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Abstract  

A key aspect of Air Traffic Management in the 
future is to determine (i) the technical 
requirements to (ii) ensure safety with (iii) 
increased capacity. The methods to calculate 
collision probabilities have been applied to 
reduced vertical separation minima, to lateral 
separation, to crossing aircraft to free flight and 
to flight in terminal areas.  

In the present paper the cumulative 
probability of coincidence (CPC) is calculated 
for comparison with the ICAO Alternative 
Target Level of Safety (ATLS) probability of 
collision per nautical mile. The comparison of 
the CPC with the ATLS is made for four typical 
cruise flight conditions.   

1   Introduction 

The steady growth of air traffic at a rate of 3-7% 
per year over several decades has placed 
increasing demands on capacity that must be 
met with undiminished safety (Vismari & 
Júnior, 2011). The trend is in fact to improve 
safety, while meeting more stringent 
requirements for environment impact, efficiency 
and cost. The traditional method of safety 
assurance in Air Traffic Management (ATM) is 
the setting of separation rules (Houck & Powell, 
2001). The separation distances are determined 
by: (i) wake vortex effects on approach to land 
and take-off queues at runways at airports 
(FAA, 2011; International Civil Aviation 
Organization [ICAO], 2007); (ii) collision 
probabilities for the in-flight phases of aircraft 

operations (Campos & Marques, 2002; Reich, 
1966; Yuling & Songchen, 2010). Only the 
latter aspect is considered in the present paper. 

A key aspect of ATM in the future 
(Eurocontrol, 1998) is to determine (i) the 
technical requirements to (ii) ensure safety with 
(iii) increased capacity. The concepts of 
‘capacity’, ‘safety’ and ‘technology’ can be 
given a precise meaning (Eurocontrol, 2000) in 
the case of airways with aircraft flying on 
parallel paths with fixed lateral/vertical, or 
longitudinal separation: (i) the ‘capacity’ 
increases for smaller separation L; (ii) 
navigation and flight ‘technology’ should 
provide a reduced r.m.s. position error σ ; (iii) 
the combination of L and σ  should be such that 
the probability of collision (ICAO, 2006) does 
not exceed ICAO Target Level of Safety (TLS) 
of 95 10−×  per hour (ICAO, 2005). Thus the key 
issue is to determine the relation between 
aircraft separation L and position accuracy σ , 
which ensures that the ICAO TLS is met. Then 
the technically achievable position accuracy σ  
specifies L, viz. the safe separation distance 
(SSD).  

 
Fig. 1. Geometry of crossing aircraft. 
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Fig. 2. Geometry of climbing/descending aircraft. 
 

The two main ATM flight scenarios are: 
(i) parallel paths with fixed separations in flight 
corridors typical of transoceanic flight 
(Bousson, 2008); (ii) crossing (Figure 1) and 
climbing/descending (Figure 2) flight paths 
typical of terminal flight operations (Shortle at 
al., 2010; Zhang & Shortle, 2010). Since aircraft 
collisions are rare, two-aircraft events are more 
likely and this the case considered in the present 
paper. 

The methods to calculate collision 
probabilities (Reich, 1966) have been applied to 
Reduced Vertical Separation Minima (RSVM), 
to lateral separation (Campos, 2001; Campos & 
Marques, 2002), to crossing aircraft (Campos & 
Marques, 2007, 2011), to free flight (Barnett, 
2000) and to flight in terminal areas (Shortle et 
al., 2004). The fundamental input to the models 
of collision probabilities, is the probability 
distribution (Johnson & Balakrisshann, 1995; 
Mises, 1960) of flight path deviations; since it is 
known that the Gaussian distribution 
underestimates collision probabilities, and the 
Laplace distribution though better (Reich, 1966) 
is not too accurate, the generalized error 
distribution (Campos & Marques, 2002; 
Eurocontrol, 1988), and extensions or 
combinations have been proposed (Campos & 
Marques, 2004a). It can be shown (Campos & 
Marques, 2002) that for aircraft on parallel 
flight corridors an upper bound to the 
probability of collision is the probability of 

coincidence (PC). Its integration along the line 
joining the two aircraft leads to the cumulative 
probability of coincidence (CPC); the latter has 
the dimensions of inverse length, and multiplied 
by the airspeed, gains the dimensions of inverse 
time, i.e., can be compared to the ICAO TLS. 
Alternatively the ICAO TLS can be converted 
to collision per unit distance, which is directly 
comparable to the CPC. Since most commercial 
aircraft fly no faster than 0 625V kt= , the ICAO 

