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Abstract  

In 1998, by the discovery of the possibility of the 
human psychosomatic condition through the 
evaluation of a person’s voice, the Electronic 
Navigation Research Institute started to develop 
the fatigue and drowsiness predictor for ATC 
controllers and aircraft pilots. 

As a result of its development, the human 
voice analysis system based on the chaos theory, 
one field of modern mathematics, was developed 
in 2005.  As a result of experiments, it was 
confirmed that the system could measure the 
degree of activity of the human cerebral neo 
cortex. 

As a result of the ATC/CPDLC simulation 
carried out as part of a functional evaluation 
experiment of the human voice analysis system, 
it was predicted that the ATC workload would 
increase under the transition stage from current 
paradigm to the next CPDLC paradigm. 

1    Introduction 

Flight safety is heavily reliant on the 
performance of all those participating in 
aviation, and supporting the human element is a 
key to further enhancing aviation safety.  If it 
were possible to monitor the conditions of ATC 
controllers and aircraft pilots in real-time, this 
would improve flight safety.  In June 12, 2008, 
U.S. NTSB issued A-08-44 & 45 Safety 
Recommendation to the U.S. FAA to address a 
fatigue management system in aviation.  In 
2010, the Japanese Civil Aviation Bureau 
requested the Electronic Navigation Research 

Institute (ENRI) to develop a way for measuring 
and monitoring the ATC controllers’ workload. 

Crew fatigue is a very common problem, 
especially on long-haul flights crossing many 
time zones.  If an increase in the probability of 
crew micro-sleep and/or human error could be 
detected, it might be possible to warn the pilot 
so that he or she should be relieved by other on-
board crewmembers. 

Historically, many methods have been 
proposed for measuring human fatigue, 
sleepiness and performance characteristics, but 
all these require that test subjects perform 
certain tasks specifically for the purpose of 
measuring them.  All these methods therefore 
cannot measure the performance of a test 
subject doing a job task in real-time without 
imposing some sort of interference.  However, 
for flight safety monitoring, a way of measuring 
crew performance in real-time that does not 
interfere with normal job activities is required. 

In 1998, Hirose S. and Shiomi K. found 
that the time-averaged value of the first 
Lyapunov exponent calculated from a human 
voice signal changed according to the speaker’s 
psychosomatic condition [1].  It seemed that the 
degree of fluctuation of the spoken voice 
increases when the speaker speaks hard.  So the 
ENRI has been studying ways of measuring 
human performance by analyzing a person’s 
voice since 1998. 

If it were possible to derive the strange 
attractor of the human voice and to calculate its 
chaotic characteristics in real-time, this would 
enable human performance characteristics to be 
measured in real-time non-intrusively.  The 
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authors believe that the ENRI’s human voice 
analysis system will provide a way to measure 
the ATC controllers’ and the pilots’ 
performance as the fatigue and drowsiness 
predictor. 

2    Chaotic Human Voice Analysis  

2.1    Strange Attractor of the Human Voice  

Figure 1 shows the waveform of the “o” sound 
uttered by one of the authors.  When the time 
series is sampled from the waveform as shown 
in Fig.1, the strange attractor of the human 
voice can be reconstructed in phase space as 
shown in Fig. 2 according to Takens’ 
embedding theorem [2].  Moreover, when a 
strange attractor is reconstructed from a long 
single vowel sound, it can be analyzed 
approximately by methods proposed in current 
chaos theory [3].  It can be confirmed that the 
fractal dimension of the human voice is four or 
higher, and that the first Lyapunov exponent is 
positive. 

Although the strange attractor in Fig. 2 is 
reconstructed in two-dimensional phase space, 
when calculating the first Lyapunov exponent of 
a time series it is usually reconstructed in a 
phase space of equal or higher dimension than 
the fractal dimension of the time series. In 
normal human voice chaotic analysis, the time 
series sampled from the voice signal should be 
embedded in four-dimensional phase space. 

The authors thought that the strange 
attractor to which it seems that a certain orbit is 
fluctuating could be considered to be a 
visualization of man's homeostasis [4]. 

In 1998, the authors thought that the first 
Lyapunov exponent indicates the degree of 
tiredness of the speaker, since it seemed that the 
degree of fluctuation of the spoken voice 
increases when the speaker speaks hardly.  
However, it became clear that the thought 
mentioned above was not true based on the 
results of experiments carried out after 2000 [5].   

At present in 2012, it is appropriate to us to 
think that the degree of fluctuation of speaker's 
voice is not directly indicates his or her 
tiredness.  The authors understand that the 

degree of fluctuation shows the degree of 
activity of the Broca Field of the cerebral neo-
cortex of the speaker. 
 

