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Abstract

Aircraft trajectory optimization problems often
include discrete decisions such as flaps settings.
In order to use discrete controls in optimal con-
trol problems (so-called Mixed Integer Nonlin-
ear Programs, MINLP) reformulation methods
are necessary to create a continuously differen-
tiable problem. One of the most promising meth-
ods is the Variable Time Transformation (VTT)
which is able to find the optimal switching se-
quence through optimization. However, the op-
timal result highly depends on the initial guess
provided, if it even converges. This is especially
true if discrete controls are involved. The aim
of this paper is to produce more suitable initial
guesses, which help to solve the MINLP fast and
numerically stable.

1 Introduction

In dynamic systems often discrete controls
arise which can only take values from a fixed
set (e.g. v = {v1,v2, . . . ,vN}). Discrete con-
trols on an aircraft are the flaps, the landing gear
and the spoilers. If discrete controls are used in
an Optimal Control Problem (OCP), the prob-
lem is called Mixed Integer Nonlinear Program

This document contains information (namely data
from the Base of Aircraft Data BADA 4) made available by
the European Organisation for the Safety of Air Navigation
(EUROCONTROL). EUROCONTROL c©2013. All rights
reserved. EUROCONTROL shall not be liable for any di-
rect, indirect, incidental or consequential damages arising
out of or in connection use of this document.

(MINLP). Taking into account discrete controls
in an optimal control problem cannot be done di-
rectly, since the feasible set is disjoint and the
discrete controls are not differentiable. A con-
tinuous differentiable reformulation is manda-
tory, since only gradient based optimization al-
gorithms [5, 18] can manage the large number of
optimization variables that appear in OCPs.

For the reformulation different methods are
available, for instance dividing the problem into
multiple phases [10, 11, 12, 17, 19], using the ap-
proach of inner convexification [11, 14, 16] or ex-
ploiting the shape of the hyperbolic tangent func-
tion [3, 13]. However, these methods either can-
not find the optimal switching structure through
optimization or are numerically not very stable.
Currently, there are two approaches that can opti-
mize discrete controls: the Variable Time Trans-
formation (VTT) [4, 13] and the outer convexi-
fication [8, 15, 16]. Both are very similar in the
formulation and only differ in the integration of
the optimized dynamic system. In this paper the
variable time transformation is used.

Additionally, to the changes of the discrete
control, constraints that depend on their choice
change instantly as well. On an aircraft, the
speed constraints are dependent on the flap set-
ting. Since in any optimization algorithm con-
straint bounds cannot be changed during an op-
timization run, a reformulation is necessary as
well. Here, the vanishing constraint approach [6]
is used which enables turning constraints "on" or
"off" with a control function.

If the discrete control switching structure is
subject to the optimization, some sort of switch-
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ing cost function needs to be included to en-
sure that the optimal solution does not involve
a switch at every discretization time step. How-
ever, this poses a problem, since the cost func-
tion introduces many minima into to OCP. There-
fore, the solution depends on the initial guess pro-
vided. In this paper different approach to gener-
ate an initial guess to solve these type of prob-
lems are described and compared. The methods
used are grid refinement, fixed bound optmiza-
tion, B-Spline interpolation and the stitching of
motion primitives. Additionally, the optimization
process is divided into stages to ensure that the
optimal switching structure is found.

The outline of the paper is as follows. Sec-
tion 2 introduces the aircaft model used for the
optimization, which is the BADA family 4 model
from EUROCONTROL [2]. Special focus is
given to the constraints that depend on the choice
of the discrete controls. Afterwards, section 3
explains the variable time transformation, the
switching costs and the vanishing constraints.
The different initial guess approaches with the re-
sulting optimization processes are introduced in
section 4. In section 5 these approaches are ap-
plied on an example optimization problem. Sec-
tion 6 concludes the paper.

