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Abstract  

Influence of turbulence scale and shape of 
leading edge on laminar turbulent transition in 
the boundary layer on the flat plate subjected to 
free-stream turbulence (FST) was studied 
experimentally. It was found that length scale of 
turbulence has a dramatic effect on 
disturbances growth in the boundary layer at 
the sharp-nosed plate. Enhanced receptivity of 
blunt-nosed plate boundary layer to FST was 
demonstrated. New linear receptivity theory 
describing these findings of experiment was 
developed. 

1   Introduction 

The effect of free-stream turbulence (FST) on 
laminar turbulent transition in a boundary layer 
has become of great interest during the last 
decade. General consensus is that boundary 
layer disturbances in this conditions grow 
proportionally to Reynolds number based on the 
boundary layer thickness. It means that 
transition Reynolds number should be 
determined by the turbulence intensity only. 
However the discrepancy in published 
observations of transition is substantial (see [1]). 
From this it follows that transition location is 
not entirely determined by turbulence level, but 
it is influenced by several factors which are not 
entirely understood. The most obvious is the 
influence of length scale of FST. Despite of 
several studies focused on this factor there is no 
general agreement among scientists about 
influence of turbulence scale on transition. 
Theoretical work of M. Goldstein et al. [2] 
showed that another important factor should be 

the shape of leading edge. Additional 
amplification of normal to edge vorticity by 
means of vortex lines stretching predicted by [2] 
should move transition on blunted body 
upstream. However, there are no experimental 
validations of this effect. Present work is 
devoted to investigation of influence of FST 
scale and shape of leading edge on the transition 
in flat-plate boundary layer. 

2    Experiment  

At first influence of turbulence scale and shape 
of leading edge on FST induced laminar-
turbulent transition in the flat plate boundary 
layer was studied experimentally. The 
experiment was performed in the low-
turbulence direct-flow wind tunnel T-36 I of 
TsAGI. The test section is 2.6 m long, 0.5 m 
wide and 0.35 m high, and is preceded by a 12:1 
contraction. General outline of experimental 
setup is shown in Fig. 1. Development of 
disturbances initiated by free-stream turbulence 
in the boundary layer on the flat plate was 
investigated. The plate of 1810 mm long, 500 
mm wide and 20 mm thick was made from 
plexiglas and had two edges of different shape. 
In order to investigate the influence of shape of 
leading edge on laminar-turbulent transition it 
was installed onward one of the edges. The first 
sharp edge had 8:1 semi-elliptical profile. 
Contour of the second blunt edge was designed 
specially to obtain non-separated flow for 
maximal radius of leading edge. The radius of 
sharp edge was r1=1.25mm, the blunt edge has 
radius r2=5.31mm. The flow around the edges 
was adjusted to be symmetric using flap 
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mounted above the plate near its trailing edge. 
To control the stagnation point position the 
leading edges were drained and static pressure 
distribution over the surface was measured. 
Mean streamwise velocity in boundary layer 
and its pulsations were measured by DISA 
55M01 hot-wire anemometer. Experiment was 
performed for two values of flow velocity 8 and 
16 m/sec. 

                            (a) 

                                    (b) 

 
 

Fig. 1. General outline of experiment (a); shapes of 
leading edges (b) 
 

Enhanced turbulence level in the test 
section was generated by three grids of different 
mesh size and diameter of wire installed 
upstream the plate. The distance from each 
mesh to the leading edge was adjusted to obtain 
turbulence level Tu=1.3% at the leading edge 
position. Integral scales of turbulence generated 
by the grids were roughly equal to 3, 6, and 9 
mm for grids #1,2,3 and do not depend from 
flow velocity. Turbulence level was almost the 
same for all grids and changes in range 

