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Abstract

This work deals with constrained control
nonlinear model ofin aircraft. A methodolog
applying for this control is based can exact
linearization (EL) in connection with linea
model predictive control (MPC) techniqu

1 Introduction

The purpose of this control methodologythe

flight recovery problem.Primary task of &

automatic recovery system to regain contrc
over an aircraft in case of unintended maneu
or uncontrolled situations(e.g. pilot loses
orientation) In such situatic nonlinear
movement is assumednd thereforeclassical
control methods cannot be uséthose require
model with small deviationand control aroun

the equilibrium. Whole procedure hiseveral
limiting factors. Above all therare stall angl
of attack and sideslip angle (separation of

flow — aerodynamic limitation)pitch, roll anc
yaw rate (mechanical limitations of the plar
aerodynamic loads (physiological pils

limitations) and a control limitamplitude and
rate of control surfacedeflectionand thrust of
engine). Based on these fadsmbination of
input constrained MPC with Ewere chosen.
An importantadvantage is that EL model can

controlled with a linear MPC with fixed mod

On the other hand it is not easy to def
constraints of linearized model.

As a controlled platformfor a plane
behavior a model ofllying laboratory Vilik
(Fig. 2) was created. In this casevas modeled
as a nonlinear form of longitudinal behav
with two inputs.

2 Problem formulation

Pure mathematical equation of moi for
aircraft model is in noinear form:
x = f(xu) (1)

where is state vector is input
vector andf is differentiable field or . Now
we can define projection of our r-linear space
to new linearspace and chae inputs:

x=0(¢). u=alév) (2)

where & is state of new linear model aw is
new virtual input. Most of nonlinear dynan
models (aircraft model too) can be describe:
control affine system:

K= 1(x+ gl @)

By the help of Lie derivative it is possible
create static faback that transforms nonline
to linear model.

§=A&+Bv

x=f(x)+glu = v=D(x)u+a(x)

(4)

Matrices A and B are depended on
transformation form. They are typica
composed from series of integrators. MatriD
anda are determined by Lie derivatives and \
be described below.

MPC is a type of control which us
optimal statdfeedback and predictive strate
for optimal design sequence of control aci
with reference to future states and outpu the
system. MPC is based on a linear, discrete
state-spae model of themodel. Quadratic
programming (QP) was typically used



solution of MPC. A main advantage of QP is a
simple implementation of inputs/outputs
constraints. Quadratic objective function for
linearized system is:

.

30)=a) (6w +ryv?

k=1

(5)

wherew is reference vector arglandr are state
respectively input weights.

3 Mathematical model of an aircraft

A formulation of aircraft flight dynamics is
derived from Newton’s second law of motion.
This can be investigated from the viewpoint of
stability or flying qualities and can be used for
modeling of aircraft motion [1, 2]. There are
following simplifying assumptions: the aircraft
is rigid body with fixed mass, gravitational
acceleration is constant and the aircraft is
without structural deformation. Following
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ol Q)

+OQxI =M, 7)

Where F represents the sum of all externally
applied forcesm is the mass of aircrafy, is the
velocity vector Q is the total angular velocity of
the aircraft,M represents the sum of all applied
torques andl is moment of inertia matrix.
Thereby we get six component equations of
motion, where on the left side there are time
derivatives of angular rates and velocities and
on the right side there are description of motion
and external influences. That is where the
external forces depend on the weight veé&tgr
the aerodynamic force vectét, and the thrust
vector F; respectively. We assume the thrust
produced by the engine acts only parallel to the
aircraft’'s longitudinal axis. External moments
are those due to aerodynamics.

3.2 Aerodynamic model

equation and variables are relative to the body The ajrcraft aerodynamic model mainly depends

axes system (Fig, 1.).

z,
Fig. 1 Body axis components; definition of
momentd., M, N; forcesX, Y, Z; velocitiesu, v,
w; angular ratep, q, r; angle of attack and
sideslip angles

3.1 Equation of motion

The general forces and moments equations can

be described by Newton’s second law of motion
in translational and rotational form [3]. We
consider rotational axis system, where the

derivate operator applied to vectors has two
parts: one for the rate of change of the vector,

and one for axis system rotation.

