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Abstract 

The present study proposes a new method for real-time decentralized conflict detection and resolution (CDR) 
for multiple aircraft under the assumption that four-dimensional trajectory-based operation is implemented. The 
proposed method in each aircraft simultaneously calculates the optimal ground speed vectors for all the 
involved aircraft while accounting for the uncertainty of the flight intent of neighboring aircraft and the actual 
wind condition. Because the uncertainty of the intent of the neighboring aircraft is discrete, we represent it with 
two ground speed vectors for neighboring aircraft as if each neighboring aircraft was adopting two trajectories, 
one representing direct travel to the planned waypoint and the other representing CDR in cooperation with the 
neighboring aircraft. At the same time, unnecessary multiplicities of the neighbor’s intent are eliminated by 
monitoring the degree of conformance to the shared intent by inferring the actual intent in real time. Moreover, 
we take the uncertainty of the wind vector into account by its mean and covariance using quadratic functions 
of the ground speed vectors and incorporate them into the stochastic constraints on the airspeed limits. 
Through numerical simulations, the effectiveness of the proposed method was demonstrated.  
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1. Introduction 
One of the most important endeavors for the modernization of air traffic management is to replace 
conventional operations in highly structured airspace with trajectory-based operations (TBO). In TBO, 
strategic four-dimensional (4-D) trajectories [1] of individual aircraft with their own itineraries are 
planned, shared, and re-planned based on requests for and agreements on constraints on airspace 
capacity. Moreover, due to its potential usefulness in highly automated traffic management in 
congested airspace, 4-D TBO will also play an important role in operations of unmanned aerial 
system (UAS) traffic management and even its extension to the unified traffic management of 
multiple types of aircraft, such as UASs, electric vertical take-off and landing aircraft, and manned 
aircraft flying under visual flight rules. However, to improve operational flexibility and safety in tactical 
situations over relatively short time scales, it is crucial to allow trajectories to change according to 
the situation and delegate the responsibility for detecting and resolving conflict to individual aircraft. 
With this in mind, the objective of the present study is to develop a new method for real-time 
decentralized conflict detection and resolution (CDR) for multiple aircraft under implementation of 4-
D TBO.  
In general, decentralized CDR requires the prediction of future trajectories of neighboring aircraft [2] 
based on their current and past states and tactical flight intent [3-5], such as resolving conflict with 
neighboring aircraft in a cooperative way, directly traveling to the planned waypoint as scheduled, or 
skipping the planned waypoint to move on to the next waypoint. Such tactical flight intent can be 
shared in real time via data links. However, unlike the strategic 4-D trajectories, which can be 
changed according to negotiation among the involved stakeholders (e.g., pilots/operators of 
individual aircraft, dispatchers, and air traffic controllers), the tactical flight intent may change without 
notice in shorter time scales. Thus, it is possible that the actual intent may temporarily differ from the 
shared one. Furthermore, because the 4-D trajectories are premised on the time profiles of an 
aircraft’s ground speed, it can be hard for an aircraft to track them due to their airspeed limits when 