%1.031.1 ± . 
R.m.s. velocity pulsations as functions of 

Reynolds number ∞= uxR /ν  obtained for 
different combinations of leading edge shape, 
flow velocity and scale of turbulence are shown 
in Fig. 2. It demonstrates, that in accordance 
with prediction of theory transition on the blunt-
nosed plate occurs earlier compared with 
transition on sharp-nosed one. Development of 
pulsations on the sharp-nosed plate depends 
substantially from both turbulent scale and flow 
velocity. Enhance of free-stream velocity results 

in increase of boundary layer perturbations. 
Dependence of pulsations growth from 
turbulence scale is non-monotonic, with 
maximal growth occurs for intermediate scale 6 
mm comparable with boundary layer thickness. 
Pulsations from small-scale turbulence in flow 
with ∞u =8 m/sec do not grow permanently, but 
reache maximum and decay downstream. 
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Fig. 2. Pulsations in the boundary layer on the plate with 
sharp (I) and blunt (II) leading edge for Tu=1.3% and 
different turbulence scale in free stream; (1) – L=3 mm 
(grid 1), (2) – L=6mm (grid 2), (3) – L=9 mm (grid 3). 
Results for U=8m/sec and 16m/sec are shown by solid 
and dashed lines. 
 

Linear theory of boundary layer receptivity 
developed by Leib, Wundrow & Goldstein [3] 
states that development of r.m.s. pulsations in 
boundary layer is described by the universal law 
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where LR - is Reynolds number based on 
integral scale of turbulence L. 

Results of present experiment scaled in this 
way together with data of Westin et al. [1] and 
theoretical universal amplification curve 
computed in [3] are presented in Fig.3. It shows 
that theory [3] strongly underestimates 
magnitude of pulsations and gives the credible 
result only for the case of grid#1 and 
u∞=8m/sec. In spite of the fact that scaling 
proposed by Leib, Wundrow & Goldstein [3] 
have failed, the regular trend, such as increase 
of normalized pulsations amplitude with growth 
of turbulence Reynolds number ν/LTuuRt ∞=  
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is clearly seen. To highlight this trend the 
experimental data are subdivided into four 
groups. The first group includes results for 
grid#1, u∞=8m/sec and Rt =21, second group 
includes four experimental cases in which Rt are 
close to 50, the third group includes results of 
Westin et al. for flow velocity 8 m/sec and case 
of grid #2, u∞=16m/sec for which Rt=85-95, the 
last group consists from the single case of grid 
#3 and u∞=16m/sec for which Rt=125. These 
groups of data are marked by blue, violet, 
orange and red colours. Fig.3 shows that the 
data from each group are close to each other 
instead of difference of flow velocity and 
turbulence scale and growth rate of pulsations 
grows monotonically with increase of Rt. 

 

 
Fig. 3. Pulsations in the boundary layer on the plate with 
sharp leading edge normalized in accordance with (1). 

 
General results of present experiment are 

the influence of magnitude of pulsations in 
boundary layer on the flat plate from turbulence 
scale or Rt and enhanced receptivity of the 
boundary layer on the blunt-nosed plate to FST. 
These results are explained theoretically in 
sections 3 and 4.  

3.    Receptivity of flat-plate boundary layer 
to FST 

Discrepancy between the predictions of linear 
flat-plate boundary layer receptivity theory and 
experiment illustrated in previous section may 
be caused by non-linearity. There are two types 

of non-linear effects in the FST-induced 
transition: non-linear evolution of vortical 
disturbances in outer flow and non-linear 
development of streaky structures in the 
boundary layer. Here we shall account the first 
type of non-linear effects and describe the linear 
development of disturbances in boundary layer 
initiated by non-linear turbulence in the outer 
flow. Let’s consider the interaction of grid 
turbulence with the boundary layer at infinitely 
thin plate located in the right part of (x,y) plane. 
The oncoming flow has mean velocity ∞u which 
is directed along the x axis and r.m.s. pulsations 

∞= uTuu' . We introduce non-dimensional 
variables using free-stream velocity and viscose 
length ∞= ul /ν  as scales. In these variables all 
coordinates are equal to the corresponding 
Reynolds numbers. 

