
                     

Abstract 

In  this  paper,  an  original  method  has  been
developed in order to compute simultaneously
primary  per  unit  length  electrical  parameters
and temperature field  of  complex  wiring.  The
suggested  strategy,  based  on  topological
description of the electrical network and the use
of integral equations, was applied to a realistic
cable  bundle.  Numerical  experiments,
conducted  with  specifically  designed  tools,
highlighted  the  significant  role  played  by
electromagnetic  coupling  on  the  heating  of  a
group of cables.

1)  Context

In recent years, the part of electricity used
as  auxiliary  power  source  (i.e.  for  non
propulsive purpose) has kept growing  and  will
continue  to  increase,  given that  electricity  has
considerable advantages compared to hydraulic
or  pneumatic  powers.  This  trend,  known  as
“More Electrical  Aircraft”  (MEA),  leads to an
increase  of  the  number  of  cables  in  the
embedded  Electrical  Wiring  Interconnection
System (EWIS) [1].

Hence,  being  able  to  model  correctly
Electromagnetic  Compatibility  (EMC)  and
thermal  constraints  on  those  cables  thereby
becomes  more  and  more  stringent  for  future
MEA  developments  [2].  However,  nowadays
these constraints are studied separately (see Fig.
1),  which  means  that  physical  interactions
between both EMC and thermal models are not
taken  into  account  and  finally  leads  to  a  non
optimal mass of the whole cable system.

Therefore, the aim of this paper is twofold.
Firstly,  we  will  describe  the  mainlines  of  the
two  EMC  and  thermal  models  developed  at
ONERA.  Secondly,  we  will  detail  a  common
methodology for  managing  both  constraints
within  the  same  computation  procedure  to
allow, for future developments, optimization on
the embedded mass and design of the EWIS.

2)  Topological description of the network

To model a large EWIS as those embedded
on  aircraft,  one  has  first  to  reduce  its
complexity.  The  topological  approach  is
well-suited for such a purpose by enabling the
representation  of  the  whole  electrical  network
with only few elements.

Thus,  each  identified  group  of  cables
sharing  the  same  geometry  or  operating
conditions are modeled inside the same tube as
a uniform transmission line. This classification
was  first  applied  at  ONERA  for  EMC
applications and selection criteria were  defined
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according  to  electromagnetic  considerations
like,  for  example,  the  distance  to  a  reference
ground  plane.  Nevertheless,  this  topological
description  can  not  only  be  seen  from  an
electromagnetic  point  of  view  but  thermal  as
well, which constitutes the original part of our
work.  Consequently,  parameters  like  ambient
temperature  or  pressure  that  can  impact  heat
transfer at harness level are also included in the
definition  of  tubes and  can result in  slightly
different topological representations as depicted
in Fig. 2.

In this example, a cable bundle crosses two
different  thermal  environments  while  from an
electromagnetic  approach its  situation  has  not
changed.  This  observation  is  still  true  in  the
event where electromagnetic parameters (due to
a  shift  of  bundle  installation  for  example)
change along the wiring while thermal ones do
not.  This  fact  illustrates  that  both  EM  and
thermal  topological  views  can  be  seen  as
specific  refinements  of  a  more  general
topological tree.

Once  this  topological  step  is  established,
the next phase of the description is to define for
each  tube its  own  physically  representative
cross-section that takes into account installation
conditions.  Junctions of  the  network

interconnecting tubes are modeled with nodes in
the  topological  tree.  These junctions  ensure
electrical and thermal continuity over the tubes
network. They also represent load impedance or
heating equipment depending on which point of
view one stands.

An example of a complete topological tree
for a possible MEA architecture is given on Fig.
3.
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Fig. 3: General topological representation of
an MEA architecture
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3)  EMC modeling

Multiplication  of  EMI sources  as  well  as
the rise of frequency in systems operations  can
lead to critical  malfunctions between electrical
devices.  Wiring  network  represents  a  very
special issue for electromagnetic study because
cables  are spread throughout  the structure and
can be both source and receiver of interferences.
To  avoid  that  such  coupling  phenomena
jeopardize the safety of the aircraft, EMC study
has to be conducted as soon as possible in the
development cycle.

