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Abstract

In the paper at hand, cost-index-optimal tra-
jectories for multiple aircraft approaching an
airport in the presence of wind disturbances
are calculated. The optimization is based on
optimal control techniques using the full trape-
zoidal discretization scheme implemented in
FALCON.m1[1], and the gradient based nu-
merical optimization software IPOPT[2]. The
main result presented here is a modeling tech-
nique and a multi stage solution process for
large scale trajectory optimization problems
from the field of ATM. In the first stage of
this process, each trajectory is optimized indi-
vidually, before afterwards multiple problems
for an increasing number of aircraft are solved.
Finally, optimal trajectories for all aircraft in
the scenario result, that adhere to the flight en-
velopes and separation limits while minimizing
the total cost index summed up over all aircraft
in the scenario. The aircraft dynamics are
simulated using point mass simulation mod-
els in three dimensional space with the aerody-
namics and the fuel flow models taken from the
Base of Aircraft Data Family 4 (BADA 4) pub-
lished by EUROCONTROL [3]. The consid-

ered scenario – part of the approach to Tokyo
International Airport – is based on real trajec-
tories extracted from MLIT CARATS Open
Data published by the Japanese Ministry of
Land, Infrastructure, Transport and Tourism.
Besides, the scenario includes the influence of
wind, modeled based on data from the Earth
System Research Laboratory. In the scenario,
the optimal state and control histories for 18
aircraft as well as the optimal points in time
for deploying the flaps are determined. The in-
herent discrete decision problem of sequencing
the aircraft is automatically solved by the nu-
merical optimization algorithm in parallel to
the calculation of the trajectories. The opti-
mization stops prior to the final approach fix.

1 Introduction

Currently, many big research projects like
SESAR or NextGen focus on the develop-
ment of the future ATM system. The goal
of all these endeavors is to extensively reorga-
nize the air traffic systems in order to bring
safety and capacity to the next level. The re-
sults of this paper show what can currently be
achieved in ATM when using the high perfor-

This document contains information (BADA 4) which has been made available by the European Organisation
for the Safety of Air Navigation (EUROCONTROL). EUROCONTROL c©2015. All rights reserved. EUROCON-
TROL shall not be liable for any direct, indirect, incidental or consequential damages arising out of or in connection
with this document, in particular with respect to the use of BADA 4.

Matthias Rieck holds a scholarship of Munich Aerospace e.V.
1https://www.falcon-m.com
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mance optimal control techniques of tools like
FALCON.m in combination with a strong nu-
merical optimization algorithm like IPOPT.

The main challenge when solving problems
like the one presented here is to achieve con-
vergence of the numerical optimization. Here,
a two step approach is used: First, the trajec-
tories for all aircraft are optimized individu-
ally, anyway already considering wind and the
discrete switching for the flaps. Afterwards,
the aircraft are one by one added to the overall
problem, starting the solution process of each
problem with the solution for the optimization
variables as well as the Lagrange multipliers
(dual variables) of the previous problem.

The calculation of optimal trajectories for
multiple aircraft has received some attention
during the last couple of years. In [4] a prob-
lem very similar to the one presented here
has been solved, using a comparable method.
However, in the problem solved in the present
work, wind disturbances are added and the
aircraft configuration changes by means of
high lift devices are incorporated in the prob-
lem formulation. Moreover, now 18 aircraft
are considered, compared to nine in the previ-
ous work. Even before, Fisch presented the so-
lution to a multi aircraft optimization problem
including four aircraft in [5]. In [6] a fairness
assessment for scenarios including several air-
craft has been performed. In the calculations,
trajectories for multiple aircraft have been op-
timized for the costs of each single aircraft as
well as the combination of costs for all aircraft.

