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Abstract

The hazards posed by turbulence remain an important issue in commercial aviation safety analysis. Turbu-
lence is among the leading cause of in-flight injury to passengers and flight attendants. Current methods of
turbulence detection may suffer from sparse or inaccurate forecast data sets, low spatial and temporal resolu-
tion, and lack of in-situ reports. The increased availability of flight data records offers an opportunity to improve
the state-of-the-art in turbulence detection. The Eddy Dissipation Rate (EDR) is consistently recognized as a
reliable measure of turbulence and is widely used in the aviation industry. In this paper, both classification and
regression supervised machine learning models are used in conjunction with flight operations quality assur-
ance (FOQA) data collected from 6,000 routine flights to estimate the EDR (and thereby turbulence severity)
in future time horizons. Data from routine airline operations that encountered different levels of turbulence is
collected and analyzed for this purpose. Results indicate that the models are able to perform reasonably well in
predicting the EDR and turbulence severity around 10 seconds prior to encountering a turbulence event. Con-
tinuous deployment of the model enables obtaining a near-continuous prediction of possible future turbulence
events and builds the capability towards an early warning system for pilots and flight attendants.
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1. Introduction

Turbulence in flight is among the leading cause of injuries in non-fatal airline accidents. Yet, for
unbelted passengers and flight attendants, the injuries could be fatal. For the commercial airline
industry, encounters with turbulence cost in the millions of dollars each year in insurance premiums,
workers compensation, and injury settlements [1].

Turbulence or eddies that affect aircraft are created by various larger-scale atmospheric forcing mech-
anisms, and the resulting turbulence is often classified according to its source [2]. At cruising altitudes
of commercial aircraft, there are three common sources of turbulence: 1) Convective-Induced Tur-
bulence (CIT) which is turbulence associated with the presence of convective clouds (either in-cloud
or near-cloud) ; 2) Clear-Air Turbulence (CAT) which is turbulence associated with enhanced wind
shears and reduced stability in the vicinity of jet streams, the tropopause, and upper-level fronts; it
often occurs in clear air or sometimes in stratiform clouds but not in or near convective clouds; and
3) Mountain Wave Turbulence (MWT) which is turbulence associated with the breaking of mountain
waves above mountainous terrain and which also often occurs in clear air.

Current turbulence detection/prediction algorithms are primarily physical in nature in that they are
based on theories of how the causes of turbulence are represented in certain data sets (such as
Doppler radar data) [3, 4]. Current methods of turbulence detection may suffer from sparse or in-
accurate forecast data sets, low spatial and temporal resolution, lack of in-situ reports, etc. On the
other hand, modern machine learning algorithms have become highly efficient at detecting patterns
in data and using these patterns to make predictions. There is a wealth of data typically collected
on-board routine flights that can be used for a variety of purposes. Thus, there is an opportunity
to utilize in-flight data to improve the state of the art in turbulence detection. There have been pre-
vious attempts to identify EDR using quick access recorder (QAR) data recorded from flights [5].
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While these efforts have focused on EDR estimation, this paper takes the work a few steps further
by training a prediction model around EDR and using it to estimate turbulence severity. Considering
the preceding observations, in this work, a methodology for building a model to predict the EDR and
turbulence level at a future time horizon using data collected on-board is presented. This prediction
can serve as an early warning system for pilots and flight attendants and help prevent injuries. The
main objectives and contributions of this research are as follows:

1. Provides a novel predictive model of aircraft’s future eddy dissipation rate and turbulence sever-
ity using data collected on-board an aircraft

2. Demonstrates the implementation of a supervised learning risk identification methodology for
turbulence using large-scale flight data

3. Identifies critical parameters that potentially contribute towards prediction of moderate and se-
vere turbulence

While this paper focuses on early prediction and detection of turbulence for alerting flight crews, the
methods developed are also envisioned to eventually assist air traffic management (ATM) personnel
in better managing airspace [6), [7].

