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Abstract  

A hybrid parallel Genetic Algorithm with a new 
population dispersion method is presented to 
accelerate aerodynamic shape optimization. The 
method combines a multi-population and 
master–slave parallel Genetic Algorithm. To 
increase the convergence rate of the 
optimization process a new technique for 
scattering individuals in the design space is also 
applied. Based on an online monitoring and by 
taking feedback from the result of the current 
population the mutation rate of genes are 
updated. In order to assess the efficiency of the 
proposed framework, a geometric inverse 
design is carried out and the capability of the 
method for generating flexible shapes is 
evaluated. An unstructured grid finite volume 
flow solver with a two-equation k-ε turbulence 
model is used for the objective function 
evaluations. The performance of the method is 
further evaluated by an aerodynamic shape 
optimization. Result indicates the merits of the 
framework with increasing the maximum 
objective value about 3.5 percent as well as 
decreasing the total computational time up to 30 
percent. 

1 Introduction  

Over the past few years, with the development 
of mutli-core processors and advance in 
optimization techniques, numerical methods 
have played a great role in the design process of 
aerodynamic shapes. Genetic Algorithms (GA) 
that is popular evolutionary technique has been 
widely used by researchers since they are very 
efficient in finding the global optimum for 
complex functions [1]. Additionally, it uses only 
the objective function and does not require its 

derivatives. Such features make GA attractive to 
practical engineering applications like 
aerodynamic shape optimization [2, 3]. 
However, this optimization tool has the main 
disadvantage of being computationally time-
consuming especially in aerodynamic shape 
optimization problems where Computational 
Fluid Dynamics (CFD) is applied for objective 
function evaluation [4]. Therefore, a leading 
area of research is to reduce the computational 
time of optimization problems whereas the high 
fidelity of the objective function evaluation is 
kept.  
The performance of GAs depends on various 
factors, such as the population size, the initial 
population, the selection strategy and crossover 
and mutation rates. These factors interact with 
each other which make it hard to find the 
optimal setup [5].  However mutation which is 
used to keep the diversity of the population by 
changing members’ characteristics is considered 
to be one of the most effective of these 
parameters that significantly affects the general 
behavior of the optimization algorithm. There 
has been considerable research to investigate the 
nature of mutation and its optimum rate [6, 7]. 
Many studies have suggested different static 
mutation rate for optimization by evolutionary 
algorithms. These rates are derived from trial-
and-error or by experience. Eiben et al. and 
Grefenstette proposed mutation rate of 0.05 and 
0.01 respectively [8, 9]. Back et al. and Krink et 
al. carried out comprehensive studies on the 
effect of mutation rate on optimization process 
and proposed frameworks to maintaining the 
diversity that still avoid premature convergence 
[10, 11]. To treat an optimization problem with 
a large design space, Adaptive Range GA 
(ARGA) was proposed by Arakawa and 
Hagiwara for binary genetic algorithms [12]. 
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The idea behind this method is to adapt the 
population toward promising design regions 
according to the distribution of the design 
variables. It uses the statistics of the top half of 
the population to adapt the genes in the search 
space. Hence, the adapted population distributes 
in the hopeful search region. The method was 
further extended to real coded applications of 
single and multiple objective function 
optimization problems [13].  The main objective 
of the present study is to develop a parallel GA 
framework for aerodynamic shape optimization 
applications that is appropriate and applicatory 
to the problems with high CPU costs and large 
memory requirements.  Also, an online adaptive 
mutation rate that consists of two phase of 
exploration and refinement is introduced which 
by taking feedback from the relative success or 
failure of the individuals, increase the 
convergence rate of the optimization method. 