2 Aircraft Model

The aircraft model used is the Base of Aircraft
Data (BADA) from EUROCONTROL [2]. It of-
fers a three degree of freedom model (3DOF) in-
cluding equation for kinematics, aerodynamics,
propulsion and is available for all common com-
mercial aircrafts. The BADA family 4 takes into
account different flap configuration with aerody-
namic coefficients and dependent limits such as
maximum lift CL,max, maximum calibrated air-
speed VCAS,max and the minimum and maximum
vertical load factor nz,min,nz,max.

There are 8 states and 4 inputs for the aircraft
model. Tables 1 and 2 state the names and sym-
bols. Using a parameter vector for the aerody-
namic coefficients, different flaps settings can be
simulated. The flaps are represented through an
integer variable k = 1,2,3; the corresponding flap
settings are CRUISE, APPROACH and LAND-

Table 1 Aircraft States
Name Description Unit

x x-position in NED frame m

y y-position in NED frame m

z z-position in NED frame m

V kinematic velocity m/s

χ kinematic course angle rad

γ kinematic climb angle rad

m aircraft mass kg

µ kinematic bank angle rad

Table 2 Aircraft Controls
Name Description Unit

CL lift coefficient -

µ̇ time derivative of bank angle rad/s

δT thrust lever position -

k flap configuration setting -

ING. Atmospheric influences are taken into ac-
count using the International Standard Atmo-
sphere (ISA).

2.1 Equations of Motion

Aircraft dynamics are considered in the kine-
matic frame K, the aircraft position is given rela-
tive to a local north east down frame (NED). Thus
the position ODEs are

ẋ = V · cosχ · cosγ

ẏ = V · sinχ · cosγ (1)
ż = −V · sinγ.

The translational dynamics are defined as

V̇ =
T −D(k)

m
−g · sinγ

χ̇ =
L · sinµ

m ·V · cosγ
(2)

γ̇ =
L · cosµ

m ·V
− g · cosγ

V
.

BADA version 4 has generic models for the thrust
T (δT ,M, . . .), the drag D(k,CL,M, . . .), and the
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lift L(CL,M, . . .) where the drag is dependent on
the current flap setting k. Here, M represents the
Mach number, R the universal gas constant and T
the current air temperature:

M =
V
a
, a =

√
κ ·R ·T . (3)

2.2 Limitations

Additionally to the aircraft dynamics, constraints
have to be taken into account to ensure a real-
istic flight path. Along normal continuous con-
straints such as bank angle limitations there are
constraints that depend on the choice of the dis-
crete control.

The discrete change in the flap settings influ-
ences aircraft limitations instantaneously. If the
flaps are deployed, the maximum lift coefficient

CL ≤CL,max(k) (4)

is increased, while the upper bound for the Cali-
brated Air peed (CAS)

VCAS ≤VCAS,max(k) (5)

is reduced. Additionally the vertical load factor

nz,min(k)≤ nz ≤ nz,max(k) (6)

box constraint changes. Please note, that for the
vertical load factor, the model differs between
clean (CRUISE) and nonclean (APPROACH,
LANDING) configurations. These flap depen-
dent constraints are taken into account with van-
ishing constraints described in section 3.

3 Discrete Control and Discrete Constraints

If discrete controls are used in an optimal con-
trol problem with gradient based optimization al-
gorithms, a continuous problem reformulation is
necessary. There have been many approaches in
the past, some of them discussed in [13], but only
a few offer the ability, that the switching structure
is subject to the optimization. One of these ap-
proaches is the variable time transformation [4]
used in this paper. At the same time constraints
that depend on the discrete control choice have
to be taken into account. In this paper, vanishing
constraints [6] are used.
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Fig. 1 Variable Time Transformation - Minor
Grid [4]

3.1 Variable Time Transformation

The variable time transformation distorts the
time grid to find the correct switching sequence
through optimization. Let NT S ∈ N be the num-
ber of discretization points. Then, assuming an
equally distributed discretization, the step size is

h =
t f − t0

NT S−1
= τi+1,0− τi,0 (7)

with the resulting discretization grid (called ma-
jor grid, see Fig. 1) of

ti = t0 + i ·h, i = 0, . . . ,NT S−1. (8)

For the variable time transformation this grid
needs to be divided further. If N ∈ N is the num-
ber of discrete choices of the discrete controls,
each major grid interval h is divided into N mi-
nor grid steps.