TLS of 9
0 5 10 /P h−≤ × , is met by 

12
0 0 0/ 8 10 /Q P V nm−= ≤ × . The latter can thus 

be used as an Alternate Target Level of Safety 
(ATLS). 

In the present paper the CPC is 
calculated for comparison with the ICAO ATLS 
of 128 10 /nm−×  probability of collision per 
nautical mile; three probability distributions are 
compared and discussed in detail: the Gaussian; 
the Laplace; a generalized error distribution, 
which is less simple but more accurate, viz. it 
has been shown to fit aircraft flight path 
deviations measured from radar tracks (Campos 
& Marques, 2002, 2004a; Eurocontrol, 1988). 
The comparison of the CPC with the ATLS, is 
made for four typical cruise flight conditions: 
(i/ii) lateral separation La =50nm in 
uncontrolled (e.g. oceanic) airspace (Section 
3.1) and Lb = 5nm in controlled airspace 
(Section 3.2); (iii/iv) standard altitude 
separation Lc = 2000 ft used worldwide and 
RVSM Ld = 1000 ft introduced by Eurocontrol 
(1988) to increase capacity at higher flight 
levels (FL290 to FL410). Longitudinal 
separation along the same flight path could be 
considered to the limit of wake vortex effects 
(Campos & Marques, 2004b; Spalart, 1998). In 
each of the four cases: (i) the CPC is calculated 
for several position accuracies, to determine the 
minimum which meets the safety (ATLS) 
standard; (ii) the Gauss, Laplace and 
generalized distributions are compared for the 
collision probabilities of two aircraft with 
similar position errors; (iii) the case of aircraft 
with dissimilar position errors 1σ  and 2σ  is 

considered from the beginning, and analysed in 
detail for the most accurate probability 
distribution. The discussion summarizes the 



 

3  

A PROBABILITY ASSESSMENT OF THE FLIGHT SAFETY RELEV ANT TO COLLISION AVOIDANCE  

conclusions concerning airways capacity versus 
position accuracy, for an undiminished safety. 

2. Comparison of probability distributions 
for aircraft flight path 

An upper bound for the probability of collision 
of aircraft on parallel flight tracks (Section 2.1) 
is calculated using Laplace (Section 2.2), 
Gaussian (Section 2.3) and generalized (Section 
2.4) probability distributions, for aircraft with 
generally dissimilar r.m.s. position errors. 

2.1 Comparison of three probability 
distributions for flight path deviations 

Consider two aircraft flying at: (i) either 
constant lateral or altitude separation L in 
parallel flight paths, (ii) or at constant 
longitudinal separation L on the same flight path 
. In the case of vertical separation there may be 
an asymmetry in the probability distributions, 
which has been treated elsewhere (Campos & 
Marques, 2007); in the case of longitudinal 
separation wake effects need to be considered as 
well (Campos & Marques, 2004b; Spalart, 
1998). Apart from these effects, a class of 
probability distributions (Johnson & 
Balakshishnan, 1995; Mises, 1960) relevant to 
large aircraft flight deviations (Campos & 
Marques, 2002; Eurocontrol, 1998), which are 
rare events (Reiss & Thomas, 2001; Nassar et 
al., 2011), is the generalized error distribution 
(Campos & Marques, 2004a), viz.: 

( ) ( ),xaexpA;xF
k

k −=σ     (1) 

where k  is the weight. The constant a is 
determined by the condition of unit total 
probability: 

( )[ ],k/12/akA k/1 Γ=              (2a) 

where ( )...Γ  is the Gamma function. The 
constant a can be related by: 

( ) ( )[ ],k/1/k/3a 2k/2 ΓΓσ= −              (2b) 

to the r.m.s. position error σ  or variance 2σ . 
The case of weight unity in (2a,b), viz.: 

