.963 0.007 0.950 0.010 0.886 0.022 0.974 0.005
0.944 10 0.996 0.001 0.925 0.016 0.963 0.008 0.991 0.002 0.947 0.011 0.978 0.005
0.964 10.75 1.000 0.000 0.869 0.039 0.949 0.015 0.996 0.001 0.986 0.004 0.999 0.000
0.964 15 0.993 0.003 0.835 0.060 0.933 0.024 0.972 0.010 0.994 0.002 0.996 0.002
0.964 0 0.703 0.043 0.474 0.077 0.629 0.054 0.702 0.044 -0.822 0.267 0.861 0.020
0.904 11 0.966 0.007 0.952 0.010 0.894 0.022 0.980 0.004 0.948 0.011 0.976 0.005
0.904 6 0.973 0.003 0.932 0.008 0.925 0.009 0.954 0.006 0.879 0.015 0.974 0.003
0.904 9.75 0.985 0.003 0.963 0.006 0.933 0.012 0.983 0.003 0.966 0.006 0.991 0.002

Table 2 – Performance metrics of the surrogate model: the correlation coefficient R2 and the Mean
Square Error MSE. Results for each independent case of the validation set.
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