2 Optimization with Genetic Algorithm 

Genetic Algorithms are probabilistic methods 
inspired by the ‘survival of the fittest’ principle 
of Darwin's Theory of evolution. Artificial 
individuals are generated and put into 
competition for life and only the survivors are 
transferred to the next steps. A new population 
will be generated using three operators of 
crossover, reproduction and mutation and the 
process repeats until some search termination 
criteria are satisfied.  
In the current study, a real coded GA is applied 
and chromosomes, genes and fitness are 
corresponding to the design candidates, design 
variables and objective function, respectively 
[14]. According to the nature of the problem and 
considering the state-of-art, an elitist strategy 
for the tournament operator is applied, where 
the two best chromosomes in each generation 
are transferred into the next generation without 
any change [15]. The objective function is 
evaluated using the numerical solution of 
governing flow equations. Then, the population 
is optimized according to the objective function 
value (fitness) through the GA. The crossover 
operator exchanges the chromosomes of the 
selected parents, randomly. A simple one-point 
crossover operator is utilized in this paper with 

72% probability of combination, as the use of 
smaller values was observed to deteriorate the 
GA performance [15]. 
For being able to search the whole domain an 
adaptive mutation rate is applied where 
probability of mutation is adjusted according to 
the population diversity. More details about this 
technique is presented in the following sections. 

3 The Flow Analysis Solver 

The real cost of evolutionary airfoil shape 
optimization depends on the number of 
objective function evaluations using the CFD 
solver which is determined by the generation 
number and population size. Therefore it is very 
important that the CFD solver to possess high 
efficiency and convergence rate. The 
aerodynamic evaluation is based on a two-
equation k-ε turbulence model that is 
implemented together with the wall function 
near wall treatment for computation of 
Reynolds Averaged Navier–Stokes (RANS) 
equations [16]. The turbulent flow equations are 
solved using a finite volume cell-centered 
implicit scheme that follows the work of 
Jahangirian and Hadidoolabi on unstructured 
grids [17]. The governing equations are as 
following: 

Q F G

t x y

  
  

  
0 (1) 

where Q is the flow variable vector and F and G 
are the combination of convective and viscous 
fluxes. 

VIVI GGGFFF  , (2) 

superscripts I and V are used to separate 
inviscid and viscous terms. In Equation 1 and 2 
the Q, F and G are as following: 
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where u, v, p, ρ and E are the velocity 
components in x and y directions, pressure, 
density and internal energy of the fluid, 
respectively. Also heat flux (q) are defined as: 
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where viscosity (µ) is calculated from 
Sutherland's law and Prandtl number (Pr) is 
considered 0.9 for turbulence flow. Integrating 
equation (1) over the control volume, results in 
the following equations:  
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where A and L are the area and the side of the 
triangular cell, respectively. Considering the 
above equation for each cell, the set of ordinary 
differential equations is obtained:  

( ) ( ) ( )i i i i

d
A Q R Q D Q

dt
  0 (7) 

where Ai is the area of the cell i and Ri(Q) 
includes the viscous fluxes and convective. To 
provide numerical stability, the artificial 
dissipation fluxes Di(Q) are also added. 
To obtain accurate objective function 
evaluations having suitable computational grid 
is very essential since the numerical solver 
performs several hundreds of times in 
optimization process. Therefore, the successive 
refinement approach is used in the current 
research [18]. The method is capable of 
producing high-quality (regular) stretched cells 
inside the boundary and shear layers as well as 
isotropic cells outside these regions. During the 
optimization process, the airfoil boundaries are 
changing; therefore, the existing grid is 
modified in an automatic manner using tension–
spring analogy in order to be adapted to the 
changing domain [19].  

4. Parallelization Methodology

Several parallelization methods can be 
considered for the problems related to the time-
consuming CFD simulations [20, 21]. It was 
only during the recent years that efforts have 
been made to propose strategies for designing 

PGAs in the field of the evolutionary 
aerodynamic shape optimization. Panmictic 
GAs can be parallelized readily by using 
master/slave model, which works well for a 
small number of individuals. However, as the 
number of nodes increases it becomes 
inefficient by excessive communications. 
Cellular PGA is designed to run on massively 
parallel processing computers. In such an 
algorithm, selection and mating are limited to 
small groups that overlap to permit some 
interactions among all individuals. Hence, good 
solutions might be disseminated across the 
entire populations. Sometimes, the Cellular 
parallel GA is also termed as the Fine-grained 
PGA. A distributed PGA may sound more 
complicated, as it consists of several 
subpopulations that exchange members 
occasionally. This exchange of members is 
called migration that is controlled by several 
parameters. Distributed PGAs are also known as 
the multi-deme or island model PGA. Figure 1 
shows such general models of PGA. 
Various PGA models may be used together to 
produce other Hierarchical PGA (HPGA) 
models. For example, one may apply a 
hierarchical PGA that combines a distributed 
PGA and a master–slave PGA, which we 
consider in this paper, or even another level of 
island PGAs. Basically, HPGA is any 
combination of two or more of the three basic 
forms of PGA. 
Although PGA is widely used in different fields 
of optimization, many important parameters 
need to be tuned when it is applied in the field 
of aerodynamic shape optimization. In the 
present work, following the work of Ebrahimi 
and Jahangirian [22] a two-level HPGA 
including is applied where island and 
master/slave model are used for the first and 
second layers, respectively. The main steps of 
the applied framework are as following:  