In the papers [7, 8, 9, 10] different scenarios
with a total of four to eight aircraft of very dif-
ferent model fidelity are considered. They are
solved by various different optimization meth-
ods ranging from Rapidly Exploring Random
Tree Algorithms to Optimal Control and Mixed
Integer (Non)linear Programming. Moreover,
they show different approaches for modeling
obstacles and separation constraints.

The remainder of this paper is structured
as follows: Section 2 describes the dynamic
model for simulating each single aircraft under
the influence of wind. Next, section 3 gives
an overview of the optimal control problem

formulation and the techniques used to solve
it. The specific formulation of a multi aircraft
problem and the multi stage solution strategy
is described in section 4. The results created
in the example scenario are described in sec-
tion 5. Finally, some conclusions are drawn
and an outlook is given in section 6.

2 Aircraft Simulation Model

A three-degree-of-freedom (3-DoF) aircraft
simulation model is used here with the aero-
dynamics, the fuel flow model, and other air-
craft specific information taken from the Base
of Aircraft Data Family 4 (BADA4) published
by EUROCONTROL [3]. The simulation in-
cludes wind, resulting in different values for
the kinematic and the aerodynamic quantities
in the model. The model is controlled by the
lift coefficient, the bank angle and the thrust
lever position. Besides, the spoiler deflection
is considered as a model input. The flaps posi-
tion, which may be seen as a discrete control,
is handled using a hyperbolic tangent parame-
terized by the time of extraction, which even-
tually is a continuous variable. More details
the flaps modeling can be found in section 2.6.

Table 1 Aircraft States and Controls

Name State Unit

x x-position in locally fixed frame m

y y-position in locally fixed frame m

z z-position in locally fixed frame m

VK kinematic velocity m/s

χK kinematic course angle rad

γK kinematic climb angle rad

m aircraft mass kg

Name Control Unit

CL lift coefficient -

µK kinematic bank angle rad

δT thrust lever (normalized) -

δSB speed brake (normalized) -

Overall, the resulting dynamic system for
one aircraft features seven states and four con-
trols, as listed in Table 1. The following sub-
sections give a brief overview of the subsys-
tems included in the model.
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2.1 Position Equations of Motion

The position vector is given in a Locally Fixed
Frame N that is derived from the North-East-
Down (NED) Reference Frame O with its x-
axis pointing northward, its y-axis eastward
and its z-axis downward, but fixed to a point
on the surface of the earth, close to the desti-
nation airport:







ẋ
ẏ
ż







E

N

=







VK · cos χK · cos γK

VK · sin χK · cos γK

−VK · sin γK







N

(1)

In this model, the earth is considered to be flat
and non-rotating.

2.2 Translation Equations of Motion

The derivatives of the kinematic velocity VK ,
the kinematic course angle χK , and the kine-
matic flight path inclination angle γK are de-
pending on the forces acting on the aircraft.
Denoted with respect to the Kinematic Ref-
erence Frame K and using L for the aerody-
namic lift, D for the drag, and g for gravity,
the following equations result:

V̇K =
T − D

m
− g · sin γK

χ̇K =
L · sin µK

m · VK · cos γK
(2)

γ̇K =
L · cos µK

m · VK
−

g · cos γK

VK

2.3 Wind

In general, the aerodynamic velocity required
for the calculation of aerodynamic forces can
be derived from the kinematic velocity using
the wind equation:

(VA)E
O = (VK)E

O − (VW )E
O (3)

The derivative of the wind speed, that is re-
quired in the path constraints described in sec-
tion 2.7 is calculated from:

(V̇A)E
O = (V̇K)E

O−




(

∂

∂t

)O

(VW )E
O + ∇O(VW )E

O · (VK)E
O





(4)

In the example, the wind field is modeled
to be time invariant and only depending on
the current air pressure, which changes with
altitude – no changes in the lateral extent
are considered. The wind distribution is an
approximation of the Twentieth Century Re-
analysis (V2) wind data from the Earth Sys-
tem Research Laboratory. Based on a the
daily mean wind for the region around Tokyo
International Airport, polynomial wind mod-
els of sixth order for northward and eastward
wind speeds have been derived by interpola-
tion. The wind speeds are modeled as:

