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Abstract

This paper describes a frequency-domain grey-
box system identification procedure for scale
model helicopters. It presents a unique way to
obtain the initial constraints of the unknown pa-
rameters and with this additional information, the
identification becomes more efficient. There is
no need anymore to start the estimation from
blind initial guess or get good starting values
through tedious experiments. A well-known 6-
DoF LTI MIMO state-space model suitable for
hover and near hover condition is used in this pa-
per. In order to identify all the unknown parame-
ters, the model is partitioned into several subsys-
tems in a systematic way. The performance of the
proposed procedure is tested in simulations us-
ing corrupted flight data by comparing the identi-
fied parameters, the eigenvalues and the predicted
outputs to their “ true” values, respectively.

1 Introduction

Helicopters have significantly complex flight dy-
namics. They are naturally unstable, nonlin-
ear, highly coupled and multiple-input multiple-
output (MIMO) systems. However, the most
meaningful non-aggressive applications, such as
surveillance and target tracking, are carried out in
hover and/or low-speed flight where helicopters
can be considered as a LTI MIMO system. This
paper presents a systematic system identifica-

tion procedure to get a sufficiently accurate LTI
MIMO dynamic model of the helicopters which
is a key step to develop a high-performance un-
manned helicopter for hover and/or low-speed
flight.

Among various modelling methods, the grey-
box system identification has become a popular
way to obtain accurate and practical LTI MIMO
parametric helicopter models for flight control
design. The idea can be generally summarized
as a parametric estimation problem, the aim of
which is to find values of unknown model pa-
rameters λ in a mathematically derived helicopter
model, using flight data. The helicopter model is
formulated as a MIMO state space model which
approximates the nonlinear helicopter dynamics
at the chosen operating point. The unknown pa-
rameters λ in the model are iteratively determined
by minimizing a cost function J(λ).

This idea has already been implemented
in some commercial software to assist sys-
tem/parameter identification, e.g. the prediction
error method (PEM) in MATLAB System Iden-
tification Toolbox [1] and the software package
CIFER (Comprehensive Identification from Fre-
quency Responses) [2]. Both of PEM and CIFER
start minimizing the cost function J(λ) from a set
of initial values λ0 of the model parameters in ei-
ther time or frequency domain. In order to get an
accurate estimation, the values of λ0 are required
to be not too far from the real values of the model
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parameters P [1], [2]. But Mettler [3, 4, 5], Cai
[6] and Peng [7] did not present in detail how they
obtained the initial values to start the parameter
estimation. Lorenz [8] and Shim [9] used initial
guesses to start the identification in their papers.
However, the estimation can easily converge to
a local minimum of the cost function J(λ) or
even diverge [9]. One popular and reliable way
to obtain good initial values is based on the first-
principle modeling [2, 10, 11]. But numerous ex-
periments and measurements are needed to get
these values and it is too cumbersome and time
consuming.

In order to get good initial values or reliable
distribution intervals of the dominant parameters,
a practical and efficient way to find these initial
constraints was presented in our previous work
[12]. A comparison of the estimation conver-
gence with and without the initial constraints was
also presented there. With the help of these ini-
tial constraints, the partitioned time-domain sys-
tem identification that we proposed [12] started
without effort and identified the linear helicopter
hover model successfully.

Since frequency domain analysis has several
advantages [13] over that in time domain, in-
cluding physical insight of the system dynamics
within the interested frequency ranges, better ro-
bustness against data biases and noises, and fewer
number of data points needed for parameter esti-
mation, it is well worth transforming our time-
domain method [12] to frequency domain in or-
der to have a better performance, which is to be
presented in this paper.

The paper is organized as follows. Section
2 presents the details of the system identifica-
tion. Section 2.2 presents the linearized heli-
copter model in hover and near hover flight mode.
Section 2.3 gives a brief view of frequency do-
main estimation algorithms. Section 2.4 con-
tains the systematic identification procedure to-
gether with the analysis of the initial constraints,
whereas section 3 gives the estimation results and
time domain validation. Finally, some conclu-
sions are drawn in section 4.

2 Identification Process

2.1 Flight Data

The essential element of the system identification
of a helicopter is collecting flight data during spe-
cially piloted open-loop experiments which are
aimed to excite the dynamics of interest. The fre-
quency sweeps technique [13] is applied to col-
lect data in our simulations.