Fig. 1 Different basic PGAs (a) master/slave (b) cellular 
(c) distributed 
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1- The main tasks of the framework including 
GA operators and airfoil shapes generators are 
transferred onto the master nodes. 
2- Parallel subpopulations’ evolutions then 
begin at the selected computing clusters. 
Whenever they receive a launch request of the 
subpopulation evolution service, job submission 
protocol is represented at the master node of the 
respective clusters.  
3- At each cluster, scheduling and resource 
discovering is conducted to farm the field of 
available processing nodes for chromosome 
evaluations. 
4- Once, all individuals are evaluated by 
numerical solver, the obtained results are 
marshaled back to the master node to undergo 
the parallel algorithm. 
5- The developed subpopulations are sending 
back to the master nodes to proceed with the 
migration operation. Such a process repeats 
until the optimization criteria is met. 

5 Population Dispersion 

Since genetic drift is one of the main reasons of 
the delay in the convergence of evolutionary 
optimization algorithm, applying a proper 
population dispersion method plays an 
important role in enhancement of the 
convergence rate. One of the key factors for 
keeping the gene diversity, longer than the 
Simple Genetic Algorithm (SGA) is applying 
Adaptive Range GA. While the gene diversity 
helps to the robustness of the framework, the 
adaptive feature improves its local search 
capability. 
The new technique developed in this paper 
provides a better diversity in the design space 
where unlike most of well-known mutation 
adaptation methods, the proposed one has its 
own mutation value for each gene.  Firstly, the 
mutation rates for all genes are set to an initial 
value in a specified boundary. Based on the 
feedback obtained by monitoring fitness value 
evaluations of members, an adaptive approach 
for adjusting mutation rates for the gene 
locations is proposed. The proposed technique 
consists of two phases of exploration and 
refinement. In the phase of exploration, the aim 
is to scatter all genes across the entire domain. 

At each generation, the mutation rate (MRi) is 
updated based on the feedback taken from the 
fitness value of individuals. If the fitness value 
corresponding to the gene location (FVPi) is less 
than the average fitness value, based on the 
formulation (8), the mutation rate for the 
corresponding gene is increased by the value of 
ai. On the other hand, if FVPi to FVAvg ratio is 
more than 1, then MRi is decreased accordingly. 
For minimization problem, an inverse procedure 
should be applied.  
By taking feedback at each generation, MRi 
values are allowed to vary within the lower and 
upper limits. If an update, results a parameter to 
exceed the limits, it automatically is changed 
according to the formulation 9 as following: 

(8) 

(9) 

where N and L are the size and the length of 
individuals and λ is mutation update in each 
generation which is kept under 15%. Based on 
the numerical experiments the exploration phase 
usually consists of around 10 to 14 generations. 
After this phase and when the generated data 
spread out enough in the whole domain, the 
refinement phase begins. In this phase, the 
majority of the new GA individuals start to 
concentrate in the selected regions of the 
domain while still some members seek regions 
where have not been searched fairly. At the end 
of each three generations, the best chromosomes 
randomly are switched between subpopulations. 

6 Result 

This section is divided in to three parts; firstly 
the efficiency of the proposed population 
dispersion method through a simple geometric 
reconstruction problem is investigated. In the 
second part, the performance of the 
parallelization is inquired and finally the 
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method is applied for aerodynamic shape design 
and results are discussed. 