DECENTRALIZED CDR METHOD ACCOUNTING FOR UNCERTAINTIES 
 

2  

the actual wind conditions significantly differ from the predicted wind. Based on these viewpoints, 
the CDR method proposed herein accounts for the uncertainty of flight intent and actual wind 
condition. 
A number of CDR methods accounting for uncertainty have been proposed [2, 4, 6-9], and these can 
roughly be categorized as worst-case methods and probabilistic methods. Worst-case methods 
compute extreme scenarios by generating a set of possible trajectories subject to uncertainty. 
Probabilistic methods also calculate a set of possible trajectories, but these sets include the 
associated probability density function of the uncertainty. If worst-case or probabilistic methods are 
applied to CDR, they can compute robustly safe trajectories compared to those not accounting for 
uncertainty. However, at the same time, they tend to result in overly conservative trajectories 
because each aircraft’s feedback mechanism for the ground speed vector to fulfill its intent is not 
usually taken into account in uncertainty propagation. Moreover, if they are combined with 
decentralized optimizations that need to ensure that the resulting trajectories are compatible [9], the 
conservativeness can increase further.  
Thus, to reduce the trajectory conservativeness in a decentralized optimization framework, the 
proposed method implemented in each aircraft simultaneously calculates the optimal ground speed 
vectors for all the involved aircraft under the assumption that each aircraft has a feedback 
mechanism to follow the optimized ground speed vector. While such a simultaneous optimization 
has previously been developed [10], the distinctive feature of the present method is the 
accommodation of uncertainty and a new optimization technique that is a variant of a reported 
method [11]. Because the uncertainty of the tactical intent of the neighboring aircraft is discrete, we 
represent it by two ground speed vectors for neighboring aircraft, as if each neighboring aircraft was 
adopting two trajectories, one representing direct travel to the planned 4-D waypoint and the other 
representing the conflict resolution in cooperation with neighboring aircraft. In addition, to reduce the 
conservativeness further, unnecessary multiplicities of the neighbor’s intent are eliminated by 
monitoring the degree of conformance to the shared intent by inferring the actual intent in real time. 
For this inference, we apply a modified version of the method developed in previous studies [5, 11]. 
Moreover, we take the uncertainty of the wind vector into account by its mean and covariance using 
quadratic functions of the ground speed vectors and incorporate them into the stochastic constraints 
on the airspeed limits. Although the size of the optimization problem in each aircraft is quadratic with 
respect to the number of involved aircraft, it is small enough for real-time applications because it is 
formulated as a simple decision-making problem described by a relatively small quadratically 
constrained quadratic program (QCQP). The non-convexities in the resulting QCQP are handled by 
a convexification technique in which the non-convex constraints, involving the mean and covariance 
of the wind uncertainty, are aggregated as a single concave constraint and sequentially linearized. 
Thus, the optimization problem here is sequentially solved via a second-order cone program (SOCP) 
[12], which can be performed in real time by commercially available off-the-shelf software.  
Through numerical simulations, the effectiveness of the proposed method was confirmed in terms of 
its robustness and the reduced conservativeness of the calculated trajectories under the 
uncertainties of flight intent and wind conditions. 

2. Proposed method for conflict detection and resolution 
2.1 Model of Aircraft Motion 
For simplicity, we assume that the motion of an aircraft is constrained to the horizontal plane. The 
state equations for the aircraft are written as follows:  

 

cos
sin

( tan sin cos ) /

x

y

x y

V wx
V wy

aV
g w w V

ψ
ψ

φ ψ ψψ

+  
   +   =
  
   + −    





 

, (1) 

where ( , )x y  is the position of the aircraft in the horizontal coordinate system, V  is the airspeed, ψ  
is the heading angle, xw  and yw  are respectively the x  and y  components of the wind velocity, g  
is gravitational acceleration, φ  is the bank angle, and a  is the airspeed acceleration.  
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Let au , av  and u , v  be x  and y  components of the airspeed and the ground speed, respectively:  

 : cos , : sin , : , :a a a x a yu V v V u u w v v wψ ψ= = = + = + .  (2) 
Then, we can rewrite Eq. (1) as  
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In practice, a  depends on other variables, such as , , ,x yV w w ψ  , and φ , and we assume that its value 
can be directly controlled by a low-level controller. Thus, by regarding [ ]Tx y u v  and [ ]Ta φ  as the 
state and the control input, respectively, we adopt Eq. (3) as the state equation for each aircraft.  
 
2.2 Overview of the Proposed Method 
Let us consider the decentralized CDR of multiple aircraft that yields the dynamic model above at 
every sampling time t k t= Δ  ( 0,1, )k =  . Hereafter, M  denotes the number of involved aircraft, the 
subscript k  denotes the time index corresponding to t k t= Δ , and the superscript ( )i  denotes the 
index for the i -th aircraft, where {1, , }i M∈  . Let ( ) ( ),i i

n na b , and ( )i
nT  respectively denote the x -

position, y -position, and scheduled transit time for the n -th waypoint of aircraft i . Furthermore, we 
make the following assumptions: 

• The strategic flight plan for each aircraft {1, , }i M∈   is represented as a set of ( )iL  waypoints, 
that is, ( ) ( ) ( ) ( ){( , , ), 1, , }i i i i

n n na b T n L=  , and this plan is shared with all the involved aircraft. Also, 
the lower and upper limits of the airspeed of each aircraft i , denoted by ( )

min
iV  and ( )

max
iV , 

respectively, are also shared with all the involved aircraft. 