As the estimation is to be done in frequency
domain, the collected flight data need to be trans-
formed from the time domain to frequency do-
main first using the Fast Fourier Transformation
(FFT).

2.2 Model Structure

As mentioned above, helicopters are naturally
nonlinear, unstable and highly coupled, but the
hover dynamics can be linearized as a LTI MIMO
state space model at the trimmed point. The
widely published LTI MIMO state space model
structure proposed in [3] is used as the model
structure to capture the majority of the system dy-
namics from the flight data:

ẋ = Ax+Bu and (1)
y = Cx, (2)

where x = [u v p q Φ Θ a b w r r f b]
T is the state

vector with u,v,w as the longitudinal, lateral and
vertical velocities, respectively; p,q,r as the roll,
pitch and yaw rates, respectively; a,b as the lon-
gitudinal and lateral flapping angles, respectively
with Φ and Θ as roll and pitch angles, respec-
tively. The control input, or the stick inputs is
u = [δlat δlon δcol δped]

T where the elements in
the order are: roll rate control, pitch rate control,
collective pitch rate control and the yaw rate con-
trol. The output vector is, y = [u v w p q r Φ Θ]T .
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The matrices A and B in Eq. (1) are:

A =

Xu 0 0 0 0 −g −g 0 0 0 0
0 Yv 0 0 g 0 0 g 0 0 0
Lu Lv 0 0 0 0 La Lb 0 0 0
Mu Mv 0 0 0 0 Ma Mb 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 −1 0 0 −1

τa
Ab 0 0 0

0 0 −1 0 0 0 Ba
−1
τa

0 0 0
0 0 0 0 0 0 Za Zb Zw Zr 0
0 0 Np 0 0 0 0 0 Nw Nr Nr f
0 0 0 0 0 0 0 0 0 Kr Kr f


(3)

B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Alat Alon 0 0
Blat Blon 0 0
0 0 Zcol 0
0 0 Ncol Nped
0 0 0 0


. (4)

2.3 Estimation Algorithms

With the fixed model structure (Eq. (1) and (2)),
the unknown parameters in the matrices A and B
are to be estimated by minimizing the cost func-
tion J(λ) by tuning the model parameter λ:

J(λ) = N
N−1

∑
k=0

ν̃
†(k,λ)Ŝ−1

νν (k,λ)ν̃(k,λ), (5)

where N is the total number of data points, ν̃(k,λ)
are the residuals between the real and predicted
values in frequency domain, ν̃†(k,λ) is the com-
plex conjugate transpose of ν̃(k,λ), Ŝνν(k,λ) is
the power spectral densities of ν̃

Ŝνν(k,λ) =
N−1

∑
k=0

ν̃(k,λ)ν̃†(k,λ) (6)

In some rows in the state-space model
(Eq. (1)) which has a generalized form

z =
n

∑
j=1

λ̄
a
jx j +

n

∑
j=1

λ̄
b
ju j, (7)

the related states x j, in addition to the inputs u j,
are all measured. The term on the left side z is
either measured or can be found from numerical
differentiation. In this case, the residuals ν̃(k,λ)
in Eq. (5) are equal to the equation error

ν̃(k,λ) = z−
n

∑
j=1

λ
a
jx j−

n

∑
j=1

λ
b
ju j (8)

where k = 0,1, ...,N−1.
So the frequency-domain equation error method
(FEEM) here is essentially a least-squares esti-
mation, which doesn’t require any starting value
[14] but can be only applied to one row at a time,
where the states x, the inputs u and the term z on
both sides of the equations are known.

But not all of the states and their derivatives
in a state space model are usually known. In
this case, only the data from the output equation
(Eq. (2)) and input data are available. The estima-
tion problem is to minimize the error between the
measured and predicted outputs with the same in-
put data. The residuals ν̃(k,λ) in Eq. (5) are then
equal to the output error between model output
y(k) and measured output z(k) in frequency do-
main

ν̃(k,λ) = z(k)− y(k) (9)

where k = 0,1, ...,N−1.
This frequency-domain output error method
(FOEM) is one of the most used maximum like-
lihood parameter estimation methods for LTI
MIMO aircraft dynamic systems [2, 4, 13].

The toolbox, SIDPAC (System Identification
Programs for Aircraft) [13] is used here to per-
form the frequency domain estimation methods.
More details about the FEEM and FOEM can be
found there.
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2.4 Partitioned System identification Proce-
dure

There are more than 30 unknown parameters in
Eq. (1) to be identified. It is impractical to esti-
mate all the parameters in one go. So the parti-
tioned system identification procedure proposed
in our previous work [12] is adopted here with
minimal modification and our attention will be
paid to those key parameters that are dominant in
the dynamics of each subsystem.

