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Abstract  

This work deals with constrained control of 
nonlinear model of an aircraft. A methodology
applying for this control is based on 
linearization (EL) in connection with linear 
model predictive control (MPC) techniques.

1   Introduction  

The purpose of this control methodology is 
flight recovery problem. Primary task of an
automatic recovery system is to regain control 
over an aircraft in case of unintended maneuvers 
or uncontrolled situations (e.g. 
orientation). In such situation
movement is assumed and therefore 
control methods cannot be used. 
model with small deviations and control around 
the equilibrium. Whole procedure has 
limiting factors. Above all there are stall angle 
of attack and sideslip angle (separation of the 
flow – aerodynamic limitation), pitch, roll and 
yaw rate (mechanical limitations of the plane), 
aerodynamic loads (physiological pilot
limitations) and a control limit (amplitude
rate of control surfaces deflection 
engine). Based on these facts combination of 
input constrained MPC with EL 
An important advantage is that EL model can be 
controlled with a linear MPC with fixed model.
On the other hand it is not easy to define 
constraints of linearized model. 

As a controlled platform 
behavior a model of flying laboratory Vilík
(Fig. 2) was created. In this case it
as a nonlinear form of longitudinal behavior
with two inputs. 
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where  is state vector, 
vector and f is differentiable field on 
we can define projection of our non
to new linear space and chang

( ) ux ,ξ =Φ=
 
where ξ is state of new linear model and 
new virtual input. Most of nonlinear dynamic 
models (aircraft model too) can be described as 
control affine system: 

( ) gxfx +=&
 
By the help of Lie derivative it is possible to 
create static feedback that transforms nonlinear 
to linear model.  

( ) ( )uxgxfx ⇒+=&

 
Matrices A and B
transformation form. They are typically 
composed from series of integrators. Matrices 
and α are determined by Lie derivatives and will 
be described below.  

MPC is a type of control which uses 
optimal state-feedback and predictive strategy 
for optimal design sequence of control action 
with reference to future states and outputs of
system. MPC is based on a linear, discrete time 
state-space model of the 
programming (QP) was typically used for 
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2   Problem formulation  

Pure mathematical equation of motion for 
linear form: 

)u  (1) 

is state vector,  is input 
is differentiable field on . Now 

we can define projection of our non-linear space 
space and change inputs: 

( )v,ξα=  (2) 

is state of new linear model and v is 
new virtual input. Most of nonlinear dynamic 
models (aircraft model too) can be described as 

( )uxg  (3) 

By the help of Lie derivative it is possible to 
dback that transforms nonlinear 
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v

αD
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B are depended on 
transformation form. They are typically 
composed from series of integrators. Matrices D 

are determined by Lie derivatives and will 

MPC is a type of control which uses 
feedback and predictive strategy 

for optimal design sequence of control action 
with reference to future states and outputs of the 
system. MPC is based on a linear, discrete time 

e model of the model. Quadratic 
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solution of MPC. A main advantage of QP is a 
simple implementation of inputs/outputs 
constraints. Quadratic objective function for 
linearized system is: 

( ) ( ) ∑∑
==

+−=
Tp

k
k

Tp

k
kk vrwqvJ

1

2

1

2ξ
 

(5) 

 
where w is reference vector and q and r are state 
respectively input weights. 

3   Mathematical model of an aircraft  

A formulation of aircraft flight dynamics is 
derived from Newton’s second law of motion. 
This can be investigated from the viewpoint of 
stability or flying qualities and can be used for 
modeling of aircraft motion [1, 2]. There are 
following simplifying assumptions: the aircraft 
is rigid body with fixed mass, gravitational 
acceleration is constant and the aircraft is 
without structural deformation. Following 
equation and variables are relative to the body 
axes system (Fig, 1.). 