6.1 Efficiency Assessment 

The developed PGA with adaptation mutation 
strategy is expected to provide better diversity 
in the design space and decrease the 
computational time of optimization process. To 
evaluate the generality and flexibility of the 
proposed method, an inverse geometric 
reconstruction procedure is applied and a 
developed PARSEC parameterization technique 
is used for airfoil shape generation [2]. An 
awkward shape is chosen as the initial shape 
and the target airfoil is RAE2822. An iterative 
optimization by proposed PGA is carried out in 
order to assess the capability of the method for 
producing the goal shape. The objective 
function for this problem is defined as 
following:  

(10) 

where Ydi and Ygi are the design and target 
coordinates of the surface points with fixed Xi 

coordinates. This formulation should be 
minimized in the process of optimization.   
Figure 2 shows the initial and target airfoils as 
well as the final airfoil generated by the 
proposed method after 200 generations. As 
illustrated, the trailing edge of the initial shape 
is considered different with the final shape. To 
investigate the performance of the proposed 
method, in Figure 3, the obtained shape at the 
trailing edge is compared with the one generated 
without using the propose technique (SGA). 
This figure indicates that the current work gets 
the target shape more effectively. 
To statistically investigate the efficiency of the 
proposed technique, in Table 1, mean values (µ) 
and standard deviation (σ) of the upper crest 
location (one of the parameterization 
parameters) are compared at 11th (exploration 
phase) and 25th (refinement phase) generations 
with the ones with fixed mutation rates of 1% 
and 5%. According to this table, in the 
exploration phase, genes in the proposed 
technique are scattered in the design space more 
properly and search is carried out in a wider 

range of the design space. Better results also are 
obtained in the refinement phase. 

Fig. 2 Initial, target and the final airfoils obtained by 
inverse geometric reconstruction 

Fig. 3 Target and design airfoils at the trailing edge for 
inverse geometric reconstruction  

Table 1 Statistical comparison of exploration and 
refinement phase for inverse geometry reconstruction 
Applied 
method 

Generation 
No. 

Mean 
Values (µ) 

Standard 
Deviation (σ) 

Simple GA 
with 1% MR 

11 0.0671 3.69E-4 

25 0.0572 3.09E-3 

Simple GA 
with 5% MR 

11 0.0642 3.51E-4 

25 0.0563 2.87E-3 

Present 
method 

11 0.0547 3.08E-3 

25 0.0539 2.95E-3 
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6.2 Parallel performance study 

In this section, the performance of the parallel 
strategy under various numbers of individuals 
and the cluster size is investigated.  

6.2.1 Optimizing the population size  
When parallelization is applied for evolutionary 
shape optimization, one of the key factors for 
the successfulness of the algorithm is the 
selection of the optimum population size. As the 
population size, which is equal to the number of 
processors increases, the computational time of 
the optimization process will rise. That is due to 
the fact that each shape requires different 
number of CFD iterations for evaluation. Higher 
population size in turn could lead to lower 
required numbers of generations in order to gain 
the same level of objective values. Therefore, to 
minimize the clock time of optimization 
process, a compromise between the population 
size and the required numbers of generations 
should be applied. In Figure 4, for three 
different airfoil shape optimization problems, 
the optimization time by Parallel GA against the 
population size is illustrated. It should be noted 
that the calculated time here is the period when 
the program starts; up to the time it reaches to 
the objective value of 58.5. According to this 
figure the optimum population size is 20 in 
these cases.   

6.2.2 Parallel Speed-up 
When a parallel algorithm is executed, one of 
the main performance issues is that how much 
speed-up the parallelization can offer. Such a 
speed-up is defined as following: 

s
p

p

T
S

T
 (11)

where Ts and Tp are the execution time of the 
sequential and parallel algorithms, respectively. 
To compare the efficiency of the proposed 
method in terms of the actual clock time of 

optimization process, a parameter called Cost 
Function Efficiency (CFE) is introduced using 
Amdahl’s law [23]. The performance of the 
proposed parallelization strategy for the above 
airfoil design problem is assessed and presented 
for the population sizes of 12, 20 and 32. For all 
cases, the calculation time defines the period 
when the program starts; up to the time it 
reaches to the objective value of 58.5. 