• The position and ground speed vector for each aircraft {1, , }i M∈   at each sampling time 
( 0,1, )k =  , that is, ( ) ( )[ ]i i T

k kx y  and ( ) ( )[ ]i i T
k ku v , are shared with all the involved aircraft in real 

time. In addition, it is possible to observe or estimate  ( ) ( )[ ]i i T
xk ykw w , and thus ( ) ( )[ ]i i T

ak aku v , in real 
time, but there is some uncertainty (i.e., error) in these observations or estimates. 

• The tactical flight intent for each aircraft is shared via data link in real time, although 
inconsistency with the actual intent is possible. For simplicity, the tactical flight intent is either 
going directly to the planned 4-D waypoint (referred to as WP intent), or performing CDR with 
the neighboring aircraft in a cooperative way (referred to as CDR intent).  

Although it is possible to extend the proposed method to be applicable to cases where the number 
of neighboring aircraft is different for individual aircraft, we adopt the above assumptions for simplicity. 
Figure 1 depicts an input/output flowchart for each sampling time t k t= Δ ( 0,1, )k =   in the proposed 
method. Given the trajectories observed in real time, each aircraft infers the actual intent of each 
neighboring aircraft and monitors its conformance to the shared one. If the degree of conformance 
(to be defined later) is sufficient, then the inferred intent is considered “validated” and entered alone 
into the optimization process. Otherwise, both the WP intent and the CDR intent are considered 
“possible,” and both are entered into the optimization process. In the optimization process, each 
aircraft simultaneously calculates the optimal ground speed vectors for all the involved aircraft by 
minimizing their deviation from the strategic flight plans under the constraints for conflict resolution 
based on the entered (either single or dual) intent of individual aircraft. The wind uncertainty is also 
considered in the procedure. After calculating its own optimal ground speed vector, each aircraft 
follows this vector as much as possible with feedback control. The problems solved at each stage of 
the method are detailed in the following subsections. 
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Figure 1 – Input/output flowchart of the proposed method. 

 
2.3 Inference and Conformance Monitoring of Intent 
The intent inference method adopted here solves the inverse optimal control problem [5], that is, it 
calculates the weight of each term of the objective function that best explains the tactical flight intent 
behind an observed trajectory. By incorporating the second-order optimality condition, specifically 
the positive definiteness of the projected Hessian of the Lagrangian [13], the method accounts for 
both the necessity and sufficiency of the approximate local optimality of the given trajectory.  
Let ( )

|
i
n kq  be the weight corresponding to the i -th aircraft’s intent to go directly to the n -th waypoint. 

Similarly, let ( )
|
i

l ks
+  and ( )

|
i

l ks
−  be the weights to resolve conflict with the l -th aircraft by making a right 

or left turn, respectively. These weights are assumed to be nonnegative and are normalized by 
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In the present study, we apply a modified version of the inference method developed in the previous 
study [11]. The modifications were made to introduce binary variables ( )

| {0,1}i
n kα ∈  to represent the 

uniqueness of the objective waypoint:  
 ( ) ( ) ( )

| |0 , 1, ,i i i
n k n kq n Lα≤ ≤ =    (5) 
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Moreover, we also introduced additional binary variables ( )
| {0,1}i
l kβ ∈  to represent the alternative 

nature of turning right or left in the intent of conflict resolution:  
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Thus, the resulting inverse optimal control problem becomes a mixed-integer quadratic programming 
problem. Details of the method except for the modification above have previously been reported [11]. 
It should be noted that the intent inference in the proposed method is performed based on the 
trajectories of the ground speed vectors rather than those of the airspeed vectors. This is because 
not only the flight intent modelled in the present study is based on the ground speed vectors, but 
also the airspeed vectors can be sensitive to the wind uncertainty. 
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The inferred intent is thus quantified by the weights defined above and used for the subsequent 
conformance monitoring, that is, we monitor their time profiles to check the conformance of the 
inferred intent to the shared intent in the following manner: 

• If the shared intent of the i -th aircraft is WP and Eq. (8) below holds for a consecutive 
sequence of sampling times 1, , 1,m k k k k= − −  under given 1k  and 1ε , then the WP intent and 
the CDR intent of the i -th aircraft are considered “validated” and “inactive,” respectively. 