 Fig. 1 Body axis components; definition of 
moments L, M, N; forces X, Y, Z; velocities u, v, 

w; angular rates p, q, r; angle of attack α and 
sideslip angle β 

3.1   Equation of motion  

The general forces and moments equations can 
be described by Newton’s second law of motion 
in translational and rotational form [3]. We 
consider rotational axis system, where the 
derivate operator applied to vectors has two 
parts: one for the rate of change of the vector, 
and one for axis system rotation.  

taw FFFvΩ
v

F ++=






 ×+
∂
∂=

t
m

 
(6) 

( )
aMΩIΩ

ΩI
M =⋅×+

∂
⋅∂=
t  

(7) 

 
Where F represents the sum of all externally 
applied forces, m is the mass of aircraft, v is the 
velocity vector, Ω is the total angular velocity of 
the aircraft, M  represents the sum of all applied 
torques and I  is moment of inertia matrix. 
Thereby we get six component equations of 
motion, where on the left side there are time 
derivatives of angular rates and velocities and 
on the right side there are description of motion 
and external influences. That is where the 
external forces depend on the weight vector Fw, 
the aerodynamic force vector Fa and the thrust 
vector Ft respectively. We assume the thrust 
produced by the engine acts only parallel to the 
aircraft’s longitudinal axis. External moments 
are those due to aerodynamics. 

3.2   Aerodynamic model 

The aircraft aerodynamic model mainly depends 
on the following factors: the airspeed V (Mach 
number or Reynolds number respectively) and 
density of the airflow ρ; the geometry of the 
aircraft (wing area S, wing span b and mean 
aerodynamic chord cMAC); the orientation of the 
aircraft relative to the airflow [4] (angle of 
attack α and side slip angle β); the control 
surface deflections δ and the angular rates p, q, 
r. There are other variables such as the time 
derivatives of the aerodynamic angles that also 
play a role, but these effects are less prominent. 
The volume of the aerodynamic forces and 
moments is determined by the amount of air 
variables in different directions. In the standard 
way of modeling the aerodynamic forces and 
moments are given by the following equations:  

( ) YDLirqpcSq i ,,,...,,,,, =⋅⋅= δβαaF  (8) 
( )

bcbxnmli

xrqpcSq

MACi

ii

,,,,

,...,,,,,

==
⋅⋅⋅= δβαaM

 
(9) 

 
where q� � 1 2⁄ ρV	 is dynamic pressure. Each 
dimensionless aerodynamic coefficient from (8) 
and (9) can be described as a function of other 
flight parameters: 

( )Re,...,,,,,,, Mrqpcc LL δβα=  (10) 
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This description is too detailed for mathematical 
modeling and too difficult for 
measurement/computation. Therefore it is 
described in a simplified way where the effect 
of each flight parameter is separated. For 
example the aerodynamic lift coefficient is then 
given by: 

eL
MAC

qLLLL e
c

V

cq
cccc δα δα ⋅+

⋅
⋅

+⋅+=
20

 
(11) 

 
The aerodynamic coefficient equals summation 
of initial value (value on lift line at zero angle of 
attack), product of lift line derivatives and angle 
of attack, product of non-dimensional pitch rate 
derivatives and non-dimensional pitch rate and 
product of control derivatives and control 
deviation (elevator). The aerodynamic 
coefficients (more precisely aerodynamic 
derivatives) are usually obtained from wind 
tunnel or by computational methods [5]. In this 
case data from flight tests [6, 7] were used 
(Fig.2), where the aerodynamic derivatives were 
estimated by maximum likelihood method [8].  
 

 
Fig. 2 model Vilík during flight test 

3.3   Longitudinal part of motion 

The aircraft equations of motion in general form 
are a set of coupled nonlinear differential 
equations. However, in our case these equations 
can be simplified. Assuming zero lateral states 
(side slip angle, roll and yaw rates, roll angle), a 
separated longitudinal motion in nonlinear form 
can be obtained: 
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The longitudinal motion of aircraft is a dynamic 
system with four states/outputs y = x = [V, α, q, 
θ] (consecutive airspeed, angle of attack, pitch 
rate and pitch angle) and two inputs u = [δe, Ft ] 
(elevator deflection and thrust of engine). All 
parts which are independent on state variables 
are substituted by constants (see Appendix). 