The rest of the paper is organized as follows: Section 2 covers some of the background and prior work
related to data-driven analysis in aviation in general and turbulence in particular. Section 3 provides
an outline of the methodology used in this work. Section 4 contains the results of the implementation
of the framework. Finally, Section 5 provides concluding remarks and avenues for future work.

2. Background

In recent years, there has been significant interest in using flight data collected on-board for various
safety analysis tasks. The number of machine learning techniques for solving complex problems and
enabling predictive approaches in the transportation domain have increased in recent years. Flight
data is typically used during retrospective analysis to identify anomalies during routine operations us-
ing various machine learning techniques [8, 9, 10, [11]. While many of the previous applications have
focused on unsupervised learning, supervised learning has also been applied on flight data in recent
years. Supervised learning has been used to predict future states of the aircraft [12, [13] [14], prob-
ability of hard landings [15], prediction of unstable approaches [16], etc. For a more comprehensive
overview of various applications of flight data the readers are referred to recent review papers [17,/18].
The current work focuses on the application of supervised learning algorithms for turbulence predic-
tion using recorded flight data.

A methodology for predicting turbulence in future time horizons based on recorded flight data is
proposed in this work to address limitations observed in literature.

3. Methodology

The methodology and steps followed in this paper are outlined in Figure The elements of the
methodology follow those of a general machine learning pipeline. The main difference and innovation
lies in the way flight data is processed to produce sliding window based features for the ML model to
enable a prediction in the future based on collected data.

3.1 Flight Data

The first step consists of data collection from routine flights conducted by commercial airlines. This
data is in the form of time-series measurements of hundreds of parameters at a 1 Hz frequency.
Each flight in the data set can contain hundreds of rows that represent unique time stamps and
columns that represent recorded parameters. The parameters recorded can be of various types such
as continuous, discrete, boolean, text, etc. The parameters in the flight data can be divided into
different categories and levels based on their source system/sub-system in the aircraft. Atmospheric
data refers to data gathered from pitot tubes, barometers, thermometers, etc. It includes airspeed,
wind speeds, pressure altitude, atmospheric temperature, etc. Attitude data refers to roll, pitch, yaw
angles and their corresponding rates and accelerations. GPS data contains the latitude, longitude,
altitude, and related rates. Engine data contains RPM, Exhaust Gas Temperatures (EGT), Cylinder
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Figure 1 — Flow of data and steps in the prediction model generation framework

Head Temperatures (CHT), oil temperature and pressure, fuel flow rates, fuel quantities, etc. Control
data contains the deflection of flaps, elevator, aileron, rudder, etc. Communications data includes
details about the communication status of the vehicle, such as the common frequency. Navigation
data includes information on any way-point guidance or autopilot features. These are among the
numerous categories of parameters typically present in flight data. For the purpose of this paper,
the segments of flight that contained turbulence are isolated, and the data from two minutes before
and after the recorded event is obtained. The data consists of multiple airframe types and phases of
flight. Figure [2]shows a notional hierarchical breakdown of the flight data used in this work.
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Figure 2 — Notional hierarchical representation of the data

3.2 Preprocessing

The data is pre-processed to remove empty and corrupted columns. This results in the reduction
of the total number of columns but is an essential step to ensure the machine learning models can
be trained and used properly. Correlation analysis is then conducted to identify highly correlated
columns and only retain the most representative columns for further analysis. The correlation analysis
is typically able to remove redundant columns. The data is then broken down into windows of a
specific length (e.g., 10 seconds). The windows are then slid across the duration of the flight under
consideration to create a continuous source of data. The parameter values within each window are
then flattened into a single long feature vector for machine learning analysis.

3.3 Turbulence Label Generation

For any supervised learning effort, the true value of the prediction, i.e., a continuous value for re-
gression and a class label for classification, is required. For the turbulence prediction problem, Eddy
Dissipation Rate (EDR) is used. The calculation for EDR stems from a combination of literature
review and available commercial airline turbulence flights. In the literature, three different methods
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are found for predicting EDR from Quick Access Recorder (QAR) data. QAR data consists of over
1000 parameters and is functionally similar to the available FOQA data. Then, the parameters used
in each method are compared to available turbulence data in this work to determine feasibility of
implementing one of the methods.