 
( )

( )
| 1

1

iL
i
n m

n
q ε

=

≥   (8) 

• If the shared intent of the -th aircraft is CDR, and Eq. (9) holds for a consecutive sequence of 
sampling times 2 , , 1,m k k k k= − −  under given 2k  and 2ε , then the WP intent and the CDR 
intent of the -th aircraft are considered “inactive” and “validated,” respectively. 
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• If none of the above conditions hold, both the CDR and WP intent of the -th aircraft are 
considered “possible.” 

 In addition, for each aircraft i , we assign an integer variable ( )i
kr  by setting ( ) 1i

kr =  if its CDR intent is 
validated, ( ) 0i

kr =  if its CDR and WP intent are possible, and ( ) 1i
kr = −  if its WP intent is validated.  

 
2.4 Process to Optimize Ground Speed Vectors 
In this process, a set of optimal ground speed vectors at current time t k t= Δ  are calculated to reflect 
the validated or possible intent of each neighboring aircraft. Let us define the following sets of aircraft 
indices as : {1, , }I M=  , ( ): { | { 1,0}}i

k kQ i r= ∈ − , ( ){ | 1}i
k kQ i r+ = = − , ( ): { | {0,1}}i

k kS i r= ∈ , and 
( ): { | 1}i

k kS i r+ = = . By definition, k k k kQ S S Q I+ +∩ = ∩ = . In addition, for any ki S +∈ , let us modify ( )
|
i
n kq  to 

1,  where n  corresponds to the currently intended waypoint according to the strategic flight plan, and 
let ( ) ( )[ ]i i T

k kx y  and ( ) ( )[ ]i i T
k ku v  denote the current position and ground speed vector, respectively.  

Then, at the first stage, each aircraft solves the following problem to calculate the ideal ground speed 
vectors for all ki Q∈  to reach its individual waypoint starting from its current position:  
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xk yk kV u w v w V i Q≤ − + − ≤ ∀ ∈ . (11) 

It should be noted that only one of the weights ( )
( ) ( )
1| |

, , i
i i
k L k

q q  equals 1, and the remaining weights are 
zero. Thus, without Eq. (11), which denotes the constraints on the airspeed limits, the solution of the 
minimization of Eq. (10) would attain an accurate transit to the n -th waypoint corresponding to 

( )
| 1i
n kq =  at the scheduled time. In practice, the problem above can be solved individually for each 

ki Q∈ , but for the sake of notational simplicity, we formulate it in an aggregated way.  
Let  ( ) ( ),i i

k k ku v i Q∀ ∈  be the solutions to the problem above. Then, at the second stage, each aircraft 
calculates the optimal ground speed vectors for all aircraft reflecting their “validated” and “possible” 
intent by solving the following problem:  

( ) ( ), ,i iu v i I∀ ∈
minimize   
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where μ  is a positive parameter, ( ) ( )[ ]i i T
prev prevu v  is a solution calculated at the previous sampling time 
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where R  is the required minimum aircraft separation. Figure 2 depicts the conflict cone between two 
aircraft and some of the relevant variables given above. It should be noted that ( , )i l

kn  corresponds to 
the vector normal to the conflict cone’s boundary that is closer to the current relative speed vector 

( ) ( ) ( ) ( )[ ]i l i l T
k k k ku u v v− − . Thus, Eqs. (14) and (15) mean that the relative speed vector should be 

optimized to be outside of the boundary of the conflict cone.    
 

 
Figure 2 – Conflict cone and relevant variables. 