To restrict  the use of  heavy experimental
setups, ONERA has developed for many years
its own software suite called CRIPTE™, whose
objectives  are  to  predict  and  quantify
propagation  and  coupling  phenomena  that  are
generated  on  the  wiring  network.  In  this
framework,  principles  of  electromagnetic
topology  have  been  coupled  to  the  theory  of
“multiconductor transmission  line  network”
(MTLN). Hence the whole system is split into
several  sub-systems  and  the  resolution
procedure can be divided into three major steps
as further presented below [3] [4].

3.1)  Multiconductor Transmission Line 
Model

The  Transmission  Line  theory  is  based
under  the  assumption  of  transverse
electromagnetic  (TEM)  modes  propagating
along  the  wiring.  This  approximation  can  be
made  because  cross  dimensions  of  the  wiring
are often negligible in front of the wavelength
of carried signals, which in return limits the use
of this formalism to hundreds MHz.

Consequently,  within  its  validity  domain,
this  TEM  mode  assumption  greatly  simplifies
Maxwell's equations and yields to the following
expressions  of  the  transverse  electric  and
magnetic field :

H T=
1

 η 
z×ET

∇T ×ET=0 and ∇ T . ET=0
(1)

where η represents the characteristic impedance
of  the  dielectric  medium between  conductors.
We can notice that the two expressions linked to
ET can be expressed as a single gradient of the
scalar electrostatic potential Φ. 

Thus,  the  electromagnetic  field  can  be
obtained  from  an  equivalent  electrostatic
problem  which  has  the  type  of  a  Laplace's
equation :

∇ .(ϵ ∇Φ)=0 (2)

Moreover,  this  theory  predicts  that  the
propagation properties of the line can be fully
characterized by its four primary electrical  per
unit  length  (p.u.l)  parameters  namely  :  its
resistance R,  inductance  L,  capacitance  C and
conductance G. While the first two are derived
from the conductor properties, the last two arise
from the dielectric of the line. By denoting [Z]
and  [Y]  respectively the  impedance  and
admittance matrix  of  the  transmission  line,
defined by [Z]=R+j.ω.L and [Y]=G+j.ω.C,  one
obtains the equivalent circuit  of an elementary
portion of a  multiconductor line as depicted in
Fig. 4.

In  the  above  outline,  Vs and Is stand
respectively  for  voltage  and  current  source
terms  that  described  electric  and  magnetic
coupling  between  the  line  and  its  EM
environment.  Precise  evaluation  of  those
equivalent  sources  are  of  primary  interest  in
EMC study. In the frame of MTLN theory, their
estimation can be made through the knowledge
of the tangential electrical field along the path of
the line.

From  the  previous  considerations,  the
propagation  equation  can  be  obtained  from  a
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Fig. 4: Diagram of an elementary part of
multiconductor transmission line
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generalized  expression  of  the  well  known
telegraphers equation :

∂ [V ( z)]
∂ z

=−[Z ] .[ I ( z )]+[V s
( z)]

∂[ I ( z)]
∂ z

=−[Y ].[V ( z)]+[ I s
( z)]

(3)

In  our  case,  it  is  useful  to  rewrite
unknowns as the sum of two waves traveling in
opposite directions, which gives for voltage part
of equation (3) :

[V ( z)]+=[V (z )]+Z c( z) .[ I ( z )]

[V ( z)]-=[V ( z)]−Z c( z) .[ I ( z )]
(4)

where  [Zc]  and  [γ]  are  respectively  the
characteristic  impedance  and  the  propagating
coefficient matrices of the line and are defined
by : 

[Z c]=[ γ].[Y ]
−1

=[γ]
−1 .[Z ]

[γ]=√[Z ] .[Y ]
(5)

This finally  yields  to expressions that  we
will further use : 

∂ [V ( z)]+
∂ z

+[γ].[V ( z )]+=[V s
(z )]+

∂[V ( z )]-
∂ z

−[γ] .[V ( z)]-=[V s
( z )]-

(6)

These equations are valid for each tube of
the  topological  tree  but  they  assume a  prior
determination of the Vs and Is distributed sources
and  the  knowledge  of  the  RLCG  primary
electrical parameters. The next section discussed
the method for evaluating these parameters.