The partitioned systems include lateral trans-
lational dynamics, roll dynamics, longitudinal
translational dynamics, pitch dynamics, heave
dynamics and yaw dynamics. In each subsystem,
the initial constraints are to be discussed based
on the physical insight of the helicopter system
and flight data. They prevent the estimators from
calculating the cost functions in some parameter
ranges where no reasonable physical meanings
exists. Besides, the FEEM is used in some equa-
tions to obtain some suitable initial values from
measured and input data. Given all the a priori
information from above, the FOEM can start re-
liable parameter estimations. Note that the initial
constraints of all the cross coupling parameters
are not discussed in detail but simply set to 0.
So the estimated cross coupling parameters may
be not around their "true" values. However, they
are not the dominant parameters that capture the
main dynamics of each subsystem.

The positive directions of the helicopter coor-
dinate and controller inputs are shown in Fig. 1.
They are of importance to understand the correct
motions from recorded flight data.

2.4.1 Lateral translational dynamics

v̇ = Yvv+gΦ+gb (10)

Yv is the speed force damping derivative in
Y-direction and physically should be a negative
value, (Yv < 0) and g is equal to the accelera-
tion of gravity. When exciting the helicopter with
low frequency lateral input, the flapping dynam-
ics can be ignored, i.e., the term gb in (10) can be
ignored. So the only unknown parameter here is
Yv. Since v and Φ are the collected flight data and

Fig. 1 Definition of coordinate and controller in-
puts (modified from [15])

.

v̇ can be derived from the data set v, the FEEM
can be used to estimate the parameter Yv which is
to be taken as its starting value in the next itera-
tion.

2.4.2 Roll dynamics
v̇
ṗ
Φ̇

ḃ

=


Yv 0 g g
Lv 0 0 Lb
0 1 0 0
0 −1 0 1

τa




v
p
Φ

b

+


0
0
0

Blat

δlat

(11)
In Eq.11, Lv describes how the helicopter’s

roll dynamics response to an increase in v. As a
wind gust from left side causes a positive rolling
motion, Lv has a positive sign, (Lv > 0). Blat
is the gain from the lateral input to the roll dy-
namics with a positive sign, (Blat > 0). τa is
the time constant that is due to the stabilizer bar.
Shim shows in [9] that the time constant τa ex-
pressed in seconds can be roughly calculated with
τa =

5
ΩR/60 , where ΩR is the main rotor speed ex-

pressed in rpm. For the helicopter model used in
this paper, τa0 = 0.3333. This value will be used
as the starting value to estimate τa. As the main
rotor typically has a very fast dynamic response,
its time constant should also be within the range
(0 < τa < 1).

Lb represents the roll rotor spring coefficient
and its square root

√
Lb is close to the rolling

mode frequency of the vehicle [3], which also
relates to the frequency where the frequency
response of p

δlat
reaches its peak. Since the

data p and δlat are known, it’s easy to get the
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plot of the frequency response of p
δlat

(Fig. 2)
[14]. So a certain range for Lb can be given as
(120 < Lb < 180).
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Fig. 2 Frequency response of p
δlat

and q
δlon

The output data p and v and the input signal
δlat are put into the FOEM to estimate the un-
known parameters Lv, Lb, τa and Blat with their
constraints and also refine Yv.

2.4.3 Longitudinal translational dynamics

u̇ = Xuu−gΘ−ga (12)

Xu is the speed force damping derivative in x-
direction (Xu < 0). Similar to (10), it is the only
one to be estimated using the FEEM.

2.4.4 Pitch dynamics
u̇
q̇
Θ̇

ȧ

=


Xu 0 −g −g
Mu 0 0 Ma

0 1 0 0
0 −1 0 −1

τa




u
q
Θ

a

+


0
0
0

Alon

δlon

(13)
Similar to Lb in Eq.11, above Ma is the pitch ro-
tor spring coefficient and its square root

√
Ma is

close to the pitching mode frequency of the vehi-
cle. From the frequency response of q

δlon
(Fig.2),

the range for Ma is (50 < Ma < 90).
Mu describes how the helicopter’s pitch dy-

namics responses to an increase in u. If the heli-
copter experiences a wind gust from back, it has
a negative pitching motion and therefore Mu < 0.
Alon is the gain from the longitudinal input to the
pitch dynamics (Alon < 0).