 
Equation (14) denotes the constraints on the cooperative conflict resolutions between any pair of 
aircraft having the “validated” or “possible” CDR intent. Conversely, Eq. (15) denotes constraints on 
the unilateral conflict resolutions by any of the aircraft having the “validated” or “possible” CDR intent 
with any of that having “validated” or “possible” WP intent. (Note that the latter aircraft are presumed 
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to go directly to the planned waypoint based on the solution of the first optimization problem.) Thus, 
if the l -th aircraft has a “possible” intent for both WP and CDR, twofold conflict resolution constraints, 
specifically Eqs. (14) and (15), are enforced to represent the discrete uncertainty of the l -th aircraft’s 
intent. In contrast, if the l -th aircraft’s intent is “validated,” then the uncertainty is eliminated to reduce 
unnecessary conservativeness.  
It should be noted that Eqs. (11) and (13) involve the wind speed vector ( ) ( )[ ]i i T

xk ykw w , which has the 
uncertainty expressed by the assumption given in 2.2. To express this assumption mathematically, 
we define the stochastic model of the wind speed as follows:  
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where N  is a positive integer, ˆ xw  and ˆ yw  are the means, 1, , Ng g  characterize the spatial and 
temporal correlations of wind velocities, and 1 2, , Nz z  are stochastic variables independently 
following the normal distribution (0,1)N . Substituting Eq. (17) into the squared airspeed gives  
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where 1 2: [ ]TNz z=z   and ( , , , , )h x y u v z  constitute a stochastic term defined by 
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The term ( , , , , )h x y u v z  is quadratic with respect to the stochastic variables 1 2, , Nz z  that 
independently follow (0,1)N . Its mean ĥ  and variance 2σ̂  are given by the following analytical 
expressions: 

 2

1

ˆ( , , ) : [ ( , , , , , )] 2 ( , , )
N

j
j

h t x y h t x y u v g t x y
=

= = z ,  (20) 

 

2 2

4 2 2 2

1

ˆˆ ( , , , , ) : [{ ( , , , , , ) ( , , )} ]

ˆ ˆˆ ˆ6 ( , , ) ( , , ) 2[{ ( , , )} { ( , , )} ] ( , , )
N

j x y
j

t x y u v h t x y u v h t x y

g t x y h t x y u w t x y v w t x y h t x y

σ

=

= −

= − + − + −

z
, (21) 

where we used 3 2( ) ( ) 0, ( ) 1j j jz z z= = =    and 4( ) 3jz = . From Eqs. (20) and (21) , if , ,t x  and y  
are given, the mean ĥ  is the constant and 2σ̂  is the quadratic function of  u  and v . Thus, by using 
these equations, we convert Eqs. (11) and (13), respectively, to 

 
( ) 2 ( ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( ) 2 ( )

min max
( ) 2 2 ( ) ( ) ( ) ( )

ˆˆ ˆ( ) ( ) ( ) ( ) ,
ˆ( ) ( , , , , )

i i i i i i i i i
xk yk k

ki i i i i
k k

V u w v w h V i Q
k t x y u v

γσ γσ
σ σ

+ ≤ − + − + ≤ −  ∀ ∈
= Δ 

  (22) 

and 

 
( ) 2 ( ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( ) 2 ( )

min max
( ) 2 2 ( ) ( ) ( ) ( )

ˆˆ ˆ( ) ( ) ( ) ( ) ,
ˆ( ) ( , , , , )

i i i i i i i i i
xk yk k

ki i i i i
k k

V u w v w h V i S
k t x y u v

γσ γσ
σ σ

+ ≤ − + − + ≤ −  ∀ ∈
= Δ 

  (23) 

where ( )ˆ i
xkw , ( )ˆ i

ykw , and ( )ˆ i
kh  denote ( ) ( )ˆ ( , , )i i

x k kw k t x yΔ , ( ) ( )ˆ ( , , )i i
y k kw k t x yΔ , and ( ) ( )ˆ( , , )i i

k kh k t x yΔ , respectively;  
( )i
kσ  is an additional variable representing the standard deviation; and γ  is a constant coefficient that 

multiplies the standard deviation for tuning the potential for constraint violation. Thus, the two-stage 
optimization problems are converted as follows: 
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• First problem: minimize Eq. (10) subject to Eq. (22). 