Fig. 4 Computational time of three airfoil shape 
optimization problems against the population size 

Looking at Table 2, it is observed that by 
increasing the population size, the speed-up is 
increased. More importantly, it shows that how 
the usage of a proper parallelization strategy 
could lead to more CFE, which means applying 
more subpopulations as well as individuals do 
not always result in more efficiency. For 
instance, when the number of subpopulations 
and population size are 32 and 4 respectively, 
the CFE is about 25% less than when 20 
individuals and 3 subpopulations are utilized. 
The main reason is that by using more 
subpopulations the idle time of processors 
increases. However, no significant different is 
observed in the number of generations of the 
optimization process. In addition the semi-liner 
speed-up indicates that the model is suited for 
modern cluster work stations. 

Table 2 Speed-up and Cost Function Efficiency of the proposed method for different cluster sizes 

One Sub-
population (PGA) 

Two Sub-
population 

Three Sub-
population 

Four Sub-
population 

Population size 12 20 32  12 20 32  12 20 32  12 20 32 

Speed-up 10.9 18.1 29.0  20.2 34.8 54.7  29.7 51.9 81.1  38.8 67.8 106.0 

CFE 63.9 88.0 67.4  68.1 90.7 71.4  69.2 91.8 71.8  64.8 88.7 68.7 
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6.3 Aerodynamic Shape Optimization 

In this section the aerodynamic efficiency of the 
proposed framework is investigated. In addition, 
a comparison between the parallel and serial 
outcome are carried out. More detail about the 
serial method may be found in [2]. A transonic 
flow is considered with the Mach number 0.73, 
Reynolds Number 6.3 million and incidence 
angle 2.8 degrees. The RAE-2822 airfoil is 
considered as the initial airfoil and the objective 
function is the lift coefficient (Cl) to the drag 
coefficient (Cd) which is computed by solving 
the Reynolds-averaged Navier–Stokes 
equations. The computational field is discretized 
using triangular unstructured grids. The Mach 
contour and unstructured grid generated around 
the initial and design airfoil using spring 
analogy is illustrated in Figure 5 and 6, 
respectively.  According to these figures, there 
is a rather strong shock wave near the middle 
part of the initial airfoil upper surface that is 
weakened in the optimum shape. 

Fig.5 Mach contour and unstructured grids around the 
initial airfoil 

Fig.6 Mach contour and unstructured grids around the 
design airfoil 

The initial and final airfoil shapes are plotted in 
Figure 7. Also the distributions of surface 
pressure coefficient (Cp) for the presented PGA 
method and serial optimization algorithms 
(considering imposed physical constrains in [2]) 
is illustrated in Figure 8. This figure also 
emphasizes the successfulness of the presented 
method in decreasing the intensity of the shock 
wave. 

Fig. 7 Obtained airfoil shapes for presented PGA and 
serial SGA methods 

Fig. 8 Obtained surface pressure coefficients for 
presented PGA and serial SGA methods 

The values of lift and drag coefficients and the 
objective functions for the initial and optimum 
shapes are also shown in Table 3. According to 
this table no significant divergence is observed 
for the parallel and serial solutions. The limited 
differences between serial and parallel results 
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can be assumed due to the random nature of 
GA.  

Table 3 Lift and drag coefficients for SGA and PGA 
methods 

Cl Cd Cl/Cd 
Execution 
time (hr) 

Initial Shape 0.81 0.0261 31.09 - 
Parallel SGA Method 0.871 0.0152 57.3 24.7 
Presented Population 
dispersion method-

Serial solution 
0.883 0.0149 59.26 525 

Presented Population 
dispersion method-

Parallel solution 
0.882 0.0149 59.19 17.2 

The above table also indicates that with 
applying the presented PGA algorithm not only 
the objective function is improved around 3.5% 
but also the optimization time is reduced about 
30%. 

7 Conclusion 

A two-level Parallel Genetic Algorithm 
optimization method strategy including a 
master–slave PGA at the lower level and a 
distributed PGA at the upper one was proposed. 
Some crucial parameters such as mutation rate 
and cluster size were optimized. The efficiency 
of the method was investigated through airfoil 
shape optimization. It was found that by using 
the proposed strategy for aerodynamic shape 
optimization significant increase in the objective 
function and reduction in the computational 
time is obtained. The semi-liner speed-up also 
showed that the method is suited for modern 
cluster work stations.  
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