τi, j = ti + j · h
N
, j = 0, . . . ,N−1 (9)

The integration is carried out along the minor
grid. Each of the minor grid steps represents a
discrete control choice vk (see Fig. 1).

For every minor grid step an optimizable vari-
able wk,i ∈ [0,1] is defined which can stretch or
shrink it, thus transforming the time. A value of
wk,i = 0 shrinks the minor grid to a singularity,
rendering the corresponding discrete control in-
active. On the other hand, a value of wk,i = 1
stretches the discrete control over the major grid
interval. The other discrete choices have been
eliminated in this case. At each discretization
step i the constraint

N

∑
k=1

wk,i = 1 (10)
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Fig. 2 Switching Cost Model [9]

has to be fulfilled. Thus, the major grid and mi-
nor grid always coincide at the major grid nodes.
For the implementation, the integration algorithm
has to be adapted. The state dynamics fk(x,u) is
multiplied by the optimization parameter

ẋ = wk,i · fx(x,u). (11)

The variable time transformation enables the op-
timization algorithm to switch at every discretiza-
tion step. However, especially for many appli-
cation (e.g. flaps) slow switch dynamics are de-
sired. To limit the number of switches a penalty
is added to the cost function.

3.2 Switching Costs

Since flaps or the landing gear on an aircraft shall
not be switch with high frequency, the number
of switches needs to be limited. Additionally, it
is desired that only one discrete control is cho-
sen for a discretization step, which means the wk,i
shall either be 0 or 1. Therefore, a switching cost
approach is used [9]. A penalty function

Jp =
(
2 ·αk,i−1

)
·
(
wk,i +wk,i+1−1

)
+1 (12)

is added to the cost function. Additional opti-
mization variables αk,i ∈ [0,1] need to be added
to the OCP for every wk,i. As before k repre-
sents the choice of the discrete control (minor
grid step) and i the current index of the time dis-
cretization (major grid step). The variable αk,i
influences the gradient of the "two-dimensional
plane" (see Fig. 2). Dependent on the sum of
wk,i +wk,i+1 the optimal value for αk,i is either 0
or 1.

3.3 Vanishing Constraints

The constraints (4-6) depent on the flap setting
k. In any optimization algorithm the bounds for
constraints cannot be changed during the opti-
mization run. Therefore a formulation is neces-
sary that accounts for changed constraints limits
if the discrete control changes. Here, vanishing
constraints are used to disable constraints if the
corresponding discrete control is not active. A
vanishing constraints has the form

wk ·gk ≤ 0 (13)

where constraint gk ≤ 0 is switched "on" or "off"
dependent on a control function wk ≥ 0. In this
case wk coincides with the variable time trans-
formation optimization parameter. If wk = 0 the
constraints wk ·gk holds for any gk ∈R. In case of
wk > 0 the constraints gk ≤ 0 has to be fulfilled.
Thus the constraints (4-6) need to be adapted

wk · (CL−CL,max) ≤ 0 (14)
wk · (VCAS−VCAS,max) ≤ 0 (15)

wk · (nz−nz,max) ≤ 0 (16)
wk · (nz,min−nz) ≤ 0 (17)

to the structure of the vanishing constraints.
Please note that the box constraints (6) is divided
into two separate constraints (16,17).

3.3.1 Vanishing Constraint Relaxation

Vanishing constraints in their original form vio-
late the constraint qualification [7] at the point
wk = gk = 0. To resolve this, the relaxation ap-
proach

wk · (t +gk)− t ≤ 0 (18)

softenes the curve at the origin using a relax-
ation parameter t. The constraint qualification is
no longer violated, but for wk = 1 the constraint
qk ≤ 0 is enforced.