Similar to the estimation of roll dynamics, the
output data q and u and the input signal δlon are
used to estimate the unknown parameters Mu, Ma

and Alon with their constraints and refine Xu and
τa which should not change too much from their
starting values.

2.4.5 Coupled longitudinal and lateral dynam-
ics

The two subsystems (11) and (13) are combined
to form the coupled longitudinal-lateral model
which is the same as the first 8 rows of Eq. (1).

The parameters identified in the previous
steps are to be refined here, after adding the
cross-coupling parameters La, Mb, Ab, Ba, Lu,
Mv, Alat and Blon to the model. The initial values
of these cross-coupling parameters are all set to
0. The FOEM uses a set of flight data that is ex-
cited by two inputs δlat and δlon simultaneously
to do the estimation.

2.4.6 Heave dynamics

ẇ = Zaa+Zbb+Zww+Zrr+Zcolδcol (14)

Za and Zb describe the cross coupling effects
from flapping dynamics to heave channel and Zr
is the effect from yaw rate changes. They are ex-
cluded from the above equation in order to get the
dominant heave model ẇ = Zww+Zcolδcol . The
parameters Zw and Zcol can be obtained via the
FEEM. Zw represents the heave damping (Zw <
0). Zcol is the gain from the collective input to
the heave dynamics (Zcol < 0).

2.4.7 Yaw dynamics[
ṙ

ṙ f b

]
=

[
Nr Nr f
Kr Kr f

][
r

r f b

]
+

[
Nped

0

]
δped (15)

A feedback yaw rate gyro is installed on the
helicopter and the yaw rate feedback r f b provides
negative yaw rate compensation to enhance the
yaw stability. Kr is the yaw rate feedback gain
without the minus sign (Kr > 0).

Nr represents the yaw damping coefficient
(Nr < 0). Nped is the gain from the yaw rate
control input to the yaw dynamics (Nped > 0).
Additionally, there are still two extra constraints
Nr f =−Nped and Kr f = 2Nr suggested in [3, 4].

Taking all the constraints just mentioned
above, the FOEM is to estimate the unknown pa-
rameters Nr, Nped , Kr, Nr f and Kr f by using the

5



WEI YUAN, JAY KATUPITIYA

measured yaw rate r and the yaw rate control sig-
nal δped .

2.4.8 Coupled heave-yaw dynamics

The two subsystems (14) and (15) are combined
to form the coupled heave-yaw model which is
the same as the last 3 rows of Eq. (1).

The parameters estimated in the last two steps
are to be refined here, while two heave-to-yaw
coupling parameters (Nw and Ncol) and one yaw-
to-heave coupling parameter (Zr) are to be esti-
mated. The initial values of the coupling param-
eters are set to 0. A set of data with two inputs
δcol and δped is put into FOEM.

2.4.9 Complete dynamic model

The coupled longitudinal-lateral model and the
coupled heave-yaw model are combined as the
complete model structure (1) with two further
cross-coupling parameters Zb and Np. The pa-
rameter Za is fixed to 0, because its original value
in the "true" plant was set to 0.

All the input data (δlat , δlon, δcol , δped) and
output data (u, v, w, p, q, r Φ, Θ) are put into
the FOEM to run the final estimation where the
initial values of Zb and Np are set to 0.

The final step of the entire estimation pro-
cedure is to refine all the parameters determined
with a new set of flight data. The changes of the
estimated values should be small, especially the
on-axis parameters.

3 Results in Simulations

The Yamaha R-50 model in [9] is used as the
"true" platform in simulations to perform hover
flight with a quasi-constant rotor speed of 900
RPM. Although the model simplifies the real life
situation, it describes the hover dynamics, which
is dominant in low frequency, well. The model
shares the same system equation as Eq. (1). But
the output data are substantially corrupted with
certain Gaussian white noises and constant biases
which are very common in the real life situation:

ẋ = Ax+Bu and (16)
y = Cx+Nw+Gd, (17)
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Fig. 3 Identification results for u,v and w.

where w are the measurement noises and d the
measurement biases. The matrices N and G are
diagonal matrices with weights along the diago-
nal that can be adjusted to add noise and bias.