VW,u/v = p1 · (pH)6 + p2 · (pH)5

+ p3 · (pH)4 + p4 · (pH)3

+ p5 · (pH)2 + p6 · pH + p7

(5)

with the numerically normalized pressure alti-
tude pH being defined as:

pH =
p − 442.9 mbar

327.9 mbar
(6)

This normalization does not have any physical
meaning but is only necessary for numerical
reasons. For February 3rd, 2012 the polyno-
mial coefficients given in Table 2 result. The
pressure is calculated from the current flight
altitude of each aircraft based on the Interna-
tional Standard Atmosphere (ISA) [11].

Table 2 Coefficients of the approximation
polynomials for the wind speed [m/s]

Coefficient Eastward
wind (u)

Northward
wind (v)

p1 −3.409 1.584

p2 12.950 −0.08236

p3 −15.310 −9.390

p4 1.831 −1.133

p5 20.220 20.750

p6 −41.320 −2.118

p7 37.700 −7.854

2.4 Force Equations

The aerodynamic forces are calculated as de-
scribed in the BADA documents [3]. Besides
others, the forces depend on the Mach num-
ber M , the current speed of sound a, the adi-
abatic index κ, the universal gas constant R,
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and the current air temperature T that are
all calculated according to the ISA. The re-
quired aerodynamic quantities are calculated
from the kinematic states using the wind equa-
tion (3).

2.5 Fuel Flow Modeling

The fuel flow model is taken from the BADA
data, resulting in a differential equation for the
mass:

ṁ = −ṁfuel(m, p, T, M, δT ) (7)

2.6 Configuration Changes

The extension of the flaps, representing a con-
figuration change of the aircraft, is modeled
using a function based on a hyperbolic tangent
expressions for each position s of the flaps that
is considered. The main influencing parameter
is the point in time tflaps,s when the switching
takes place. This parameter is mapped to the
relative extension of the considered position
kflaps,s ∈ [0, 1] by:

kflaps,s = 0.5 · tanh(t − tflaps,s) + 0.5 (8)

Within the model, the value for any exem-
plary aerodynamic parameter pA is calculated
by fading between the parameters for the dif-
ferent positions (e.g. clean and s1) of the flaps
while the extension is performed:

pA = pA,clean+(pA,flaps,s1
−pA,clean)·kflaps,s1

(9)

In the example presented below, besides the
clean configuration, two flap configurations
have been selected for each aircraft.

2.7 Path Constraints

Along the whole trajectories, the following
path constraints have to hold: The load fac-
tor in z-direction of the Kinematic Frame K
is limited to:

0.8 ≤ (nz)K ≤ 1.2 (10)

The Mach number is limited by:

M ≤ 0.85 (11)

All aircraft need to be decelerating reasonably
all the time by means of calibrated airspeed:

− 0.8
m

s2
≤ V̇CAS ≤ 0

m

s2
(12)

The vertical speed of the aircraft is limited to
approximately −2500 ft

min
and needs to be neg-

ative:
− 13

m

s
≤ ḣ = −ż ≤ 0

m

s
(13)

The set of admissible controls for each aircraft
is defined by:

0 ≤ CL ≤ 1.4 (14)

−30 ·
π

180
≤ µK ≤ 30 ·

π

180
(15)

0 ≤ δT ≤ 1 (16)

0 ≤ δSB ≤ 1 (17)

3 Applied Optimal Control

In general, a multi aircraft trajectory opti-
mization problem involving N aircraft may be
stated as follows:
Determine the optimal control histories

ui,opt(t) ∈ R
m, i = 1, ..., N, (18)

the required additional parameters

pi,opt ∈ R
q, i = 1, ..., N (19)

and the optimal state trajectories

xi,opt(t) ∈ R
n, i = 1, ..., N (20)

that minimize the Bolza cost functional

J =
N
∑

i=1





ei(xi(tf,i), tf,i)