 Vorticity field of FST will be presented 
as a superposition of periodic in space and time 
vortical modes. Two types of these modes: 
streamwise mode ||Ω  with predominantly 
streamwise vorticity component and cross-flow 
mode ⊥Ω with normal to flow direction vorticity 
will be considered. 
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Here 000 ,, kji  are unit vectors along x,y,z axes, 
k  is wavevector of vortical mode and γβα ,,  - 
are streamwise spanwise and vertical 
wavenumbers, ω~  - is frequency . Streamwise 
and cross-flow modes correspond to modes 
« B » and « A » from [4]. Further it is assumed 
that spanwise and vertical periods of vortical 
modes are large, so cross-flow wavenumbers are 
small and will be considered as small 
parameters 1~ <<γβ . Low-frequency 
disturbances with 2~~~ βωα  will be 
considered further because such perturbations 
exhibit maximal algebraic growth in the 
boundary layer [5, 6]. Because of flat-plate 
boundary layer is most receptive to streamwise 
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vortisity, only streamwise modes will be 
considered further in this section. 
 In classical linear receptivity theory the 
interaction between vortical modes is neglected 
and they correspond to solutions of linearized 
Navier-Stokes equations. Amplitude of such 
modes decays exponentially and they are 
convected with free-stream velocity, so αω =~ . 
In real turbulence vortical disturbances decay 
more slowly and their phase speed deviates 
from the free-stream velocity. For this reason 
we shall consider vortical modes (2) with 
arbitrary dependence of amplitude from x and 
detuned frequency ωαω +=~ . Such modes can 
not exist without the interaction with other part 
of spectrum of FST. The action of other 
disturbances to the mode will be replaced by the 
external force F  
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which can be expressed in terms of velocity iv  
induced by this mode of unit amplitude.  
 When the vortical mode interacts with flat 
plate without skin friction the perturbations of 
velocity can be found as a superposition of 
induced velocity in the free-stream and potential 
substituent found from the requirement that the 
vertical velocity should vanished at the plate. 
Because of potential substituent satisfies the 
linearized Navier-Stokes equations, the external 
force necessary for flow sustenance in the 
presence of the plate remains the same as in the 
free stream. If we have the plate with the 
boundary layer, the expression for external force 
(3) should be modified to account the 
displacement action of boundary layer. This can 
be made by substitution of stream function of 
basic flow in the boundary layer ψ  for vertical 
co-ordinate z and some modification of the 
expression for induced flow velocity. Finally, 
the force in the presence of boundary layer is 
expressed by (3) with the following induced 
flow velocity 
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Here ),(0 zxU  is streamwise velocity in the 
boundary layer. External force given by (3), (4) 
induces cross flow with the same distribution of 
streamwise vorticity along the streamlines as in 
the free stream with vortical mode (2). 
However, it is valid if the flow is assumed to be 
strictly uniform in the streamwise direction and 
only perturbations in normal to flow direction 
plane are taken into account. To our point of 
view, such force is rather good model 
describing the action of other part of turbulence 
on the vortical mode interacting with boundary 
layer. 
 In fact, vortical mode produces both 
perturbations of cross-flow and streamwise 
components of velocity. These disturbances 

),,,( tzyxv  are governed by Navier-Stokes 
equations linearized around the basic flow in the 
boundary layer Vb. Due to large streamwise 
period of perturbations the streamwise pressure 
gradient can be neglected and these equations 
take form 
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Here p is perturbation of pressure, F – external 
force given by (3), (4), ⊥∇ , ⊥∆  are gradient and 
Laplace operators in the cross-flow plane. The 
same equations without force were used for 
analysis of algebraically growing perturbations 
in [5, 6] and in linear receptivity theory [3]. This 
set of equations is of parabolic type, so initial 
conditions for x=0 and boundary conditions at 
the plate and in the outer flow are necessary. 
No-slip conditions are set at the plate, initial and 
outer flow conditions correspond to cross-flow 
velocity induced by vortical mode (4). For 
further consideration it is convenient to present 
the solution of (5) in the following functional 
form 
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where normalized velocity components 
WVU ,, , coordinates η,X , wavenumber α and 

frequency ω  are values of order of unity.  
Based on solution for single vortical mode, 

boundary layer velocity pulsations from 
oncoming turbulence with spectral density of 
streamwise vorticity )(2 k>< xω  can be 
expressed as an integral 
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Here ),( ωkS  is the density of frequency-

spectrum of each harmonics of k- spectrum of 
streamwise vorticity in the frame of reference 
moving with free-stream velocity. 