4 Initial Guess Generation

In each optimal control problem a certain mis-
sion shall be optimized while minimizing a cost
function. Here, the mission is defined by a series
of waypoints. At each waypoint the states and
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state bounds are defined. The bounds are used in
the optimization at the beginning and end of each
phase. The state specified in the waypoint is used
for the initial guess generation.

Additionally to the initial guess generation of
the states and continuous controls, the discrete
controls need to be initialized as well. Here the
calculation of the switching structure follows a
simple assumption. The extension of the flaps in-
creases the drag of the aircraft. Since the cost
function is the fuel consumption, it is assumed
that the best choice for the flap setting is the low-
est one that is still valid.

4.1 Optimization Process

If switching costs are present in an optimal con-
trol problem, changing the structure of the dis-
crete controls becomes very difficult since every
change initially increases the cost function. In
other words, the switching cost model introduces
many minima in the optimal control problem.

Therefore, the optimization needs to be di-
vided into several stages. The switching cost
penalty shall be used in the last optimization
stage only. If the initial switching structure is not
optimal, the lack of a switching penalty enables
the optimization algorithm to find the local opti-
mal one. The vanishing constraints remain active
ensuring a feasible trajectory. In many cases, the
resulting solution already has integer values for
the wk,i. In the last stage, the switching costs are
activated and the optimization is restarted from
the intermediate solution. During this stage, the
number of switches is reduced to a suitable min-
imum and integer values are enforced.

4.2 Initial Guess Algorithms

In this subsection the different initial guess ap-
proaches are described. The grid refinement ap-
proach and fixed bound approach have poor ini-
tial guesses but follow two different strategies to
generate an optimal solution. Contrary to this,
the B-Spline approach and the motion primitive
approach produce a good initial guess which is
on the other hand more complex to generate.

4.2.1 Grid Refinement

The easiest way to generate an initial guess for an
optimal control problem is by simply initializing
the states and controls linearly. As mentioned be-
fore, the state data written into the mission way-
points is used to generate the initial guess. Here,
the states and controls of the phases are initial-
ized by linearly interpolating from one waypoint
to the next. Assuming τ ∈ [0,1] is the normalized
phase time, the interpolation formula is

η(τ) = ηi +(ηi+1−ηi) · τ. (19)

Please note that the η acts as a placeholder for
x,y,z and V . In order to achieve a feasible tra-
jectory between two waypoints, the kinematic
course angle and the kinematic climb angle

χ(τ) = arctan
(

yi+1− yi

xi+1− xi

)
(20)

γ(τ) = arccos

√
d
l

(21)

d = (xi+1− xi)
2 +(yi+1− yi)

2 (22)

l = (xi+1− xi)
2 +(yi+1− yi)

2 (23)

+ (zi+1− zi)
2

µ(τ) = 0 (24)

are calculated using trigonometry. The bank an-
gle is set to zero. At each discretization point,
the lowest flap setting is chosen. The continuous
controls can then be calculated using an inverse
dynamics model. The resulting initial guess is
feasible between the waypoints, but if more than
two waypoints are involved for a mission, at in-
termediate waypoints the trajectory has defects.
Therefore, this initial guess is poor and a strategy
is needed such that the optimization algorithm is
able to find an optimal solution.

In the grid refinement approach, the dis-
cretization density between two waypoints is re-
duced with the aim to reduce the number of op-
timization variables. The coarse discretization
must be chosen in such a way, that it eases the
optimization process, but at the same time is able
to render the physical behaviour correctly. As
mentioned before, the first optimization is car-
ried out without switching costs. Afterwards, the
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Fig. 3 Helper Waypoints

coarse discretized optimal solution is interpolated
to generate a finer discretized initial guess. Then,
the switching costs are activated and the second
and final optimization is carried out.

4.2.2 Fixed Bound

The fixed bound initial guess is generated lin-
early as the grid refinement approach. However,
instead of using a coarse discretization to make
the optimization problem easier to solve, in the
first optimization stage, the discrete controls are
fixed and therefore not subject to the optimiza-
tion. Thus the MINLP is converted to a continu-
ous optimal control problem which is much eas-
ier to solve for the optimization algorithm. As be-
fore, the first stage is carried out without switch-
ing costs.