( )1: 2 / , 1/ 2 ,k a Aσ σ= = =       (3a,b) 

corresponds by (1) to the Laplace probability 
distribution: 

( ) ( )[ ] { };/x2exp2/1;xF1 σ−σ=σ   (4) 

the case of weight two in (2a,b), viz.: 

( ) ( )22 : 1/ 2 , 2 / 2 ,k a Aσ σ π= = =    (5a,b) 

Leads by (1) to the Gaussian probability 
distribution: 

( ) ( )[ ] ( ){ };2/xexp2/1;xF 22
2 σ−πσ=σ   (6) 

the best approximation to large aircraft flight 
path deviations  (Campos & Marques, 2002, 
2007) corresponds approximately to weight one-
half, so that (2a,b): 

4 21/ 2 : 120 / , 15 / 2 ,k a Aσ σ= = =   (7a,b) 

substituted in (1) leads to: 

( ) ( ) { },/x120exp/2/15;xF 2/14
2/1 σ−σ=σ  (8) 

which may be designated for brevity the 
‘generalized’ distribution. For any probability 
distribution, it can be shown (Campos & 
Marques, 2002) that an upper bound for the 
probability of collision is the probability of 
coincidence, which: implies (i) a deviation for 
the first aircraft, with r.m.s. position error 1σ ; 
(ii) a deviation L-x for the second aircraft error 

2σ . For statistically independent aircraft 
deviations, the probability of coincidence at 
position x the product: 

( ) ( ) ( ).;xLF;xF,,L;xP 2k1k21k σ−σ=σσ   (9) 
Its integral over all positions along the line 
joining the two aircraft is the commutative 
probability of coincidence (CPC), viz.: 

( ) ( )

( ) ( )
1 2 1 2

1 2

; , ; , ,

; ; ,

k k

k k

Q L P x L dx

F x F L x dx

σ σ σ σ

σ σ

+∞

−∞

+∞

−∞

=

= −

∫
∫

,         (10) 

and, in particular, for aircraft with equal r.m.s. 
position errors: 

( ) ( )
( ) ( )

1 2 : ; ; ,

; ; .

k k

k k

Q L Q L

F x F L x dx

σ σ σ σ σ σ

σ σ
+∞

−∞

≡ = ≡

= −∫ ,   (11) 

The CPC has the dimensions of inverse length. 
The ICAO TLS of 9105 −× /h (12a) can be 
converted for a maximum airspeed 0 625V k t=  

in (12b) to a alternative target level of safety 
(ATLS) given  
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9 1
0 0

12 1
0 0 0

5 10 , 625 ,

/ 8 10 ,

Q hour V kt

Q Q Q V nm

− −

− −

= × ≤

≤ = ≤ ×
(12a-c) 

which is an upper bound for the CPC. The 
safety criterion (12c) is applied next to the 
Laplace (§2.2), Gaussian (§2.3) and generalized 
(§2.4) probability distributions. 

2.2 Laplace distributions for the dissimilar 
aircraft 

The ATLS (12c) is the upper bound for the CPC 
(10) calculated for aircraft whose position errors 
follow the Laplace probability distribution (4), 
with dissimilar r.m.s. position errors for the two 
aircraft: 

( )
( )

{ }

0 1 1 2

1 2

1 2

; ,

1/ 2

exp 2 / / .

Q Q L

x L x dx

σ σ

σ σ

σ σ
+∞

−∞

≥
=   
× −  + −  ∫

 

                           (13) 
The appearance of modulus in the argument of 
the exponential in (13), requires that the range 
of integration +∞∞− ,  be split in three parts. 
The first part corresponds to coincidence at 

Lx0 ≤≤  between the flight paths of the two 
aircraft: 

( ){ }
( ) ( )

1 2 11 1 20

2 1 20

2 exp 2 / /

exp 2 / exp 2 1/ 1/ ,

L

L

Q x L x dx

L x dx

σ σ σ σ

σ σ σ

= − + − =  
 − − − 

∫
∫

                         (14) 
and involves an elementary integration: 

( )
( ){ }

( )