+

tf,i
∫

t0,i

Li(xi(t), ui(t), t)dt







(21)

subject to the state dynamics

ẋi = fi(xi, ui, pi), i = 1, ..., N (22)

the initial and final boundary conditions

ψ0,i(xi(t0,i), t0,i) = 0, i = 1, ..., N (23)

ψf,i(xi(tf,i), tf,i) = 0, i = 1, ..., N (24)
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and the equality and inequality conditions

Ceq,i(xi(t), ui(t), t) = 0

Cineq,i(xi(t), ui(t), t) ≤ 0 (25)

i = 1, ..., N

For solving this problem the direct Trapezoidal
Collocation Scheme of FALCON.m has been
used, that can e.g. also be found in [12].

3.1 Gradient Calculation

After discretizing the optimal control problem,
a huge numerical optimization problem needs
to be solved. Here, the gradient based, Interior
Point software IPOPT [2], designed for sparse
problems, has been used for this purpose, with
all required gradients calculated analytically
by FALCON.m. In order to achieve this, the
local gradients of the simulation model and
all constraints with respect to the states, the
controls and the parameters are automatically
calculated using the Symbolic Math Toolbox
from MATLAB. In case of complicated simu-
lation models, it is required to construct them
from several subsystem functions, that are de-
rived before the resulting code is automatically
coupled together within the tool using the
chain rule (for more details, see [13]). Finally,
everything required to evaluate the model dy-
namics and the constraints of the problem
(including all gradients) is compiled into a
fast running MATLAB Executable (mex) us-
ing MATLAB Coder. More details can also be
found in the user guide of FALCON.m [1].

4 Multi Aircraft Optimization

Here, the mathematical modeling and the so-
lution process of a multi aircraft optimization
problem containing N aircraft are described.

4.1 Combined Dynamic Model

In order to be able to compare the position
of all aircraft at the same points in time, a
simulation on one common grid is inevitable.

The overall optimal control problem is mod-
eled in one single phase, aggregating all air-
craft dynamics in one simulation model. As
not all aircraft enter or leave the considered
air space at the same time, the respective dy-
namics are faded in or out using a hyperbolic
tangent function:

ẋi = fi(xi, ui, pi) · kfade (26)

kfade = (0.5 · tanh (ν (t − ti,ini)) + 0.5)

· (−0.5 · tanh (ν (t − ti,end)) + 0.5) (27)

By changing ν, the steepness of the fading
functions is adjusted. In the example shown
below, ν = 1 is used. As the time when the
aircraft enter the considered airspace is known,
the initial times ti,ini are fixed while the final
times ti,end are subject to optimization. The
same fading is used for the path constraints.

The state, control, and parameter vectors
of the multi aircraft optimization problem are
a combination of the respective vectors for
each single aircraft:

x = (x1, x2, ..., xN )⊺ (28)

u = (u1, u2, ..., uN)⊺ (29)

p = (p1, p2, ..., pN)⊺ (30)

The same holds for the dynamic equation:

ẋ = f(x, u, p) =(f1(x1, u1, p1),

f2(x2, u2, p2), ...,

fN(xN , uN , pN))⊺
(31)

The price to pay for the simulation on the com-
mon grid is the size of the resulting simulation
model which contains seven states and four
controls per aircraft in the scenario. Anyway,
the gradient of the simulation model features
a special sparsity structure.