Once the first stage is sucessfull, a continuous
feasible trajectory is found without defects at the
mission waypoints. Then, in the second stage,
the discrete controls can be taken into account in
the optimization. In the third and last stage, the
switching costs are activated.

4.2.3 B-Spline Interpolation

The aim of the B-Spline interpolation is to pro-
vide a connected smooth trajectory through all
waypoints. The interpolation is carried out based
on the information given in the waypoints that de-
fine the mission. Since the optimization is done
in MATLAB, the build-in B-Spline interpolation
algorithm is used. Interpolations are carried out
for the position x,y,z and the speed V . However
some information is lost throughout the process.
For instance, the desired kinematic heading and
climb angle is not taken into account. Therefore,
intermediate waypoints are defined that influence
the interpolation (see fig. 3). Using all these way-

points the interpolation is carried out.
In order to generate the full kinematic state

of the aircraft, the derivatives of the splines need
to be calculated as well. Therefore, for the posi-
tion x,y,z the first derivative x′,y′,z′ and second
derivatives x′′,y′′,z′′ are necessary. For the speed
the first derivative V ′ is generated. Please note
that the derivatives are with respect to the spline
parameter s ∈ [0,1] and not with respect to the
real time t. To transform the derivatives into the
time domain, the following calculations need to
be carried out. The first time derivative is calcu-
lated using

ẋ = x′ · V
p′

(25)

p′ =
√

x′2 + y′2 + z′2 (26)

where the calculation of ẏ, ż,V̇ are analog to ẋ.
For the second derivative of the position values
the equation

ẍ =
V
p′2
·
(
x′′V + x′V ′

)
(27)

− x′V 2

p′4
·
(
x′x′′+ y′y′′+ z′z′′

)
is used. The kinematic course angle and kine-
matic climb angle are calcualted using the equa-
tions

γ = −arctan

(
ż√

ẋ2 + ẏ2

)
(28)

γ̇ = −
z̈
√

ẋ2 + ẏ2− ż ẋẍ+ẏÿ√
ẋ2+ẏ2

ẋ2 + ẏ2 + ż2 (29)

χ = arctan
(

ẏ
ẋ

)
(30)

χ̇ =
ÿẋ− ẏẍ
ẋ2 + ẏ2 . (31)

Calculation of the bank angle is achieved through
the loads in y and z direction.

ny =
V χ̇cosγ

g
(32)

nz =
V γ̇

g
+ cosγ (33)

µ = arctan
(

ny

nz

)
(34)

6



GENERATION OF INITIAL GUESSES FOR OPTIMAL CONTROL PROBLEMS WITH MIXED
INTEGER DEPENDENT CONSTRAINTS

0

500

1000

1500

02000400060008000
x-Position [m]

y
-P

o
s
iti

o
n

 [
m

]

Fig. 4 Initial Guess generated using B-Spline in-
terpolation

Once the discrete controls are chosen, the lift co-
efficient CL and thrust lever position δT are calcu-
lated using an inverse model of the aircraft. The
time derivative of the bank angle µ̇ is generated
using finite differences.

Using this initial guess, the optimization is
started without the switching costs. Once the op-
timal solution has been found, the switching costs
are activated and the second optimization stage is
carried out.

4.2.4 Stitching of Motion Primitives

The key idea behind the stitching of motion prim-
itives approach is that every trajectory can be di-
vided into reoccuring segments. This means, ev-
ery trajectory can be created by stitching together
motion primitives from a library. These motion
primitives consist of trimmed flight conditions
and transitions from one trimmed condition to an-
other. If these transitions and trimmed conditions
are carried out in an optimal way, the resultion
flight path is optimal, or at least very close to the
optimal solution [1].

For this approach a library needs to be gen-
erated. Then, the initial guess is stitched to-
gether using the library trajectories. Afterwards
the optimization is started with disabled switch-
ing costs. After the correct switching sequence
is found, the second and last optimization stage
is carried out with switching costs. For simplic-
ity, in this paper, the trajectory is stitched together
with optimal trajectories that have been generated
previously.