• Second problem: minimize Eq. (12) subject to Eqs. (14)-(16) and (23). 

Because these problems are non-convex QCQPs, they belong to the class of NP-hard problems. To 
solve these efficiently, the proposed method transforms each problem to minimize a convex objective 
function subject to multiple convex constraints and a single concave constraint in the following way. 
The non-convexities exist only in Eqs. (22) and (23) for the first and second problems, respectively. 
Thus, we aggregate the non-convexity in these equations to a single concave constraint. For brevity, 
we focus only on the second problem and note that the first problem can also be solved in the same 
way. By introducing an additional variable ( )iλ , which corresponds to the squared airspeed, Eq. (23) 
can be rewritten as 

 ( ) ( ) 2 ( ) ( ) 2 ( )ˆ ˆ( ) ( ) ,i i i i i
xk yk ku w v w i Sλ− + − ≥ ∀ ∈   (24) 

 ( ) ( ) 2 ( ) ( ) 2 ( )ˆ ˆ( ) ( ) ,i i i i i
xk yk ku w v w i Sλ− + − ≤ ∀ ∈   (25) 

 ( ) 2 ( ) ( ) ( ) ( ) 2 ( )
min max

ˆ( ) ( ) ,i i i i i i
k kV h V i Sγσ λ γσ+ ≤ + ≤ − ∀ ∈   (26) 

 ( ) 2 ( ) 4 ( ) 2 ( ) ( )

1

ˆ ˆ( ) 6 ( ) ( ) 2 ,
N

i i i i i
jk k k k

j
g h h i Sσ λ

=

≤ − + ∀ ∈   (27) 

 ( ) 2 2 ( ) ( ) ( ) ( )ˆ( ) ( , , , , ),i i i i i
k k kk t x y u v i Sσ σ≥ Δ ∀ ∈   (28) 

where ( ) ( ) ( ) ( ): ( , , )i i i i
jk j k kg g k t x y= Δ . In these inequalities, only Eq. (24) is concave, while the remaining 

inequalities, including Eq. (28), which is a second-order cone, are convex. Under the constraints of 
Eq. (25), Eq. (24) can further be rewritten as the following aggregated equation:  

 ( ) ( ) 2 ( ) ( ) 2 ( )ˆ ˆ[( ) ( ) ] 0
k

i i i i i
xk yk

i S
u w v w λ

∈

− + − − ≥ .  (29) 

Thus, the set constrained by Eq. (23) is equivalently converted to the set constrained by the multiple 
convex constraints of Eqs. (25)-(28) and the single concave constraint of Eq. (29).  
To handle the non-convexity in Eq. (29), we linearize Eq. (29) around the given references 

( ) ( )[ ] ,i i T
r r ku v i S∈  in the following way:  

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) 2 ( )ˆ ˆ ˆ ˆ[2{( )( ) ( )( )} ( ) ( ) ] 0

0
k

i i i i i i i i i i i i
r xk r r yk r r xk r yk

i S
u w u u v w v v u w v w λ ζ

ζ
∈

− − + − − + − + − − + ≥ 

≥ 


, (30) 

where ζ  is a slack variable. In addition, we augment the objective function with a penalty term for 
non-zero ζ  as follows: 

 2J ρ ζ+ ,  (31) 
where ρ  is a nonnegative parameter. We iteratively solve the problem to minimize Eq. (31) subject 
to Eqs. (14)-(16), (25)-(28), and (30) by updating the references ( ) ( )[ ] ,i i T