4.2 Separation

In addition to the path constraints for every
single aircraft specified in section 2, tempo-
ral and spatial separation between the aircraft
has to be ensured. The times of arrival at the
final point considered of each pair of aircraft
are constrained by:

(ti,end − tj,end)
2 ≥ tmin Sep

2, ∀(i, j), i 6= j (32)
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with tmin Sep = 60s. Besides, the spatial dis-
tance between each pair of aircraft, modeled
as a rotational ellipse, has to remain above
the separation limit:

(xi(t) − xj(t))
2 + (yi(t) − yj(t))

2

+
(

Rxy

Rz

)2

· (zi(t) − zj(t))
2 ≥ Rxy

2

∀(i, j), i 6= j

(33)

The radius Rxy in the horizontal plane is se-
lected depending on the aircraft weight classes
(H–H:Rxy = 4NM = 7408m, M–M: Rxy =
3NM = 5556m, M–H/H–M: Rxy = 5NM =
9260m) while the vertical separation Rz =
600ft = 183m is constant for all combinations.

4.3 Cost Function

The cost function to be minimized consists of
three weighted parts, being

• the fuel consumption,

• the flight times,

• and a small auxiliary term penalizing the
control effort during the faded-out parts
of the trajectories.

The last part is required as otherwise the con-
trols in the faded-out parts would not influ-
ence the optimization problem at all, resulting
in undefined values for the solution. The fuel
consumption is calculated from the initial and
the final masses by

Jfuel =
N
∑

i=1

(mi,ini − mi,end) (34)

The time cost is calculated from

Jtime =
N
∑

i=1

ti,end (35)

where the initial times may be omitted as they
are constant anyway. The scaling of the two
cost functions is selected such that a cost index

CI =
1cost/1000sec

1cost/100kg
= 6

kg

min
(36)

results. This very low cost index results in
almost fuel minimal trajectories.

The control effort is modeled as

Jcon =
N
∑

i=1

tend
∫

tini

ui(t)
⊺ui(t) · (1 − kfade) dt (37)

with kfade being the fading factor from equa-
tion (27). The auxiliary control cost is
weighed by wJcon = 0.01 and does not influ-
ence the relevant part of the solution.

4.4 Sparsity

The model dynamics are block-diagonal sparse
because of the different dynamic models be-
ing concatenated together. FALCON.m de-
termines the sparsity structure of a model and
all constraints automatically before supplying
this information to the numerical solver. Fig-
ure 1 shows the local sparsity of the simulation
model where the first block represents the gra-
dient of the state derivative with respect to the
states ∂ẋ

∂x
, the second part shows the gradient

with respect to the controls ∂ẋ

∂u
and the third

part represents the gradient with respect to
the parameters ∂ẋ

∂p
, being the fade in time ti,ini

and the fade out time ti,end.

x
i

y i z i V
i

χ
i

γ
i m
i

C
L

,i

µ
i

δ T
,i

δ S
B

,i

t i
,i

n
it

ia
l

t i
,e

n
d

ẋ
ẏ

ż

V̇
χ̇

γ̇

ṁ

Fig. 1 Combined local sparsity pattern for the
gradient of the simulation model [∂ẋ

∂x

∂ẋ

∂u

∂ẋ

∂p
].

Each block along the diagonal of the com-
bined simulation model features the structure
depicted in figure 1. The gradient structure of
the path constraints can be constructed sim-
ilarly, except for the separation constraints,
that create dependencies between the aircraft.
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4.5 Solution Process

The combined optimal control problem ensur-
ing separation at all times cannot be directly
solved due to its high nonlinearity and its large
size. Therefore, the following multi-stage pro-
cess is used:

1) Solve the approach problem for each air-
craft individually.

2) Add the aircraft to the fully constrained
problem one after the other, until all air-
craft are considered.

In each optimization step, the states, controls,
parameters and all Lagrange multipliers (dual
variables) for the collocation defects and the
constraints are used as the initial guess for the
next problem to be solved.