3.4   Steady flight  

Computation of equilibrium is a classical way of 
how to determine initial values of states and 
inputs of nonlinear model. In this case we have 
four equations and six unknowns (four states 
and two inputs). However, we can use 
additional equations for vertical speed (i.e. 
change of altitude) that we assume zero: 

( ) 24241 0sin xxxxxh =→=−=&  (13) 
 
Further more typically an attitude of airspeed 
and pitch rate (x3) is assumed zero in 
equilibrium. Thereby we get three equations 
with three unknowns: 
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(14) 

 
where 
�� is chosen airspeed. Analytically 
solution is due to goniometric functions 
relatively complicated. Therefore Nelder-Mead 
simplex method is used for solving of this static 
optimization problem. 

4   Exact linearization 

An assumption for this transformation is an 
accomplishment of an invertible matrix D [9]. 
In our case it is necessary to use dynamic 
feedback for accomplishment of this 
assumption. It means, that the elevator 
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deflection (input) is added in integrator thereby 
elevator rate is the new input and elevator 
deflection is changed into state. We define the 
elevator input as a new state: 

51 xu =  (15) 
 
Now we determine nonlinear transformation 
Φ: � � �. The system in new coordinates can be 
expressed as: 
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(16a) 
(16b) 
(16c) 
(16d) 
(16e) 

 
where the first new state is chosen as: 
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(17) 

 
by substituting derivatives of state from (12) to 
(17) and proper arrangement we get: 
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(18) 

 
The result of the last term is too complicated to 
be solved by analytical method. Therefore 
Matlab symbolic toolbox for solution (16b) was 
used. Second part of decoupled system is 
determined by last three equations (16c), (16d), 
(16e): 
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Last three state derivatives are also solved by 
symbolic toolbox. From (16) it is easy to form 
state and input matrices (4): 
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(20) 

 
Last part of completion of the exact 
linearization is to provide second equation from 
(4). Using affine system assumption we can 
easily determine matrices D and α  as a part 

which is dependent on input u (matrix D) and 
the rest (matrix α). The feedback linearizing 
control law is given by: 

( ) ( )( )xvxu αD −= −1

 (21) 
 

5   Model Predictive control 

Conventionally MPC is formulated in discrete 
time[10]. Assuming controlled aircraft model 
(4) the description by the linear discrete time 
difference equation is: 

kkk vBA +=+ ξξ 1  (22) 
 
Following states on prediction horizon Tp can be 
described as follows: 
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Last equation can be rewritten to matrix form: 

vk BA += ξξ  (24) 
 
where each variable with bar is described as 
follows: 
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Now we can define final form of objective 
function for MPC with exact linearized system:  

( ) ( ) ( ) vvwvwvvJ T
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T
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Subject to: 

( ) ( ) ( ) ( )xuxvxux

uuu

αDαD +≤≤+
≤≤

maxmin

maxmin

 
(27a) 
(27b) 

 
where Q and R are weight matrices of states and 
inputs respectively. The box constraints (27a) of 
original model were transformed into state 
dependent constraints (27b). Figure 3 illustrates 
the feasible area of u1 and u2. It has four corners 



 

5  

STABILIZATION OF LONGITUDINAL AIRCRAFT MOTION USING  
MODEL PREDICTIVE CONTROL AND EXACT LINEARIZATION 

a,b,c,d. The coordinates of corners are (u1min, 
u2max), (u1max, u2max), (u1max, u2min), (u1min, u2min), 
respectively.  
 

 
Fig. 3 Feasible area of the control inputs 

original coordinates 
 
Corners of original model were step by step 
transformed in to new coordinates (27b). Figure 
4 illustrates the feasible area of virtual inputs v1 
and v2 after each point in the feasible area of u1 
and u2 is multiplied by matrix D and translated 
by α.  
 

 
Fig. 4 Feasible area of the virtual control inputs 
 
The new coordinates have the following 
relationship with the old ones: 
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The feasible area in Figure 4 of the transformed 
inputs is not suitable for use with the predictive 
control algorithm. However, the box constraints 
of original input can be rewritten by following 

procedure. Let’s have two points from the 
previous problem. 