For isotropic turbulence and small 
α spectral density of streamwise vorticity is 
related to 3d energy spectrum E(k) as 
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where )( 1kF  is normalized 3d energy spectrum 
which is approximated by Karman’s spectrum 
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Frequency spectrum ),( ωkS  was not ever 

measured directly or find from DNS of freely 
decaying turbulence. However, it can be 
normalized by characteristic correlation time of 
velocity pulsations in the frame of reference 
moving with flow velocity τ  
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Normalized spectral function S  responsible for 
the shape of the time-spectrum is unknown and 
Gaussian distribution was chosen for its 
approximation. The correlation time τ  was 
estimated in [7] and following analytical 

expression related this time with 3d energy 
spectrum was proposed here 
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Coefficient λ  in this expression is not 

determined and will be treated as an empirical 
constant. From (9), (10) the following 
expression for frequency spectrum was obtained 
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Amplitude of vortical mode which is used 

for computation of function U, describing 
disturbances produced by it in the boundary 
layer, was found from spectral density of 
streamwise vorticity and time-spectrum as 
 

( ) 2/12 ),,(),(),( xSxx,ωa x ωω kkk ><=       (11) 
 
It depends from x indirectly through the 
dependence from x of turbulence intensity and 
scale. In subsequent computations the 
experimental data for Tu(x) was used and 
dependence of integral scale from x was found 
from well-known law constLTu =32 . 
Substitution of non-dimensional variables (6) 
for ωγβα ,,,  in integral (7) gives the following 
expression for r.m.s. velocity pulsations in 
boundary layer 
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where 00 , LTu  are turbulence intensity and scale 
at the leading edge and Rt is turbulent Reynolds 
number. Normalized amplitude of pulsations 



M.V. USTINOV, A.A. USPENSKY 

6 

(12) appears in form of convolution of 3d 
energy spectrum and kernel function R(X,k1). 
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 Empirical constant λ  was determined from 
experimental data by the following procedure. 
At first, amplitude of pulsations in boundary 
layer for constxa =)(  and 1=λ  was 
computed. In the case of constant amplitude of 
vortical mode normalised velocity perturbations 
in boundary layer U are independent from the 
turbulent Reynolds number, and r.m.s pulsations 
for each Rt can be find without additional 
computations. In fact normalized pulsations 
amplitude in this case is function of x  and the 
ratio λ/tR . Constant 2.0=λ  was found from 
the best fit of these solutions with experimental 
data for relatively small distance from leading 
edge where turbulence intensity and length scale 
are almost constant.  
 

 
 
Fig. 4. Pulsations in the boundary layer on the plate with 
sharp leading edge normalized in accordance with (1).  
Experimental data denoted by symbols similar to fig. 3. 
Thick solid lines – results of non-linear receptivity theory. 

 Amplification curves of pulsations in the 
boundary layer for decaying turbulence (a(x) 
found from (11)) were computed for the most 
representative experimental cases in each color 
group: grid #1, ∞u =8m/s, Rt=21; grid #2, 

∞u =8m/s, Rt=45; data of Westin et. al for 

∞u =8m/s Rt=83 and grid #3, ∞u =16m/s, 
Rt=125. These curves together with 
experimental results are shown in Fig. 4. 
Coincidence of developed non-linear receptivity 
theory with experiment is rather good in 
comparison with linear receptivity theory by 
Leib, Wundrow & Goldstein [3]. Main 
advantage of present theory is qualitative 
description of the enhancement of amplification 
coefficient with the growth of turbulent 
Reynolds number. However, theory 
underestimates this trend.  
 

 
 
Fig. 5. Comparison of experimental 3d energy spectra and 
Karman spectrum.  
 
 Possible reason of inconsistence of theory 
with experimental data is incorrect model of 3d 
energy spectrum. Unfortunately, there are no 
reliable data concerning this spectrum for grid 
turbulence and its dependence from turbulent 
Reynolds number. Small number of these data is 
caused by the difficulty of finding of 3d-
spectrum from measured 1d energy spectrum 
E1. In accordance with relation between these 
spectra 
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not perfect experimental spectrum should be 
differentiated two times. Available data 
concerning 3d-spectrum of turbulence are 
presented in Fig. 5. All measured 3d spectra 
deviate widely from the Karman spectrum used 
in the present theory. The trend of shift of 
maximum of the spectrum to smaller k1 with Rt 
is seen from the spectra measured in present 
work, however spectrum found in [7] for          
Rt =380 do not reinforce this trend. The only 
definite conclusion follows from these data is 
that the 3d spectrum of grid turbulence is not 
universal when it is scaled by the integral scale. 
Additional information about this spectrum is 
necessary for verification of present receptivity 
theory. 
 