3.2)  Computation of the RLCG matrices

Determination  of  the  electrical  primary
parameters is done using the electrostatic code
LAPLACE,  which  is  an  integral  part  of  the
software  suite  CRIPTE™.  This  dedicated  tool
solves,  by  means  of  Method  of  Moments
(MoM), the electrostatic equivalent problem (2)
for  an  arbitrary  cross-section.  Indeed,  it  is
proved that the capacitance matrix  [C] can be

directly  deduced from  the  expression  of  the
scalar potential (2) [5].

As a first step, capacity matrix [C]0 of the
multiconductor line is computed in the absence
of dielectric material. The inductance matrix is
thus obtained from [C]0 thanks to the following
relation :

[L ]=
1

c2 .[C ] 0
−1

(7)

In the presence of dielectrics around conductors,
another  computation  is  necessary  to  find  the
final capacitance matrix [C].

The  conductance  matrix  [G]  can  also  be
obtained  from  the  capacitance  one  by  taking
into account the complex part  to the electrical
permittivity.

Finally,  the  resistance  matrix  is  the
simplest to define since its value, corresponding
to the linear resistivity of the wire, is an intrinsic
property  of  conductors  and  can  be  directly
measured.  Nevertheless,  we  may  take  into
consideration  the  frequency  and  thermal
dependence  due  respectively  to  skin/proximity
effects  and  Joule's  heating.  In  this  case,  DC
resistance  value  has  to  be  rectified  with  an
adapted  coefficient  depending  on  the  material
used and the layout configuration.

3.3)  BLT equation

The  key  equation  to  find  currents  or
voltage  at  any  point  of  the  network  is  the
Baum-Liu-Tesche  (BLT)  equation.  Its
expression  is  established  from  the  topology
description of the electrical  grid by combining
propagation  equation  of  waves  over  the
network, as introduced in (4), and a generalized
scattering  equation  which  described  waves
distribution on junctions.

Unknown  waves  in  the  frame  of  BLT
equation are direct ones, defined by :

(W ( z))=(V ( z))+=(V ( z))+Zc ( z).(I (z )) (8)

By applying the change of variable  z'=z-L
for retrograde waves, it appears that each end of
the line is  the starting point of a  direct  wave.
Thus, we defined for each tube two direct waves
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with opposite traveling directions as depicted in
Fig. 5.

It  then follows that  the transmission of a
wave  along  a  tube  takes  the  following
formulation :

[W (L)]=[Γ] .[W (0)]+[W s
]

with : 

[W (0)] = [[W 1( z=0)]

[W 2( z '=0)]]
[Γ] = [ e−[γ]. L [0 ]

[0 ] e−[γ]. L]

[W s
] = [∫0

L

e−[γ].(L−z ).[V s(z )]+ . dz

∫
0

L

e−[γ].(L−z ' ) .[V s
( z ' )]+ . dz ' ]

(9)

Junctions,  that  can  represent  both  load
impedance  or  simply  dispatching node  of EM
waves,  ensure  electrical  continuity  over  the
network.  Consequently,  one  has  to  define  the
scattering  [S]  matrix  associated with  each  of
them. For an arbitrary junction we therefore get,
as related to Fig. 6 :

{W c (0)=[S ca ] . [W a(L)]+[S cb ]. [W b(L )]

W d (0)=[S da] . [W a(L )]+[S db ]. [W b(L)]
(10)

Which we can rewrite in :

[W (0)]=[S ] .[W (L)]

with : [S ]=[[S ca ] [S cb ]

[S da ] [S db]]
(11)

Finally, the  propagation  equation  coupled
to the generalized  scattering  equation  leads  to
the BLT equation for the whole network :

([ Id ]−[S ].[Γ]).[W (0)]=[S ] .[W s
]

where [Id ] is the identity matrix
(12)

Once the algebraic system is solved, i.e the
starting  waves  [W(0)]  are  determined  for  all
junctions, one can retrieves voltage and currents
at  every  point  of  the  network  by  means  of
equations (4) and (9).