 
Fig. 5 constrained transformation 

 
Constrained point c, b are transformed into c’ 
and b’.  
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Line between new points can be described: 
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where line parameters k and l are solution of 
two equations with two unknowns:  
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The constrained line is now defined as: 

12 lvkv +=  (32) 
 
Final relationship between original and virtual 
constraints is formulated as follows: 

12

max11

lvkv

uu

+≤
≤  (33) 

 
Each point pairs (c’, b’), (b’, a’), (a’, d’), (d’, c’) 
are consequently used for computation of virtual 
input constraints (33) which create complete 
trapeze constraints for virtual inputs. The 
computational process is shown on figure 6. 
This procedure creates enclosed area for virtual 
constraints.  
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Fig. 6 constraints computational process 

5   Case study 

In this section, we present algorithm and 
simulation results using MATLAB and 
SIMULINK.  

We suppose iterative process that is 
described below. At initialization step we start 
from steady flight condition (14) that satisfies 
input constraints and constant (35) for nonlinear 
simulation (12) is computed.  

MPC process starts with nonlinear state 
computation of the prediction horizon Tp. This 
is open loop solution of aircraft equation (12) 
and feedback linearizing control (21) with 
actual state as initial condition and virtual inputs 
v on the horizon prediction. Obtained output is 
used to construct the constraints of the virtual 
input v at each step of the prediction horizon.  

Next we use the calculated input 
constrained sequence to generate new virtual 
inputs (26) subject to (27b). Constrained 
conditions are controlled and if they are not 
satisfactory the MPC process is repeated. After 
decision of satisfied condition is next simulation 
step computed. 

Following algorithm summarizes the steps 
of the proposed methodology.  

 
Algorithm 

 Initialization  
1  Model preparation (35) 
2  Steady state flight condition (14) 
  Simulation  

3 Solve open loop –aircraft equation (3) 
with EL(21) and virtual inputs v 

 MPC 
4 Open loop simulation on prediction 

horizon Tp (12)(21) 
5 Constraints computation (33) 

 v = MPC solution (26)(27b) 
 while constrained condition  
6 Open loop computation on prediction 

horizon Tp (12)(21) 
7 Constraints computation (33) 
8 v = MPC solution (26)(27b) 

 end while  
 end MPC 
 return to Simulation 3 until tsim < Tfinal 
 end Simulation 
 
The performance of this scheme has been 
verified via simulation. The aircraft is controlled 
from steady regime and consequently its flight 
is disturbed by a wind gust (addition to angle of 
attack). Character of wind disturbance is shown 
in Fig. 7 (dash line). 
 

 
Fig. 7 States of aircraft longitudinal motion 

 
Wind gust amplitude is two degree and we can 
see from Fig. 7 that real angle of attack error is 
smaller than one degree. The error means 
difference between actual state and reference 
which is obtained from steady flight solution. 
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Fig. 8 inputs during wind disturbances 

 
Previous figure shows constrained inputs. Due 
to dynamic exact linearization is new input 
defined (15). Therefore elevator rate deflection 
as original input used instead of elevator 
deflection. Both inputs satisfy amplitude limits 
(elevator rate deflection -40÷40 [°/s], thrust of 
engine 0÷35 [N]). Virtual inputs used for 
feedback linearizing control are shown in Fig. 9. 
There are four lines which correspond to 
constrained transformation (33) and define  

 
Fig. 9 constrained virtual inputs 

 
feasible control area (filled surface) . The cross 
represents value of MPC solution. Figure 10 
shows the same problem with the difference that 
the feasible areas of linearized model on the 
prediction horizon are shown. On the feasible 
area of each prediction step the virtual input 
value is marked by a circle. All values are inside 
the feasible region thereby is graphically 
demonstrated fulfillment of constrained 
condition.  

 

 

Fig. 10 feasible areas of linearized model on the prediction horizon 
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Appendix 

The longitudinal part of equations of motion 
derived from (6), (7) are described in 
aerodynamic axis system: 
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(34) 

 
Each constants of nonlinear equation (12) are 
defined as follows: 
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Conclusion 

In this work, a new method was provided in 
order to apply standard MPC techniques for 
exact linearizable system with inputs 
constraints. An iterative process was designed 
and at every step the optimization problem 
involved only linear dynamics and constrints. 
Future work will investigate the extension of 
restrictions on the status and speed inputs. 
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