 
Fig. 1     “o” Sound Waveform 

 
Fig. 2     “o” Sound Strange Attractor 

 

2.2    Fluctuations of the Human Voice  

A fatigue measurement experiment was carried 
out using a railroad-driving simulator at the 
Railway Technical Research Institute (Tokyo, 
Japan) for sixty days from Aug. 1 to Sep. 29, 
2005 [5].  Eleven male university students and 
postgraduates of physical education at Tokyo 
Gakugei University, and one assistant professor, 
participated in the experiment.  As a result of 
this experiment, it was confirmed that the 
degree of fluctuation of the spoken voice 
decreases after the speaker becomes fatigued. 
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Figures 3 and 4 each shows a strange 
attractor generated from a vocalized “o” sound 
obtained in the experiment mentioned above.  
Each strange attractor is generated from the last 
80ms of the vocalized “o" sound of call-out 
made by railway drivers immediately before 
departure, “Shu-ppatsu Shinko!” (which means 
“Start and go ahead.”).  The strange attractor 
shown in Fig. 3 was generated from a voice 
recording taken some tens of minutes after the 
start of a driving exercise in a railroad vehicle 
driving simulator, while Fig. 4 was generated 
from a voice recording taken after about five 
hours of simulated driving.  Five hours of 
simulated railroad driving generally causes 
fatigue, and the authors hypothesized that the 
fluctuations in the uttered voice observed in Fig. 
3 decreased in Fig. 4 due to this fatigue [5]. 

 
 

 
Fig. 3     Strange Attractor of vocalized “o” 

sound: the speaker is not fatigued. 
 

 
Fig. 4     Strange Attractor of vocalized “o” 

sound: the speaker is sleepy due to exhaustion. 

2.3    Cerebral Exponent 

Through many experiments mentioned above 
and others, Shiomi, one of the authors 
understood that the first Lyapunov exponent is 
not sufficient as a measure of the degree of 
fluctuation in the spoken voice.  To calculate the 
first Lyapunov exponent, the system that 
generates the time series signal must be 
sufficiently stable, but since general speech 
contains many phonemes per second, it is not 
possible to calculate the first Lyapunov 
exponent directly from a complex general 
speech signal containing two or more vowels.  
The first Lyapunov exponent can be only 
calculated as a kind of estimation, when a single 
vowel was uttered for more than several seconds.  
Each different vowel gives a different first 
Lyapunov exponent.  Since the first Lyapunov 
exponent is not appropriate enough to evaluate 
the fluctuation level of general speech, it is 
necessary to define a new index or exponent 
that could be called the time-local first 
Lyapunov exponent. 

In 2002, the author succeeded in defining 
such indices of time-local chaotic characteristics, 
which are termed the “Cerebral Exponent micro 
(CEm)” and the “Cerebral Exponent Macro 
(CEM).”  Since the degree of fluctuation of the 
uttered voice seemed to indicate the degree of 
activity of the speaker’s cerebrum, author 
Shiomi named the defined exponent “Cerebral 
Exponent micro/Macro.”  The author also 
created an algorithm named SiCECA (Shiomi’s 
Cerebral Exponent Calculation Algorithm) to 
calculate the CEM rapidly [6]. 

As the result of fatigue measurement 
experiments, the CEM values calculated from 
the voice that reads a sentence show high 
correlation with the critical flicker frequency 
(CFF) measured at the same time.  The CFF is a 
measurement that indicates the degree of 
arousal of the subjects, and was used under the 
notion that it held strong correlation to the 
degree of activity of the cerebral neo-cortex.  
The cross-correlation coefficient between the 
variation of CFF values and that of CEM is 
more than 0.6 under the data size of about 50 [5].  
The CEM seems to show the state of the 
function of the neo-cortex, while the Hart Rate 
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shows the state of the function of the autonomic 
nervous system [7]. 

From another experimental result, it was 
confirmed that the CEM (Reading-CEM) values 
calculated from the voice that reads a sentence, 
differ from the CEM (Callout-CEM) values 
calculated from utterances made without any 
reading a sentence.  The author believes that this 
discrepancy may arise due to the fact that the 
reading-aloud voice for Reading-CEM is the 
subject’s main task, but the call-out voice for 
Callout-CEM is a subtask. 

Therefore, when the workload of the main 
task is relatively high, as a result of adjusting 
distribution of brain resources, although a 
degree of arousal is high, the phenomenon in 
which the Callout-CEM value decreases is 
observed.  For example, the Callout-CEM value 
calculated from a voice when driving the track 
at the limited maximum speed of 120 km/h in 
the test course is often low as compared with the 
case of driving at 100 km/h [8].  Also, in the 
following ATC/CPDLC (Controller Pilot Data 
Link Communication) simulation experiments, 
the decrease of the CEM values by the rise of 
workload was observed. 