A 2019 paper by Huang [5] used 14 QAR properties and 7 overarching equations to develop a method
to estimate EDR. A couple of concepts used in this methodology include estimating the acceleration
response function and estimating the acceleration response energy. Upon comparison of the param-
eters needed, parameters available, and uncertainties between the two this method quickly becomes
a complicated option to model in the current work.

The second paper by Haverdings [4], also from 2019, looks at predicting EDR using Air-to-Ground
(ATG) technology. A comparison between the parameters used in the paper and parameters available
for the current work reveals a lack of all the necessary information to implement this method.

The final paper analyzed by Chen [19], from 2010, uses a WINDGRAD algorithm to predict the EDR.
The comparisons of parameters show that some of the parameters used are already pre-calculated
in the available FOQA data. In turn, to implement this method, all that was needed was one equation
and two parameters. These two parameters are vertical wind speed and the true airspeed. Due to the
simplicity and having all the needed parameters, this method is implemented in this paper. Besides
the two parameters in the dataset, the other symbols in the equation represent constants that were
either determined through sensitivity analysis or recommended from the paper. Specifically, the cutoff
frequencies were given in the paper as constants and the running standard deviation for vertical wind
was implemented through multiple window sizes for sensitivity.
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Where (ow) is running standard deviation in vertical wind (either using 10 or 20-second window
sizes, as suggested by the paper), V,is the airspeed, and @, and @, are the cutoff frequencies for
EDR calculation (0.15 Hz and 2 Hz are used, respectively, as suggested by the paper). Both window
sizes to calculate EDR are used to produce the feature vectors and test sensitivity.

Using equatior{1] the model is developed in Python. Various window sizes for the standard deviation
in the calculation are explored to identify the most suitable ones. Although the paper recommended
a window size between 10 and 20, the team looked at a wide range of window sizes from 5 to 50
seconds. It was concluded that the smaller window sizes led to undesirable quantity of noise and a
window size of 20 seconds was used. The severity of turbulence is categorized depending on the
EDR. Through literature search, four different thresholds were found. Based on typical commercial
airline and aviation weather center's EDR definitions, the following three labels are used: light tur-
bulence (EDR = 0.00 - 0.15 m?/3/s), moderate (0.16 - 0.45 m?/3/s), and severe turbulence (> 0.46
m?/3/s).

€

3.4 Machine Learning Models

The feature vectors generated along with true turbulence labels (EDR value for regression and ac-
tual turbulence level for classification) are used to train the models. In this work, regression and
classification models are both built using the Gradient Boosting algorithm [22]. Gradient Boosting
classificatiorﬂ and Gradient Boosting regressiorE] are respectively used for building the classification
and regression models using publicly available implementations in Python. While there are several
algorithms available for building the classification and regression models, the focus of this paper is
not on the model type itself but rather on the application for turbulence prediction. Each model utilizes
the same feature vectors that are generated by the sliding-window approach but differs in the output
prediction (turbulence severity for classification and EDR value for regression). The output from the
regression model can be converted to a turbulence severity using the thresholds identified earlier.

1https://scikit—learn.orq/stable/modules/generated/sklearn.ensemble.
GradientBoostingClassifier.html

“https://scikit-learn.orqg/stable/modules/generated/sklearn.ensemble.
GradientBoostingRegressor.html
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https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
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3.5 Post-processing

The trained, validated models are then compared against the actual data to determine the perfor-
mance of the models and identify the best performing model. Additionally, parameters that are critical
to the successful prediction of turbulence for both the regression and classification models are iden-
tified using the safety analysis for flight events (SAFE) methodology [21].

4. Implementation and Results

This section contains the details of the implementation of the developed method on a real-world set
of approximately 6,000 flights that contained some level of turbulence.