r r ku v i S∈  with the obtained 
solution. If a feasible solution to the problem with 0ζ =  is found, this indicates that the solution is 
also feasible for the original non-convex problem, because, due to the concavity of Eq. (29), the 
solution satisfying Eq. (30) with  also satisfies Eq. (29). We increase the magnitude of ρ  as 
the iteration progresses so that ζ  converges to zero whenever possible. 
As an initial reference required at each sampling time t k t= Δ , we use the solution obtained at the 
previous sampling time ( 1)t k t= − Δ  if available; otherwise, we use the current ground speed vectors. 
The convexification technique adopted here is a variant of the previously developed method [11], 
where a modification was made to accommodate the standard deviation of the wind speed. Unlike 
the alternating direction of multipliers method [14], which is also a popular approach to solve non-
convex QCQPs, the approach here has the advantage of not requiring adjoint variables whose 
physical meanings and appropriate guesses are generally not available. The resulting formulation 
above is a type of difference of convex (DC) programming problem [15], and the penalty approach 
adopted above is similar to the penalty convex-concave approach [16]. The distinctive feature of our 
approach here is the preservation of the sparse structure of the quadratic polynomials with respect 
to each i  by introducing the additional variable ( )iλ . Thus, the convexified problems to be solved 

0ζ =
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sequentially become sparse SOCPs, which can be efficiently solved via commercially available off-
the-shelf software. While the sizes of the first and second optimization problems are respectively 
linear and quadratic with respect to the number of aircraft M , the computational time to solve these 
with a moderate size of M  is manageable due to the sparsity stated above and the fact that the only 
decision variables are the ones at t k t= Δ . 

 
2.5 Controller to Follow the Optimized Ground Speed 
The proposed method involves a controller for each aircraft to follow the calculated ground speed 
vector as closely as possible under wind uncertainty. 
For the sake of notational simplicity, we omit the superscript ( )i  here. The control inputs for Eq. (3), 
a  and φ ,  are calculated by the following simple control law: 

 
*

*

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( / )( ) ( / )( )ˆ1 1
ˆ ˆˆ ˆ ˆ ˆtan 0ˆ

x y x x x y

y x

u w v wa dw dt u w dw dt v wu u
v w u wg v vV Vφ τ
− − − + −   −   

= −      − − − −     
,  (32) 

where *u  and *v denote the optimal ground speed vector calculated by each aircraft for itself by the 
process in 2.4; û , v̂ , and V̂  are observed or estimated values of u , v , and V , respectively; and τ  
is a tuning parameter corresponding to the time constant. If all the observed or estimated values are 
the same as the actual values, substituting Eq. (32) for the third and fourth rows of Eq. (3) yields the 
following first-order lag system of the ground speed vector: 

 
*

*

1u uu
v vvτ

     
= −           




.  (33) 

In practice, a more sophisticated controller to robustly compensate for future wind uncertainty, such 
as the stochastic model predictive controller [17], can be applied. Nevertheless, we adopted the 
controller above to simply evaluate the effectiveness of the process in 2.3 and 2.4 in the simulation 
study. 

3. Numerical Examples 
We performed numerical simulations to confirm the effectiveness of the proposed method. Here, we 
considered the traffic management of homogeneous UASs. The parameters used in the simulations 
are summarized in Table 1, where “inference steps” means the number of time steps of the latest 
trajectory required for the intent inference. Although elaborate functions can be adopted as the 
functions in the wind speed model in Eq. (17), they were simply assumed as follows: 

 
4

1

ˆ ˆm/ s, 1.0 10 1 / s, 5.0 m/ s,
1, 2.0 m/ s

x yw c x c w
N g

−= ⋅ = × =
= =

  (34) 

First, we considered CDR among three aircraft under the following two cases: 

• Case A – All aircraft have the CDR intent and share them throughout the simulation. 

• Case B – Only the third aircraft ( 3)i =  has the WP intent and the remaining aircraft have the 
CDR intent. They share individual intent throughout the simulation. 

To confirm the robustness against the wind uncertainty, we performed five simulations under different 
wind speed vectors; that is, we applied five different z  values to Eq. (17) within 2-sigma values. 
Figure 3 shows the simulated trajectories of the five simulations in these cases. In this figure, the 
blue, red, and green trajectories correspond to 1i = , 2,  and 3 , respectively, and the circles and 
arrows denote the target waypoints for individual aircraft and the travelling directions, respectively. 
As can be seen in the figure, we confirmed that the resulting trajectories were not sensitive to the 
wind uncertainty, because the proposed method directly optimizes the ground speed vectors rather 
than the airspeed vectors. The time histories of the intent parameters ( )i