|::n-((;\t/+9><vj:|zw+Fa+Ft

(6)

on the following factors: the airspe&t(Mach
number or Reynolds number respectively) and
density of the airflowp; the geometry of the
aircraft (wing areaS wing spanb and mean
aerodynamic chordyac); the orientation of the
aircraft relative to the airflow [4] (angle of
attack o and side slip anglée); the control
surface deflectiong and the angular ratgs q,
r. There are other variables such as the time
derivatives of the aerodynamic angles that also
play a role, but these effects are less prominent.
The volume of the aerodynamic forces and
moments is determined by the amount of air
variables in different directions. In the standard
way of modeling the aerodynamic forces and
moments are given by the following equations:
F, =g (a,8,0,p.q.r,..) i=LD,Y (8)
M, =q(Slc (a,8,0,p,q.r,..)[X
i=l,mn X =b,Cys,b ©)

where g = 1/2pV? is dynamic pressure. Each
dimensionless aerodynamic coefficient from (8)
and (9) can be described as a function of other
flight parameters:

6 =6 (@.5,6,p.arM,Re,.). (10)
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This description is too detailed for mathematical
modeling and too difficult for
measurement/computation. Therefore it is
described in a simplified way where the effect
of each flight parameter is separated. For
example the aerodynamic lift coefficient is then
given by:

qle

— MAC
C.=C,otC, lr+ Cig + Cis,

B, (11)

The aerodynamic coefficient equals summation
of initial value (value on lift line at zero anghé
attack), product of lift line derivatives and angle
of attack, product of non-dimensional pitch rate
derivatives and non-dimensional pitch rate and
product of control derivatives and control
deviation (elevator). The  aerodynamic
coefficients (more precisely aerodynamic
derivatives) are usually obtained from wind
tunnel or by computational methods [5]. In this
case data from flight tests [6, 7] were used
(Fig.2), where the aerodynamic derivatives were
estimated by maximum likelihood method [8].

Fig. 2model Vilik during flight test

3.3 Longitudinal part of motion

The aircraft equations of motion in general form
are a set of coupled nonlinear differential

X, = CX] +CXX, +CXU, +C,U, COin)
+cgsin(x, - x,)

Xy =CeXy +C % Xy +CgXg +CoXy Uy + Xg (12)

- ¢, % 'u, sin(x, ) + c.x;* cogx, - x,)

Xg = CioX; + Gy XXy + CpX; Xg + Cygly XF

X, =X,

The longitudinal motion of aircraft is a dynamic
system with four states/outputs= x = [V, «, q,

0] (consecutive airspeed, angle of attack, pitch
rate and pitch angle) and two inputs Wz F: |
(elevator deflection and thrust of engine). All
parts which are independent on state variables
are substituted by constants (see Appendix).

3.4 Steady flight

Computation of equilibrium is a classical way of
how to determine initial values of states and
inputs of nonlinear model. In this case we have
four equations and six unknowns (four states
and two inputs). However, we can use
additional equations for vertical speed (i.e.
change of altitude) that we assume zero:
h=x, sin(x, -x,)=0 - X, =X, (13)

Further more typically an attitude of airspeed
and pitch rate Xg) is assumed zero in
equilibrium. Thereby we get three equations
with three unknowns:

0=, X2 +Co X2 X, +Ca%2U, +C,u, cogX,)

0=CgX, +C7% Xy +Co¥X; Uy — Cu %5 U, Sin(x, )+ coxgt

(14)

. 32 S2 =2
0=CyoX{ +CygXi Xo + CygUs X{

where %; is chosen airspeed. Analytically
solution is due to goniometric functions
relatively complicated. Therefore Nelder-Mead
simplex method is used for solving of this static
optimization problem.

equations. However, in our case these equations

can be simplified. Assuming zero lateral states
(side slip angle, roll and yaw rates, roll angte),
separated longitudinal motion in nonlinear form
can be obtained:

4 Exact linearization

An assumption for this transformation is an
accomplishment of an invertible matrix D [9].
In our case it is necessary to use dynamic
feedback for accomplishment of this
assumption. It means, that the elevator

3



deflection (input) is added in integrator thereby
elevator rate is the new input and elevator
deflection is changed into state. We define the
elevator input as a new state:
u, =X (15)
Now we determine nonlinear transformation
®: X - &. The system in new coordinates can be
expressed as:

R (162)
$2=Vy (16b)
& =¢, (16c)
& =& (16d)
& =v, (16e)
where the first new state is chosen as:
¢, = xsinfc) a7

gél = Xl Sin(XZ ) + Xl COdXZ )X2

by substituting derivatives of state from (12) to
(17) and proper arrangement we get:
$ = 51 = X12 Sin(XZ)(Cl +TCX, C3)(5)"'
X12 COS(XZ)(CG TC X+ ng5)+ Cs COiX4)+
X X, cos(x, 1+ ;)

(18)

The result of the last term is too complicated to
be solved by analytical method. Therefore
Matlab symbolic toolbox for solution (16b) was
used. Second part of decoupled system is
determined by last three equations (16c), (16d),
(16e):