In order to calculate CEM values that show 
high correlation with CFF values, it is necessary 
to set appropriate parameter values (embedding 
dimension, embedding delay time, evolution 
delay time, and so on) for SiCECA signal 
processing [9]. 

3    CPDLC Simulation 

The authors carried out ATC simulation 
experiments for evaluating the ENRI’s human 
voice analysis technique. 

In the ATC simulation experiment, the 
workloads of ATC controllers under the 
conditions that the CPDLC would be introduced 
in the next ATC paradigm were evaluated. 

It is expected that there will be some 
statistical differences between fluctuation levels 
of strange attractors reconstructed from ATC 
controllers’ voices recorded under the 
simulation scenario of the current paradigm and 
that of the next paradigm, if the introduction of 
CPDLC changes the ATC workload, or not. 

3.1    CPDLC Simulator  

Figure 5 shows a general view of the ATC/ 
CPDLC simulator.  The simulator consists of 
the ATC simulation server, and two client 
systems used as the user interface for 
participating in the ATC simulation.  One of the 
two client systems is for a participant who 
participates I the ATC simulation as an ATC 
controller, and the other one is for a participant 
participating as an aircraft pilot. 

Figure 6 shows the radar display image 
provided to the ATC controller.  In the display 
image, the conventional aircraft are shown by 
triangles, and the aircraft (CPDLC-aircraft) that 
have the capability of data link communication 
are shown by circles.  The call sign of the 
CPDLC-aircraft is also surrounded and 
expressed as a square frame in order to 
distinguish it from the call sign of the 
conventional aircraft. 

 
 

 
Fig. 5     ATC/CPDLC Simulator 

 
 

 
Fig. 6     Radar Display Image 
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Fig. 7     CPDLC Instruction Sequence 

 
 

 
Fig. 8     CPDLC Pop Up Menu 
 

 

 
Fig. 9     ATC/CPDLC Simulation 

 
Figure 7 shows the procedure for creating 

the message for CPDLC, “DEF5678 descend to 
flight altitude of 10,000.”  At first, the call sign 

of the target aircraft is right-clicked. Next, 
"ALT" is chosen from the pop-up menu.  Next, 
"10000 (target flight level)" is chosen similarly.  
Finally, click "OK" after checking the CPDLC 
message.  The pop-up menu for creating a 
CPDLC message is displayed on the radar 
image, as shown in Fig. 8. 

 
For the ATC/CPDLC simulation, we 

prepared three kinds of simulation scenarios that 
can be processed in 30 to 40 minutes.  Moreover, 
since the rate of the CPDLC-airplane was set at 
0%, 30% and 80%, nine simulations per person 
were carried out. 

Since the staff to play the role of a pilot 
had to also play the role of an ATC coordinator 
in performance of the ATC/CPDLC simulation, 
the pilot player had to sit beside the ATC 
controller as shown in Fig. 9. 

3.2    Experiment Results  

The experiment results of eight subjects are as 
follows.  All test subjects were retired ATC 
controllers. 
 
 

 
Fig. 10     Com. Time vs. Rate of CPDLC 
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As it is naturally expected that the rate of 
CPDLC-aircraft increases, the average of total 
time of voice communication decreases as 
shown in Fig. 10. 

However, the ATC workload increases 
under the condition that the CPDLC-aircraft and 
conventional aircraft are intermingled as shown 
in Fig. 11.  It is then confirmed that the ATC 
workload is not simply dependent on the length 
of communication time.  Since there is no 
situation in which the ATC controller becomes 
sleepy in every simulation scenario, it is thought 
that the decrease of Callout-CEM values 
depends on the increase of thinking work. 

 

 

Fig. 11     CEM vs. Rate of CPDLC 
 

The Student’s t test was used for 
comparison between the “0% case” and “30% 
case” groups, and the “30% case” and “80% 
case” groups.  A probability value p < 0.05 was 
considered statistically significant. 

 
 
 

The above-mentioned experimental results 
are in agreement with the results of the 
interviews of the participants in the 
ATC/CPDLC simulation.  Many ATC 
controllers said “Mistake in vocal 
communication with CDPLC-aircraft occurred 
frequently under the condition that the ratio of 
the CPDLC-aircraft is 30%.” 

4    Conclusion  

ENRI developed the method to measure the 
degree of activity of the human cerebral neo-
cortex.  The measurement method is based on 
human voice analysis according to the chaos 
theory.  By using this method, the workloads of 
ATC controllers, under the conditions that the 
CPDLC would be introduced in the next ATC 
paradigm, were evaluated.  Increase in ATC 
workload is expected in the shift process to the 
CPDLC paradigm. 
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