4)  Thermal modeling

The purpose of the thermal simulation is to
predict, from a topological representation of the
EWIS,  the  total  amount  of  heat  produced  by
groups  of  cables.  Although  norms and abacus
exist, these ones are often inaccurate in a wide
range of practical applications and thus tend to
overestimate  the  temperature  of  such  bundles
[6].

4.1)  Heat Equation

To  ensure  precise  calculations,  our
approach  has  been to  directly  solve  the  Heat
Equation,  whose  general  expression  in  steady
state case is given by :

∇ .(λ ∇ T)+qgen=0 (13)

where  λ is  the  thermal  conductivity  of  the
material  [W/(m.K)].  If  we  assume  constant
Joule  heating, then  the  volume  heat  source
(expressed in W/m3) can be computed by :

qgen=
ρ . Ieff

2

π
2. r4 (14)

with : Ieff, the efficient current flowing through a
wire  (A)  of  radius  r (m)  and  linear  electrical
resistivity ρ (Ω.m).

Basically, we took the following expression
for boundary condition :

λ
∂T
∂n

=h[T ∞−T ]+ϵσ[T ∞
4
−T

4
] (15)

where  h represents  the  convective  transfer
coefficient,  T∞ the  ambient  temperature,  ε the
thermal  emissivity  of  the  surface  and  σ the
Stefan-Boltzmann constant.
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Convective and radiative contributions are
often put in an overall transfer coefficient which
simplifies (15) :

λ
∂T
∂n

=h(T )[T ∞−T ]

with : h(T )=hconv(T )+hrad(T )
(16)

4.2)  Heat transfer coefficient

The  main  challenge  here  arises  in  the
precise  determination  of  the  coefficient  of
convective  heat  transfer  hconv  ,  which  strongly
depends  on  the  thermal  environment  (ambient
temperature and pressure), on the nature of the
flow (natural or forced convection) around the
harness as well as the installation conditions of
the  wiring.  Indeed,  its  value  may  fluctuate
rapidly due to change of one of these parameters
and  this  issue  constitutes  a  very  complex
non-linear problem of fluid mechanics.

Because there is no general expression for
this  coefficient,  we  must  estimate  it  for  each
case  of  interest  by  means  of  empirical
correlations or experimental measurements.

5)  Coupling strategy

To  optimize  total  mass  of  wiring
considering both thermal and EMC constraints,
two ways of proceeding can be considered. The
first  one  is  to  modify  the  diameter  of  wires
composing  the  bundle  while the  second  one
consists  in  a cross-section  reshaping.  Such
optimization principles are described in [6].

As illustrated on Fig. 11, the electrostatic
and  temperature  computations  both  involve  a
Poisson's  equation,  with  a  different  set  of
coefficients for each physics.

Indeed, temperature and electrostatic field
are derived from the same potential notion  [7].
Hence,  when  applying  to  a  cable  bundle,  a
single resolution of the Laplacian must give the
p.u.l properties of the transmission line and  its
temperature  distribution  at  the  same  time.
Couplings between thermal and electromagnetic
phenomena are therefore totally defined by the
characteristics  of  the  electrical  currents
(intensity, frequency), the thermal properties of
materials and the estimation of the heat transfer
coefficient to the surrounding environment.

In  the  aim  of  providing  a  unique
computational  tool  for both thermal  and EMC
issues,  Poisson's  equation  has  first  to  be
expressed in its integral formulation as detailed
in Fig. 8.