4.1 Model Considerations

While building and improving the models, the three subsequently discussed approaches are consid-
ered and used to improve typical challenges faced while building the predictive models based on the
nature of the problem.

4.1.1 Stratified Sampling

Considering the high imbalance of the data (evidenced by the discrepant amount of light turbulence
events as opposed to moderate and severe events), a stratified sampling approach is used. Simple
random sampling randomly selects data from the entire population so that each possible sample is
likely to occur. Stratified sampling, on the other hand, creates a test set with a population that best
represents the studied population, and it is used to eliminate sample bias (i.e., when certain values
are under-represented). The advantages of using this approach are that it accurately represents the
population being studied and it ensures each subgroup is properly represented, while the disadvan-
tages are that it should not be used when confidently classifying every member of the population is
not possible [10].

4.1.2 Hyperparameter Optimization

Model hyperparameters can be arbitrarily set by user before starting the training, and they determine
how the model is structured. In running the hyperparameter optimization exercise, the goal is to
find the right combination of parameters to find either the minimum (e.g., loss) or maximum (e.g.,
accuracy) of a function. A search over a space of two main hyperparameters (number of estima-
tors and maximum depth) is conducted to find the optimum combination whose learning and model
performance were optimum. In addition, a design of experiments was used to tune the rest of the
model hyperparameters and reduce overfitting. The final values for hyperparameters used is shown
in Table 1

Parameter | Regression | Classification
Random state 42 42
Number of estimators 139 86
Maximum depth of estimators 7 9
Fraction of samples used for fitting (Subsample) 0.9 0.7
Minimum number of samples required to split internal node 5 5
Minimum number of samples required to be at a leaf node 3 3
Learning rate 0.1 0.05

Table 1 — Optimal hyperparameter values

4.1.3 Error Types

In this paper, the confusion matrix is a central part of the evaluation criteria used to define the effec-
tiveness of the models in predicting turbulence. This is because, rather than attempting to predict the
exact value of eddy dissipation rates (EDR), the main goal is to predict the turbulence intensity level,
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which can be divided into light, moderate, and severe. Each of these labels have a range of EDR
values and therefore predicting the exact value of EDR may not be necessary.

Two error types are typically encountered in the models built for turbulence prediction. Type 1 error
occurs, for instance, when severe turbulence is predicted when actual turbulence is moderate or
light. Type 2 error happens when light or moderate turbulence is predicted when actual turbulence is
severe. Type 2 error is more serious in this problem since it can give the false impression of safety
when the risk is high.

4.2 Results

The model performance metrics discussed below are for the final models built for models built using
regression and classification algorithms. The main performance metrics used are overall accuracy,
f1 score, EDR or severity predictions on specific flights.

4.2.1 Regression
The regression models continuously predicts the values of EDR, and the severity levels are deter-

mined from the commercial airline EDR thresholds. In this section, the results for the best tuned
regression model are discussed.
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Figure 3 — Actual vs predicted for training data (left) and test data (right)

The actual vs. predicted plots (Figure [3) show that the error is slightly higher for the test data, but
regression results in overall good fitting model. Highlighted regions which indicate correct severity
level prediction contain most of the data which means regression creates a reliable EDR prediction
model. Figure |4| shows the confusion matrix for the regression model after comparing the severity
labels with the actual labels.

The confusion matrices show that the f1 score is higher for the training set, but both show good
performance for the regression model. The extreme diagonals (light turbulence predicted as severe
or the opposite) are either very low or zero. Finally, the model accurately predicts EDR throughout
most of the sample flight shown in Figure 5] and almost all the turbulence severity levels are correctly
predicted.

4.2.2 Classification

The classification models are used to directly predict the discrete severity level labels (light, moderate,
and severe), as opposed to predicting EDR values over time as the regression model does.

The results discussed in this section use optimized hyperparameters for building the classification
model. Compared to regression, the classification model shows higher accuracy and f1 score for the
training set, but lower f1 score for the test set (approximately 7% lower) as seen from Figure 6] While
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