5 Results

The scenario considered in this study focuses
on an approach to Tokyo International Air-
port and has been constructed using MLIT

CARATS Open Data released by the Japanese
Civil Aviation Bureau of the Ministry of Land,
Infrastructure, Transport and Tourism (MLIT
JCAB). Thereof, track data from the 4th of
March 2013 in the time between noon and 6
o’clock in the evening has been used. From
this data, 18 tracks have been extracted for
constructing the scenario. Table 3 lists the
18 flights that have been considered together
with the aircraft types and the initial posi-
tions. The wind speeds resulting from the
model derived from the data from the Earth
System Research Laboratory within the rele-
vant area lie in the range of 8m/s to 70m/s
eastward and −8m/s to 5m/s northward.

In figure 2 the resulting optimal tracks for
all aircraft can be seen. They are mostly
straight lines as this is the most time and fuel
efficient way to go. Almost all arising con-
flicts can be solved within the optimization
by adjusting the vertical profiles and the ve-
locities along the tracks. Only one aircraft is
rerouted by the optimization algorithm in or-

Longitude

L
at

it
u

d
e

137 137.5 138 138.5 139 139.5 140 140.5

34

34.5

35

35.5

36

36.5

37

Fig. 2 Optimal trajectories for all aircraft. Tokyo International Airport is marked with the cross.
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Table 3 Data for the aircraft and the trajectories in the example scenario.

AC Weight Start Start Start Start Final Flap
Type Cat Lat [deg] Lon [deg] Altitude [m] Time [s] Time [s] Time [s]

B738W26 M 34.1419 138.2522 8440 0 1420 -
A330-341 H 34.1947 138.3352 10020 0 1266 1238
B738W26 M 34.2130 138.7952 8530 0 1125 -
B772LR H 34.5399 137.2626 10659 1 1645 -

B738W26 M 36.4880 140.2920 4916 2 1065 -
B772LR H 34.6585 138.7760 8564 9 835 445

B738W26 M 36.9979 140.1037 7010 23 1360 -
A321-131 M 34.8133 137.0220 10058 33 1820 -

B752WRR40 M 34.7052 137.0034 11278 308 2145 -
B738W26 M 34.0073 137.7211 10052 493 2085 -
B738W26 M 34.7028 137.0076 10659 515 2740 -
B73423 M 34.0081 137.8762 10355 562 2025 -

A320-231 M 36.9949 140.4129 7910 569 1960 -
B738W26 M 34.7031 137.0272 12490 594 2221 -
B772LR H 34.5353 137.0278 11271 869 2661 -

B763ERGE61 H 34.0140 137.7094 12497 1005 2601 -
B738W26 M 34.0067 137.9777 10058 1024 2431 -
B772LR H 35.1811 137.0097 8120 1384 3171 -

der to ensure final time separation. At this
point the main weakness of the algorithm be-
comes visible as (with every gradient based ap-
proach) only local minima can be found and it
is not known whether rerouting a different air-
craft would probably lead to another (maybe
even better) locally optimal solution. More-
over, other solutions may be found by chang-
ing the way the initial guesses are calculated
or by changing the solution process described
in section 4.5. The small arcs in the trajecto-
ries of the aircraft coming from the north are
related to the partially strong eastward wind
and its dependence on the flight altitude.

Fig. 3 Final part of the trajectories and sep-
aration ellipsoids for the aircraft at one point
in time.

Figure 3 shows a close-up of the last part
of the trajectories. Therein, the tracks of all
aircraft are visualized in Google Earth and the
positions at one point in time is plotted. The
white ellipsoids have a diameter of 3NM be-
ing the minimum required separation between
two aircraft of weight category M. For these
aircraft the ellipsoids may not interfere along
the whole trajectories.
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0 500 1000 1500 2000 2500 3000 3500 4000

0

0.5
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2.5
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3.5
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4.5

Fig. 4 Separation margin between all pairs of
aircraft over time.