1 2 11 2

1 2

1

1 2

2 exp 2 /

1 exp 2 1/ 1/

2 1/ 1/ ,

Q L

L

σ σ σ

σ σ

σ σ
−

= −
 × − − − 

 × − 

                (15) 

and simplifies to: 

( )
( ) ( ){ }

1
11 2 1

2 1

2 2

exp 2 / exp 2 / ,

Q

L L

σ σ

σ σ

− = − 
× − − −

       (16) 

and should be the main contribution (i) to (13). 
To evaluate (13) exactly, the remaining 
contributions, besides (i), are also considered: 
(ii) the coincidence to the outside the path of 
second aircraft: 

( )[ ]{ },/Lx/x2expQ2
L 211221 ∫ ∞ σ−+σ−=σσ

                (17) 
leads to an elementary integral: 

( )
( ){ }

( ) ( )
( ) ]

1 2 12 2

1 2

1

2 1 2

1 2

2 exp 2 /

exp 2 1/ 1/

exp 2 / 2 1/ 1/

exp 2 1/ 1/ ,

L

Q L

x dx

L

L

σ σ σ

σ σ

σ σ σ

σ σ

∞

−

=
× − +

 = + 
× − +

∫
,       (18) 

which simplifies to: 

( )[ ] ( );/L2exp22Q 1

1

2112 σ−σ+σ=
−

      (19) 

(iii) the coincidence 0x <<∞−  outside the 
flight path of the first aircraft: 

( )[ ]{ }
( ) ( ){ } ,dx/1/1x2exp/L2exp

dx/xL/x2expQ2

0 212

0

211321

∫
∫

∞

∞−

σ+σ−σ−=

σ−−σ=σσ

                (20) 
is again an elementary integral: 

( )[ ] ( )./L2exp22Q 2
1

1213 σ−σ+σ= −      (21) 

The sum of (21), (19) and (16) specifies the 
CPC where: 

( ) ( )
( ) ( )
( )
( ) ( )

1

1 1 2 2 1

2 1

1

2 1

1 2

; , 2 2

exp 2 / exp 2 /

2 2

exp 2 / exp 2 / ,

Q L

L L

L L

σ σ σ σ

σ σ

σ σ

σ σ

−

−

 = − 
 × − − − 
 + + 
 × − + − 

,   (22a) 

for the Laplace distribution: 
( ) ,mn108QQQQ,;LQ 112

0131211211
−−×=≤++=σσ

              (22b) 
and hence (12c) the safety criterion. Of the 
preceding expressions, only (16) breaks down 
for 012 =σ−σ , i.e. aircraft with the same 

r.m.s. position error σ≡σ=σ 21 . In this case 
the probability of coincidence is given: (i) 
between the flight paths of the two aircraft, 
instead of (14-16) by: 

( )
( )

( ) ( )

2 1
1 2 11

0

2

: 2

exp 2 /

/ 2 exp 2 / ;

L

Q

L dx

L L

σ σ σ σ

σ

σ σ

−= ≡ =

× −

= −

∫              (23) 
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(ii) outside the flight path of the second aircraft 
(17-19) is replaced by: 

( ) ( )
( )

( ) ( )

12
1 2 12

1

:          2 exp 2 /

exp 2 2 /

4 2 exp 2 / ;

L

Q L

x dx

L

σ σ σ σ σ

σ

σ σ

−

∞

−

= ≡ =

−

= −

∫
                          (24) 
(iii) outside the flight path of the second aircraft 
(20-22) is replaced by: 

( ) ( )
( )

( ) ( )

12
1 2 13

0

1

: 2 exp 2 /

exp 2 2 /

4 2 exp 2 / .

Q L

x d x

L

σ σ σ σ σ

σ

σ σ

−

−∞

−

= ≡ = −

×

= −

∫
                          (25) 
The sum of (23), (24) and (25) specifies: 

( )( ) ( )1

1 exp 2 / 2 / 1/ 2 ,Q L Lσ σ σ
−

= − +  (26a) 

as the safety criterion  

( )1 2 1 11 12 13 0

12 1

: ;

8 10 ,

Q L Q Q Q Q

nm

σ σ σ σ

− −

= ≡ = + + ≤

= ×
              (26b) 
for Laplace probabilities with equal r.m.s. 
position errors for both aircraft. 