The parameter values of the "true" platform
are listed in column “real ” value in Table 1. The
acceleration due to gravity g is a known param-
eter and is set at 32.2 f t/s2. Note that Shim [9]
used imperial units in his original work, but he
didn’t clearly indicate the unit of each parameter
listed in the column. In order to avoid incorrect
converting, we keep the original units in this ex-
ample.

3.1 Frequency Response

Fig.3 to 5 show the frequency-domain identifica-
tion results from the partitioned system identifi-
cation procedure. Note that the outputs of the
"true" system have been corrupted by noises of
high-frequency and constant biases. But they can
be easily eliminated from the data in frequency
domain by selecting a suitable frequency range
that only includes the relevant information in the
data. Fig.3 to 5 indicate that the model outputs
fit to the "true" data in the frequency range where
the hover dynamics is dominant.
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Fig. 5 Identification results for Φ and Θ.

3.2 Parameter Estimation

The mean values of the identified parameters are
listed in Table.1. Although it is popular to use
Cramer Rao Bound(CR%) and Insensitivity (I%)
[2, 4] or standard error [16, 17] to indicate the es-
timation accuracy, they don’t indicate the differ-
ence between the estimates and the true values.
As the values of the "true" parameters are known
in this example, it is more reasonable to compare
the identified values to the real model parameters.
The estimation of the key parameters mentioned
in last section has achieved a high accuracy level,
while the estimation of the cross-coupling param-
eters is slightly worse as expected but still good.

(a) A-Matrix

“real” est
Xu -0.13 -0.12
Yv -0.42 -0.39
Lu -0.18 -0.15
Lv 0.09 0.07
La 36.71 47.43
Lb 161.11 160.25
Mu -0.08 -0.06
Mv -0.05 -0.06
Ma 63.58 63.30
Mb -19.49 -18.58
τa 0.29 0.28
Ab 0.83 0.81
Ba 0.36 0.31
Zb 9.64 7.78
Zw -0.76 -0.76
Zr 8.42 8.33
Np -1.33 -0.92
Nw 0.06 0.06
Nr -5.51 -5.51
Nr f -44.87 -43.65
Kr 1.80 1.81
Kr f -11.02 -11.02

(b) B-Matrix

“real” est
Alat -0.84 -0.85
Alon -2.82 -2.83
Blat 2.41 2.45
Blon -0.35 -0.25
Zcol -70.50 -71.20
Ncol 23.63 24.12
Nped 44.87 43.65

Table 1 Parameter Identification

3.3 Eigenvalues

As the eigenvalues represent the dynamic modes
and the essential characteristics of a system, a
comparison of the eigenvalues of the original
model and the identified one would be a more
intuitive way to assess the accuracy of the esti-
mation. Fig.6 shows that the eigenvalues of the
identified model are all close to the original ones,
which means the model is able to describe the
characteristics of the system. In other words, the
model is able to predict the system’s responses,
which is shown in the next subsection.

3.4 Model Validation

To validate the prediction performance of the
identified model, the model is excited with the
control input data from another set of flight data
which is not used in the identification part above.
The predicted helicopter responses are compared
with the ”real” outputs in time domain. The com-
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Fig. 6 Eigenvalues.
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Fig. 7 Enlarged View of selected zone in Fig. 6.

parison is shown in Fig. 8 - 10. For the compar-
ison purpose, the "real" flight data here are the
clear data without noises and biases. It shows an
excellent agreement with the original system for
all channels for about 8 seconds. The differences
between the "real" and predicted values in some
channels, u, v, q, Φ and Θ, increase in the last
c.a. 2 seconds. The reason is that the platform
shows the unstable status around that time. Ac-
cording to the eigenvalues of the system 7, the
helicopter has a pair of unstable eigenvalues. But
the unstable eigenvalues of the identified model
are a little away from the "true" values. It causes
the differences of the outputs there. However, the
agreement is still satisfactory.
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4 Conclusions

A frequency domain grey-box system identifi-
cation procedure suitable for scale-model heli-
copters operating in hover and near hover con-
dition has been described. In order to make the
system identification more efficient, a set of ini-
tial constraints has been found and added to the
partitioned system identification procedure based
on the FEEM and FOEM. The approach does not
need cumbersome first principle modeling to ob-
tain suitable initial values or blind guesses to start
estimations. In the simulation case, the proposed
procedure has successfully identified the hover
model with high accuracy from flight data which
were corrupted with noises and biases. In the fu-
ture work, the proposed system identification will
be further tested and validated using real flight
data.
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