As all aircraft in the scenario have to keep
separation distances pairwise to each other,
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for the considered scenario comprising 18 air-
craft, a total of N · (N − 1)/2 = 153 separa-
tion constraints result. Thus, the number of
separations grows quadratically with the num-
ber of aircraft making it far more difficult to
solve a problem with 18 aircraft compared to
one with e.g. 9 in the work [4]. The num-
ber of separation distance constraints is equal
to the number of final time constraints in the
problem, even though the distance constraints
need to be applied in every time step, while
the final time separation only adds one overall
constraint per aircraft pairing. The remain-
ing separation margins for all pairs of aircraft,
that need to be positive, can be seen in figure
4. For some constellations the margin is hit
but it is never violated.

The last column of Table 3 lists the opti-
mal extraction times for the first considered
position of the flaps for every aircraft. As can
be seen, only the second and the sixth aircraft
use their flaps in the considered part of the
trajectory to create more lift at lower speeds.
For all other aircraft the use of the flaps is
neither necessary nor does it create a benefit
in the overall cost. This is reasonable as the
increased lift of the flaps comes for the price
of an also increased drag which raises the fuel
burn as well as the required time to the desti-
nation.

In this example, the simulation model in
the final problem contained 18 · 7 = 126 states
and 18 · 4 = 72 controls, both discretized
on a grid with 801 points in time. Overall,
the numerical optimization problem contained
158,634 optimization variables and 295,615
constraints. The gradient matrix, consisting
of the cost function gradient and the con-
straint Jacobian, comprised 2,911,140 struc-
tural nonzero elements resulting in a sparsity
ratio of 99.9938%.

6 Conclusions

This paper presents a specially tailored mod-
eling approach together with a two step so-
lution method for solving large scale optimal
control problems involving multiple aircraft.

The considered example scenario comprises 18
aircraft approaching Tokyo International Air-
port in parallel. The optimization is based
on a 3-DoF simulation model in three dimen-
sional space. The aircraft specific parameters
as well as the aerodynamic and fuel consump-
tion models have been taken from the BADA
Family 4 dataset.

The problem is formulated as an optimal
control problem that is discretized using the
direct collocation approach implemented in
FALCON.m. The resulting numerical opti-
mization problem is solved using IPOPT. The
main challenge is to achieve convergence of
the highly nonlinear large scale optimal con-
trol problem that requires to fully exploit the
problem inherent sparsity properties as well as
the creation of good initial guesses which is as-
sured by the two step approach.

The results show how cost-index-optimized
continuous-descent operations in a highly con-
gested airspace, like the one in the proximity
of a strongly frequented airport, may look like.
The required aircraft performance envelope as
well as the separation limits are thereby main-
tained at all times. Anyway, controller work-
load and coordination of the different aircraft
is not considered here and may put some ad-
ditional constraints to such a scenario.

Overall, the method and the solution pre-
sented here is (at the moment) not intended
as an approach for improving the daily work
of ATC controllers. The method and the study
is much more suitable to provide a means
of benchmarking different solutions for future
ATM systems against this optimal solution.

The solution of the problems discussed in
this paper takes a lot of computational time
and the method does not show a general sta-
ble behavior when adding more aircraft. This
is on the one side related to the mere prob-
lem size which is hard to tackle using IPOPT.
This may be overcome by using special large
scale solvers like e.g. WORHP [14]. On the
other side, the addition of further aircraft lets
the number of pairwise separation constraints
grow even more which at some point will even-
tually limit this method.
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Moreover, the fact that gradient based op-
timization algorithms can only find local min-
ima (which may be global) results in the fact
that there may exist other solutions that de-
liver better performance than the one found,
which cannot be determined as they are lo-
cated in another “valley” of the solution space.
This may be especially problematic when the
discrete decisions like the sequencing in the
problems described here become crucial.

In order to overcome these aforementioned
drawbacks, a hybrid optimization process may
be used that separates the problem of de-
termining the optimal trajectory for one air-
craft from the optimization of the sequencing
and the ensuring of the separations. Different
methods may be used within the two levels of
the resulting problem, possibly also overcom-
ing the issue of converging to local minima in
the sequencing problem.
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