{3 =X,

$4 =X

gt5 = C10)(12 + CllX].2X2 + C12X1 X3 + C13u1X12

(19)
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which is dependent on input (matrix D) and
the rest (matrixa). The feedback linearizing
control law is given by:

u=D(x)"(v-a(x) (21)

5 Model Predictive control

Conventionally MPC is formulated in discrete
time[10]. Assuming controlled aircraft model
(4) the description by the linear discrete time
difference equation is:
e = A& +BY, (22)

Following states on prediction horizdp can be
described as follows:

vz = Adiar + By = A% + ABY, +BViy

Eera = Adir +BVip = A% + APBV + ABVi1 + BV

(23)

AT o, Tp-2
Satpa = APEHATTBY AT B+ 4 Bl

Last equation can be rewritten to matrix form:
& :ka +BV (24)

where each variable with bar is described as
follows:

[ & A
= $ k+2 e A.2
_ ATP
’E“:l Ye (25)
B= AB B v Vk.+1
I ATF;—lB ATP2p B Vi+Tp

Now we can define final form of objective

Last three state derivatives are also solved by function for MPC with exact linearized system:

symbolic toolbox. From (16) it is easy to form
state and input matrices (4):

01000 00
000O0O 10

A=|0 0 0 10 B=|0 0 (20)
00001 00
00O00O0O 01

Last part of completion of the exact

linearization is to provide second equation from
(4). Using affine system assumption we can
easily determine matrice® and ¢ as a part

30)= (A& +BV-w, ) QA& +BV-w,)+vTRY (26)
Subject to:

Unin < U < Umay (27a)

D(X)Umin + “(X) SVs D(X)umax + “(X) (27b)

whereQ andR are weight matrices of states and
inputs respectively. The box constraints (27a) of
original model were transformed into state
dependent constraints (27b). Figure 3 illustrates
the feasible area aof andu,. It has four corners
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a,b,c,d The coordinates of corners anef,

Uzmay), (Uimax Uzmay, (Uimax Uzmin), (Uimin, Uzmin),
respectively.

u,
A
a (u Imin> uzmllf) u 2max

b (u Imax? MZma.V)
X

u,, . .
d(ulmm’ u, 2mir 2min c (u Imax? u2min)

Fig. 3 Feasible area of the control inputs
original coordinates

Corners of original model were step by step
transformed in to new coordinates (27b). Figure
4 illustrates the feasible area of virtual inputs
andv, after each point in the feasible areaupf
and u, is multiplied by matrixD and translated

by a.

<
IS}
S

AVEE

d’ c’

procedure. Let's have two points from the
previous problem.
b

xew

u, v,

c ¢’
Fig. 5 constrained transformation

Constrained point, b are transformed intg’
andb’.

(29)

Line between new points can be described:
v,(c)=k+lv,(c) -
v,(0) =k +1v, (') (30)

where line parameters and| are solution of
two equations with two unknowns:
| = Vz(cl)_vz(b')
Vl(C')_Vl(b') (31)
-V (b' )Vz (C') —V, (b' )Vl (b')

A (C') Vi (b')

The constrained line is now defined as:
v, =K +Iv, (32)

Final relationship between original and virtual
constraints is formulated as follows:
ul u1max
(33)

v, <k +Iv,

Flg 4 Feasible area of the virtual control inputS Each pOint pail’SC( b:) (b1 a:) (a: d:) (d: C’)

The new coordinates have the following

relationship with t?()e olt(j)ones:
=D(xJo+o(x)
D(x)c+a( X)
d’ D(x)d +a(x)

(28)

are consequently used for computation of virtual
input constraints (33) which create complete
trapeze constraints for virtual inputs. The
computational process is shown on figure 6.
This procedure creates enclosed area for virtual
constraints.

The feasible area in Figure 4 of the transformed
inputs is not suitable for use with the predictive
control algorithm. However, the box constraints
of original input can be rewritten by following
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4 b’ Algorithm
Initialization
1 Model preparation (35)
2 Steady state flight condition (14)
ﬁ v, Simulation
§ ¢ 3 Solve open loop —aircraft equation (3)
A with EL(21) and virtual inputs
j‘ b MPC
“
v,
A"
i end while
d end MPC

4 Open loop simulation on prediction
horizonTp (12)(21)
Fig. 6 constralnts computatlonal process return to Simulation 3 unttiy < Tfinal
end Simulation

u,

\
v

> 5 Constraints computation (33)
v, v = MPC solution (26)(27b)
while constrained condition
6 Open loop computation on prediction
horizonTp (12)(21)
7 Constraints computation (33)
8 v = MPC solution (26)(27b)

5 Case study The performance of this scheme has been

In this section, we present algorithm and verified via simulation. The aircraft is controlled

simulation res[JIts using MATLAB and T“’”.‘ steady regime and conseql_JentIy its flight

SIMULINK is disturbed by a wind gust (addition to angle of
We s.uppose iterative process that is attack). Character of wind disturbance is shown

described below. At initialization step we start in Fig. 7 (dash line).
from steady flight condition (14) that satisfies
input constraints and constant (35) for nonlinear
simulation (12) is computed.