Integral equations are aimed to be solved
only  at  frontiers  of  the  geometry.  Hence,  the
final  potentials  are  obtained  anywhere  on  the
cross-section  by  combining  results  of  each
sub-domain  boundaries.  Since  no  analytical
solution exists to these equations except for very
particular  case, one  has  to  use  a  numerical
method to solve them. In our case, this is done
through the Method of Moments where solution
F is  interpolated  by  a  set  of  known  basis
functions like expressed below :

F=∑
i=0

+∞

ai . f i (17)

These functions are then weighted by other ones
called “test” functions :

(18)

Finally,  the  contour  Γ,  which  represents
boundary of an arbitrary domain, is sampled in
finite  number  of  segments  or  radius  sections
according  to  which  shape  is  the  most
appropriate for it. This yields to a general matrix
equation where the unknown vector contains the
ai coefficients weighting F.

Although  mathematically  these  equations
are part  of the  same resolution  frame,  from a
physics  point  of  view the  distinction  between
the EMC and thermal calculations is made when
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Fig. 7: Equivalence between electrostatic
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applying  their  different  boundary  condition  :
Dirichlet  kind  for  electrostatic  problem
(imposed  potential  of  the  ground  returning
plane)  and  modified  Robin  kind  for  thermal
issue as stated in (15). However, except for the
matrix  blocks directly  attached  to  boundary
conditions,  the matrix  that  gathers  interactions
between Green's  functions  G (the fundamental
solution  of  the  Laplacian)  and  the  basis
functions  can  be  used  by  both  calculations
because  it  only  depends on  the  shape  of  the
cross-section.

Thus,  this  allows  the  simultaneous
computation of the electrostatic potential and of
the  temperature  field.  It  also  enables  fast
recalculations  when  the  layout  configuration
remains  unchanged,  because  time-consuming
operations can be avoided as they are just made
once (in particular, the interaction matrix stays
the same).

This  property  is  useful  when
thermo-physical properties of materials must be
taken  into  consideration. The  whole  coupling
strategy is summarized in Fig. 9.

Currently,  a  thermal  solver  which  solves
the  heat  equation  by  means  of  Method  of
Moments  has  been  developed  apart  from
CRIPTE™ software.  However,  the  loop
consisting  of  the  injection  current  update  is
already effective and allows us, as we will see in
the next section, to conduct coupled EMC and
thermal simulations.

6)  Application to complex bundle

An application case has been defined as a
bundle  of  11 cables  inserted  into  an  insulator
sheath and placed in free air.

In a first simulation only three cables have
been  fed  with  TTL  signals  of  200  kHz
frequency and cycle ratio 0.5. Respective RMS
intensity of 11 A, 8 A and 33 A were carried by
wires 2,  7 and 9 (Fig.  10).  Other  cables  have
been  short-circuited  in  order  to  emphasize
crosstalk currents.
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Fig. 9: General coupling strategy and
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As a  first  step,  topological  and geometry
description is made using  CRIPTE™ software.
On  the  unique  defined  tube,  powered  cables
were connected by a 1 Ω impedance to a ground
reference  plane  located  5  centimeters  below.
The bundle length was set to 1 meter.

Cross-section,  whose  schema is  given  by
Fig.  10,  has  been  generated  randomly  from
geometrical and physical description established
by CRIPTE™ and its integrated tool ALEACAB.

In  the  following  simulations,
thermophysical  properties  of  materials  are
neglected.  The  variation  of  the  electrical
resistivity  as  a  function  of  frequency  is  also

disregarded  because  the  skin  effect  depth  is
close  to  the  dimension  of  wires. Thermal
boundary condition is natural convection in free
air with a constant heat coefficient transfer.

As  shown  in  Fig.  12,  a  first  thermal
calculation is made solely from the the injection
voltage.  At  this  stage,  no  CRIPTE™
computation  is  done  and  the  effect  of  the
crosstalk  currents  does  not  appear  in  the
temperature result.

In a second stage, a CRIPTE™ calculation
enables us to evaluate the currents on each wire
of the bundle. These currents are then averaged
and  injected  in  the  thermal  solver  as  volume
heat source power by means of equation (14).
Final values for currents and heat generated are
given in Table  1.  Results  show an increase of
the temperature up to 16 °C, and we can note
that  this  overheating  is  especially  located  on
wires 1 and 6. Indeed, these ones were placed in
close  proximity  to  the  two  voltage  injections
(wire 2 and 9).