4   Linear receptivity of boundary layer at 
blunt-nose plate to FST 

Consider the velocity perturbations 
produced by free-stream turbulence in a 
boundary layer at the flat plate with blunt 
leading edge. Here linear model of FST will be 
used and attention will be paid on the vorticity 
field deformation by the flow around the leading 
edge. Goldstein [2] showed that interaction of 
vertical vorticity with blunt edge results to 
production of strong streamwise vortices above 
the boundary layer. For this reason the blunt-
nosed plate boundary layer should be most 
receptive to cross-flow vortical mode ⊥Ω  and 
action of streamwise modes on it can be 
neglected. For this reason we shall consider here 
oncoming disturbances as a linear combination 
of cross-flow modes. Tese modes are considered 
as solutions of linearized Navier-Stokes 
equations without any external forces. It means 
that the frequency of the mode is equal to 
streamwise wavenumber and its amplitude 
decays exponentially as ))(exp( 22 γβ +− .  
 The length of the plate is chosen such that 
the boundary layer thickness is comparable with 
period of mode but it is small with respect to 
nose radius. Matched asymptotic expansions 
method is applied to the problem under 
consideration and flow is divided into two 
regions shown in Fig. 6.  

Ib z ∼√x

I x∼ z ~ b
 

z

x
u∞

r

z ~ β−1

 
II

x∼ β−2

 

Fig. 6. Flow regions used for finding the disturbances in 
the boundary layer on the blunt-nose plate excited by 
cross-flow vortical mode. 
 
 In the vicinity of the leading edge where 
x<<β⁻² (region I) the flow is inviscid outside a 

boundary layer of thickness z~ x  which is 
denoted as subregion I b. In this region vorticity 
field deformation takes place. Rapid distortion 
theory is used for finding of solution here. 
Interaction of cross-flow vortical mode with 
blunt leading edge leads to origination of 
infinite perturbations of spanwise velocity on 
the wall which behave as 
 

( ) 0,;ln
2

→>>−→ ⊥ zrxziarw βγ  

 
 Logarithmical singularity at the wall is 
removed by viscosity in the boundary layer and 
it is not significant for subsequent consideration. 
However, spanwise velocity above the boundary 
layer is grater than oncomint perturbations of 
streamwise velocity by factor 1>>rβ . It is 
cased by effect of amplification of disturbances 
by means of vortical tubes “wrapping”on the 
leading edge and vortex lines stretching 
highlighted in [2]. Further downstream in 
viscose region II perturbations of spanwise 
velocity are transformed into pulsations of 
streamwise velocity by lift-up effect.  
 Further analysis reveals that solution for 
streamwise velocity perturbations excited by 
cross-flow vortical mode in viscose region II 
takes the following functional form 
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 Normalized amplitude of velocity 
perturbations ⊥U  is a universal function of its 
four arguments. It was found by means of 
numerical solution of linearized Navier-Stokes 
equations with omitted longitudinal pressure 
gradient term (5) and F=0. Normalized 
disturbances are maximal for 0== γα  and 
decrease with growth of spanwise wavenumber 
(frequency) and γ . For fixed α  and γ  this 
function grow as xU 2~ β⊥  for small x2β , 
reaches maximum for x2β ~1, and decays for 
large x2β .  
 Based on solution for single vortical 
mode, boundary layer velocity pulsations from 
oncomong turbulence with spectral density of 
vertical vorticity )(2 k>< zω  can be expressed 
as an integral 
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Spectral density of vertical vorticity component 
can be related to the 3d energy spectrum E(k)  
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Sabstitution of this into (15) gives the following 
expression for r.m.s. pulsations in the boundary 
layer on the plate with blunt leading edge 
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It appears in form of convolution of energy 
spectrum of FST and kernel function ⊥H  
defined as 
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Universal function ⊥Φ  describing amplification 
of velocity pulsations in the boundary layer on 
the infinitely thin and blunt-nose plates are 
plotted in Fig. 7. It shows principal difference 
between pulsations behavior on thin and thick 
plates. Pulsations on the thin plate for Karman 
spectrum of turbulence (shown by thick solid 
line in Fig. 7) grow relatively slow and reach 
maximum ~0.06 L  far from leading edge 
where boundary layer thickness x~δ  
becomes comparable with turbulence scale. 
Special analysis reveals that near the leading 
edge 12/53/1~' xLTuu −  for x<<L2. This result 
slightly deviates from well-known growth 
proportional to x . 
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Fig.7. Universal functions describing growth of pulsations 
induced by FST in the boundary layer on the plate with 
blunt leading edge. 
 