MPC process starts with nonlinear state
computation of the prediction horizdrp. This
is open loop solution of aircraft equation (12)
and feedback linearizing control (21) with
actual state as initial condition and virtual input
v on the horizon prediction. Obtained output is
used to construct the constraints of the virtual
inputv at each step of the prediction horizon. |

Next we use the calculated input ;
constrained sequence to generate new virtual o v 20

time [s] time [s]

inputs  (26) subject to (27b). Constrained  Fig. 7 States of aircraft longitudinal motion
conditions are controlled and if they are not

satisfactory the MPC process is repeated. After wWind gust amplitude is two degree and we can
decision of satisfied condition is next simulation see from Fig. 7 that real angle of attack error is

N
a
N

1
N
a
N
o

25.1
25.05

air speed [m.s‘l
angle of attack [deg]

25

I
IS

1.075

| |
107 - - - - - - -1
| |
1.065F — — - — — I~ -=-1
[ | |
1.06 - —+H-—— == —r—-=1
|
|
|
|

o
N
T
|
|
|
|
I BT
|
|
|
R
|
|
‘

pitch angle [deg]

1.055F - —

pitch rate [deg.s 1
¢ <)
e S o
T
|
|
]

o
IS

1.05
0

step compgted. . . smaller than one degree. The error means
Following algorithm summarizes the steps difference between actual state and reference
of the proposed methodology. which is obtained from steady flight solution.
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|
e e
|

20F------

20F - - -

elevator rate deflection [deg.s‘l]

-40
0

40

10F - - -

thrust of engine [N]

|
20F - -~

-10
0

|

1

1 1.5 2
time [s]

Wl

Fig. 8inputs during wind disturbances

Previous figure shows constrained inputs. Due féasible control area (filled surface) . The cross
represents value of MPC solution. Figure 10

to dynamic exact linearization is new input

defined (15). Therefore elevator rate deflection

as original

input used

instead of elevator

deflection. Both inputs satisfy amplitude limits
(elevator rate deflection -40+40 [°/s], thrust of
engine 0+35 [N]). Virtual inputs used for
feedback linearizing control are shown in Fig. 9.
There are four lines which correspond to
constrained transformation (33) and define

v2

v2

Fig. 9 constrained virtual inputs

shows the same problem with the difference that
the feasible areas of linearized model on the
prediction horizon are shown. On the feasible
area of each prediction step the virtual input
value is marked by a circle. All values are inside

the feasible region thereby is graphically
demonstrated  fulfillment  of
condition.

|

|
100

Fig. 1C feasible areas of linearized model on the premtictiorizon

10

horizon prediction Tp

constrained



Appendix

The longitudinal part of equations of motion
(7) are described in

derived from (6),
aerodynamic axis system:

. _S F
V =-g—(c,, +C,.a +C,.0e)+—Tcosa
qm( po * Cpa D& ) m

+gsin(a - 6)

4= _q\/Sm[CLO +C, L +Cy qzmg';‘c +Cp, Diej

(34)

F oo g
+q-—Lsing+=coda -6
a mV V S( )
2 *SQIIAC qEMAC
=q—%=|c,+c [r+c_——%“+c [
q q Iy 'm0 'ma 'mq 20V mMJ, e

6=q

Each constants of nonlinear equation (12) are
defined as follows:

_ 1pS _ 1pS
C1__2prgcoo C, __EECDa
1 1

Cs :_EFCD&; Cy :a
1,05
G =9 Ce =_EFCLO
__1p5 __1p5
¢, __EFCLQ Cg __ZFCMACCLE (35)
1S 1S
Co =_EFCLd§ Co _E?CMAcho
1S 1S
Ciy =§TCMACCma Ci, _ZTCI\ZAACCma
y y
18

Ci3 =57 CyacCme
21,

Conclusion

In this work, a new method was provided in
order to apply standard MPC techniques for
inputs
constraints. An iterative process was designed
and at every step the optimization problem
involved only linear dynamics and constrints.
Future work will investigate the extension of

exact linearizable system with

restrictions on the status and speed inputs.
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