However,  due  to  electromagnetic  laws  of
induction and energy conservation, the efficient
currents flowing on those powered wires have
been filtered and reduced in regards to the initial
injection, and the part of  lost currents ended up
exactly on the wires placed in short-circuit.
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1 0 4.65
2 11 10.09
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Fig. 12: First test case results
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Although  injection  cables  produce  less
heat, this reduction is largely offset by the heat
produced  by  the  induced  currents  flowing  on
those short-circuited cables.

In order  to  analyze  the crosstalk  currents
contribution  on  the  total  heat  generation,
another simulation has been conducted.  In this
second test  case,  the  same simulation  plan  as
previously  stated  has  been  followed,  but  a
difference  lied  in  the  number  of  fed  wires  :
while number 7 and 9 were turned off (but still
matched  to  the  1  Ω  impedance),  wire  2  still
carried a  11 A RMS current.  In  this  case,  the
temperature  difference  between  simulations
with  fixed  and  calculated  currents  by
CRIPTE™ was smaller than 2 degrees at least
as  shown  in  Fig.  13,  contrary  to  what  was
observed for the first test case.

Indeed,  as  shown  in  Table  2,  more  heat
had  been  generated  when  crosstalk  currents
were  disregarded.  By  looking  carefully at
relation  (14),  one  can  see  that  the  amount  of
heat created by Joule's effect depends not only
on the square of the effective current but also on
the inverse of  the  fourth  power of  the  radius.
This  emphasizes  that  a  better  current
distribution between small and large wires leads
to less heat generated even though these induced
currents are far from irrelevant.

7)  Conclusion and perspectives

The  need  for  coupled  EMC and  thermal
modeling has been demonstrated as both aspects
significantly impact on the total heating of cable
bundles.

Future  works  will  include  the  complete
integration of the thermal  tool into  CRIPTE™
software  and  the  development  of  an
optimization procedure in order to reduce, from
EMC and thermal criteria, the mass of a given
EWIS.

In  order  to  refine  our  thermal  model,
especially  on convective  coefficient  issues,  an
experimental workbench should be built shortly.
Its objectives will be twofold. On the one hand
it  will  validate  numerical  results  given by the
tool specially  developed. On the other hand it
will  provide  a  database  of  heat  transfer
coefficient  for  some  EMC  case  of  interest  :
bundle  in  free  air,  above  a  ground  plane  or
placed  into  a  raceway.  The  setup  will  be
composed  of  a  climate  chamber  with
temperature  controlled  walls  and  adaptable
height. The velocity field of the airflow around
the  bundle  will  be  measured  by  means  of
Particle  Image  Velocimetry  (PIV)  technique,
which  allows  to  retrieve  an  estimation  of  the
convective  heat  transfer  coefficient  h.
Concerning temperature measurement,  we will
widely  inspire  of  [8] and  should  use surface
thermocouple  probes  placed  on  interesting
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Table 2: Currents and total heat generated for
the second test case

Wire

1 0 2.13
2 11 10.13
3 0 0.04
4 0 1.28
5 0 0.18
6 0 2.17
7 0 0.01
8 0 0.63
9 0 0.2

10 0 0.1
11 0 0.19

7.76 7.46

Initial RMS cur-
rents injection 

(A)

RMS currents 
computed with 

CRIPTE (A)

Total heat 
generated 

(W)

Fig. 13: Temperature difference for the second
test case (scale is negative)

Temperature difference (°C)



                     

points of the wiring. The drawing of the future
setup is given by Fig. 14.
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Acronyms

CAC : Core Avionic Cabinet

EM : Electromagnetic

EMC : Electromagnetic Compatiblity

EMI : ElectroMagnetic Interference

LB : Load Box

RMS : Root Mean Square

TTL : Transistor-Transistor Logic
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Fig. 14: Drawing of the experimental
workbench
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