5 Results

The method is now applied to a multiple shoot-
ing optimization problem in which the fuel con-

sumption is minimized. An Airbus A320-200 [2]
performs a 360deg turn while maintaining an ap-
proximate radius of 1000m. Fig. 4 displays the
initial guess for the B-Spline approach. Before
and after the turn a straight segment of 4000m
is attached. At the beginning and end of the
flight path the aircrafts true air speed shall be be-
tween 100m/s and 120m/s. Maximum allowed
deviation from the reference altitude of 2000m is
±10m. The target major grid step size for the
phase is τ = 0.05, the coarse step size for the grid
refinement approach is τ = 0.1.

Fig. 5 shows the optimal solution generated
with the B-Spline initial guess. The resulting
switching structure can be seen in the top left
subplot alongside with the calibrated air speed,
the lift coefficient as well as the vertical load fac-
tor. In red the discrete control dependent bounds
are shown, which are kept at every discretization
step.

The switching structure of the discrete con-
trol starts and finishes with the clean configura-
tion (CL) and switches to the approach configu-
ration (APR) for the turn. The landing configura-
tion (LDG) does not appear to be optimal in this
case and was not chosen by the optimization.

Fig. 6 display the optimization results for
the different initial guess approaches. All ap-
proaches produce approximately the same result,
although the grid refinement and motion primi-
tive approach result in a slightly different trajec-
tory.

The discrete control switching for the grid re-
finement and the fixed bound approach start with
the approach configuration, whereas the B-Spline
and motion primitives approach start from the
cruise approach. Otherwise the switching struc-
ture is the same. The discrete control switching
structure has been stacked vertically to show the
differences more cleary. Discrete control depen-
dent constraints are not shown to keep the plots
more tidy.

In Fig. 7 the different initial guess ap-
proaches are compared with respect to the re-
quired optimization time as well as the resulting
cost function. The motion primitive approach is
the fastest, since the initial guess was stitched
together with optimal trajectories. The grid re-
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Fig. 5 Optimal solution from B-Spline initial guess
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Fig. 6 Optimal solution from different initial guess approaches

finement approach is very fast as well due to
the fact, that in the first pass the problem size
is much smaller. The B-Spline approach takes
around 100 seconds longer to solve. The fixed
bound approach has, due to the three optimiza-
tion stages, the longest optimization time. Con-
sidering the cost functions the grid refinement ap-
proach has the best fuel consumption but, due
to an additional switch, a higher switching cost

(SC). The B-Spline approach has the lowest over-
all cost function, the fixed bound approach the
highest. Finally, the motion primitive approach
has the highest fuel consumption.

Comparing the different approaches it is
clear, that the fixed bound approach is not rec-
ommended. The motion primitive approach pro-
duces good results, however, it is necessary to
create a library of optimal trajectories. There-
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Fig. 7 Comparison of different initial guess ap-
proaches (MP = Motion Primitives, BS = B-
Spline, FB = Fixed Bound, GR = Grid Refine-
ment)

fore this approach is very complex to implement.
Simple to implement is the grid refinement ap-
proach and it produces a good fuel consumption.
However, there may be OCPs in which the ini-
tial guess is too poor for the optimization algo-
rithm. To make this approach more robust an op-
timization stage can be added between the two
current stages, in wich the switching costs remain
switched off and the optimization is carried out
with the higher discretization density. However,
this increases the optimization time significantly.
Overall, for complex optimization problems, the
B-Spline approach is favoured, since it produces
a smooth trajectory without phase defects.

6 Conclusion

In this paper a method has been shown to taken
into account discrete controls and discrete con-
trol dependent constraints in an aircraft optimiza-
tion problems. Different approaches for an ini-
tial guess and according solution processes have
been compared with respect to optimization time
and cost function. All approaches generate com-
parable results, however, the B-Spline approach
is favoured. This approach produces high qual-
ity smooth tajectories without phase defect with

relative little computational effort.
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