  For the same Karman spectrum of FST, 
maximal amplification of pulsations at the 
blunt-nose plate takes place near the leading 
edge. Asymptotic analysis shows that 

XH ~⊥  for small X and pulsations near the 
leading edge behave as 12/13/1~' −− xLrTuu  for 

2Lx << . Singularity on the leading edge can be 
removed if more complicated model of energy 
spectrum including the exponential decay in the 
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viscose range is used instead of Karman 
spectrum 
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Universal amplification functions ⊥Φ  

computed with this energy spectrum for 20=tR  
and 100 are also plotted for in fig. 7. They 
nearly coincide and have maxima in the vicinity 
of the leading edge. Maximal amplification of 
pulsations on the blunt-nose plate is scaled as 

Lr /03.0~  and is reached at 201.0~ Lx . 
Large difference between the results found with 
Karman spectrum and real spectrum (17) is 
explained by dominant contribution of small-
scale perturbations into total r.m.s. pulsations 
near the blunt leading edge. 

 

 
 
Fig.8. Comparison of normalized disturbances on the 
blunt-nose plate with theory 

 
Fig. 8 compares theory developed here 

with experimental data obtained with blunt-
nosed plate which are described in section 2. 
Only initial part of amplification curves which 
is near to constant and first few points in the 
region of non-linear growth are shown in this 

figure. Fig. 8 shows that beginnings of 
amplification curves of pulsations scaled with 
accordance with (16) lie near to each other. 
However they diverge when non-linear growth 
of pulsations starts. Similarly to the case of flat 
plate, linear receptivity theory underestimates 
magnitude of velocity pulsations in boundary 
layer by factor of 2-3. This theory can be 
improved if the non-linearity of FST would be 
taken into account in manner described in the 
previous section. Development of such non-
linear receptivity theory for blunt-nosed plate is 
in progress now.  

In flight conditions and in the experiments 
performed in industrial wind-tunnels the 
turbulence scale is large with respect to 
boundary layer thickness. Asymptotic behavior 
of disturbances for 2Lx <<  found for real 
energy spectrum is required for correct 
theoretical description of transition in these 
conditions. Such analysis shows that in the 
boundary layer on the thin plate disturbances 
near the leading edge take form 

 

∫
∞

=≈
0

11111 )(;' dkkFkI
L
xITuu         

 
The integral here can be estimated as 

4/1
1 ~ tRI  (see [8]) and following final 

expression for disturbances may be obtained 
 

8/1~' tR
L
xTuAu                                

 
Here A is an universal constant. Similar 
asymptotic analysis for the blunt-nose plate 
gives 

∫
∞

=≈
0

11
2

122
4/1 )(;' dkkFkIIx

L
rTuu  

Integral tRI ~2  and asymptotic behavior of 
pulsations near the blunt leading edge takes 
form 

 
4/1~' xR

L
rTuBu t                               

with another universal constant B. The ratio of 
amplitude of disturbances on the blunt-nose 
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plate to the same value for thin plate is 
proportional to 

 
4/18/7~'/' −xR

L
ruu tthinblunt             

 
Estimates shows that for typical flight 

conditions ( smu /200' ≈∞ , ,2' cmr =  mL 10= , 
smu /1' = , x=1m) pulsations on the blunt-nose 

plate exceeds this for the thin plate by factor 
104. Similar estimate for experiment in transonic 
wind-tunnel ( smu /200' ≈∞ , ,2.0' cmr =  

mL 2.0= , smu /1' = , mx 1.0= ) gives 
20~'/' thinblunt uu . These examples demonstrate 

the importance of effect of leading edge on 
laminar-turbulent transition excited by FST. 
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