kr  in one of the simulations 
in each case are shown in Fig. 4. The values of ( )i

kr  were kept at 0  for 20 s  from the start of the 
simulation, because the intent inference was not activated during this period due to the lack of the 
number of time steps of the latest trajectories required for the intent inference. Except for the third 
aircraft in case B, the CDR intent was validated (i.e., ( ) 1i

kr = ) when four additional steps passed after 
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the initiation of the intent inference, that is, at 28 st = , and both the CDR and WP intent were 
considered possible (i.e., ( ) 0i

kr = ) after the conflicts were resolved completely, though some 
oscillation of (1)

kr  and (2)
kr  between 0  and 1  was observed in case B. In contrast, (3)

kr  in case B 
oscillated between 0  and 1−  because the actual intent was WP. From the fact that the minimum 
separation in each simulation was approximately 1,100 mR =  (also see Fig. 6 below), and given the 
observations regarding Figs. 3 and 4, we can confirm that robust CDR without conservativeness was 
performed in each simulation by reflecting the validated or possible intent of individual aircraft. 
Next, we considered CDR among six aircraft under the two cases defined above. In each case, we 
performed four simulations under different wind speed vectors. Figure 5 shows the trajectories of the 
four simulations in these cases. As can be seen in the figure, there were relatively large fluctuations 
in the trajectories, compared with the three-aircraft CDR problem. The minimum distance occurring 
in each simulation is shown in Fig. 6. It can be seen in this figure that the minimums in some 
simulations of the six-aircraft problem were slightly lower than 1,100 mR = . This was probably 
because of the delay to follow the calculated optimum of the ground speed vector. (Note that the 
optimization in the proposed method does not guarantee a separation distance greater than R  when 
following the calculated optimum requires an actual delay. Thus, we set the value of R , including its 
margin, to take this effect into account.) Nevertheless, the minimum separation in each simulation 
was sufficiently close to 1,100 mR = , so we can confirm that robust CDR without excessive 
conservativeness was performed even in this problem. 
Figure 7 shows the time histories of the actual airspeed magnitudes of all the simulations. Although 
the airspeed in small regions of some simulations was outside of the specified range (i.e., 
[20 m/ s, 30 m/ s] ), it was almost within the specified range as a whole due to the consideration of the 
wind uncertainty.  
The computational time of the proposed method per sampling time was, in the worst case, less than 
1.0 s  using a common laptop computer and employing IBM® ILOG® CPLEX® 20.1.0 as the solver for 
the SOCP. Thus, for the tested simulations, the computational time was small enough compared to 
the sampling time step 2.0 stΔ = .   
 
 

Table 1 – Parameters for simulations. 

Parameter Value Parameter Value 
( )

min ,iV i∀  20 m/s 1k   4 
( )

max ,iV i∀   30 m/s 2k  4 
R   1,100 m 1ε  0.8 
tΔ   2.0 s 2ε  0.5 

Inference steps 11 τ   4.0 s 
γ  2.0   
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Figure 3 – Simulated trajectories of CDR among three aircraft in cases A (left) and B (right).  

 

  
Figure 4 – Time histories of intent parameters ( )i

kr  in one simulation each for cases A (left) and B 
(right). 

 

             
Figure 5 – Simulated CDR trajectories of six aircraft in cases A (left) and B (right). 
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Figure 6 – Minimum distance occurring in each simulation. The horizontal red line marks  
R  = 1,100 m.  

 
 

          
Figure 7 – Time histories of the airspeed magnitude for all the simulations. 

         
 

4. Conclusions 
In this paper, we propose a new method for the real-time CDR of multiple aircraft that accounts for 
the uncertainty of the flight intent of neighboring aircraft and the actual wind condition. Through 
numerical simulations, the effectiveness of the proposed method was demonstrated in terms of 
robustness and the reduced conservativeness of the calculated trajectories despite the uncertainty.  
Future research will include, but is not limited to, extension of the proposed method to three-
dimensional (i.e., horizontal and vertical) CDR, incorporation of a stochastic model predictive 
controller to robustly compensate for the future wind uncertainty, and further acceleration of the 
optimization algorithm for actual implementation. 
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