2.3 Gaussian distribution with distinct 
variances 

The ATLS (12c) is the upper bound for the CPC 
(10) calculated next for aircraft whose flight 
path deviations satisfy the Gaussian probability 
distribution (6) for aircraft with dissimilar 
variances of position errors: 

( ) ( )
( ) (( ) ){ }

1

0 2 1 2 1 2

2 2

1 2

; , 2

exp / / / 2 .

Q Q L

x L x d x

σ σ πσ σ

σ σ

−

+∞

−∞

≥ =
 × − + − ∫  

               (27) 
The integral in (27) does not need splitting to be 
evaluated, e.g. in the case of equal variances: 

( ) ( )
( ) ( ){ }

( )
( ){ }

12
1 2 0 2

22 2

12 2 2

2 2

:        ; 2

exp / 2 ,

2 exp / 2

exp / ,

Q Q L

x L x d x

L

x x L d x

σ σ σ σ πσ

σ

πσ σ

σ

−

+∞

−

+∞

−∞

= ≡ ≥ =
 × − + − 

 = − 
× − −

∫

∫
                       (28) 
the change of variable (29a): 

( ) ( ) ,dyyexp,/2/Lxy 2 π=−σ−= ∫+∞
∞−

           (29a,b) 
leads to a Gaussian integral (29b), viz.: 

( ) ( )
( )

12 2 2
2

2 2 2

; 2 exp / 2

exp / 4 ;

Q L L

y L dy

σ πσ σ

σ

−

+∞

−∞

 = − 
× − +∫          (30) 

using (29b) in (30) leads to: 

( ) ( )
( )

1
2

2

2 12 1
0

; 2

exp / 2 8 10 ,

Q L

L Q n m

σ πσ

σ

−

− −

=
 × − ≤ = × 

 (31) 

as the safety criterion. In the more general case 
(27) of aircraft with dissimilar r.m.s. position 
errors: 

( ) ( )
( ) ( ){ }

1 2 2
2 1 2 2

2 2 2 2
1 2 2

2 exp / 2

exp / 2 ,

Q L

x x L d x

πσ σ σ

σ σ σ

− −

+∞
− − −

−∞

= −
 × − + − ∫  (32) 

the change of variable: [ ] ,2//Lxy 2
2

2
1

2
2

2
2

2
1

−−−−− σ+σσ−σ+σ=   (33) 

leads again to a Gaussian integral (29b), viz.: 

( ) ( )
( ){ } ( )

1 2 2
2 1 2 2

2 4 2 2 2
2 1 2

2 exp / 2

exp / 2 exp ,

Q L

L y dy

πσ σ σ

σ σ σ

− −

+∞
− − −

−∞

= −
 × − + −  ∫

      (34) 
which simplifies the safety condition to: 

( ) ( )
( ) ( ) ( ){ }

1

0 2 1 2 1 2

2 22
1 2

; , 2

exp / 2 / .

Q Q L

L

σ σ πσ σ

σ σ

−≥ =
 × − + 

            (35) 

This reduces to (31) in the case of equal r.m.s. 
position errors. 
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2.4 Generalized error or Gaussian 
distribution 

The safety condition (12c) for (10) the more 
accurate (8) generalized probability distribution: 

( )
( )

( ){ }
0 3 1 2

1 2

1/21/2

1 2

4 120 3.310 : ; ,

15 / 2

exp / / ,

c Q Q L

c x L x d x

σ σ

σ σ

σ σ
+∞

−∞

≡ ≡ ≥
=   

 × − + − ∫
                          (36) 
requires again a split in the region of integration 
as for the Laplace distribution (§2.2), with the 
difference that the evaluation of integrals is not 
elementary. The contribution to the cumulative 
probability of coincidence of the position 
between the flight paths of the two aircraft is: 

( )[ ] ( )[ ]{ },/xL/xcexp2/15Q 212131 σ−+σ−σσ=

                                    (37a) 

( ) ( ){ } ,dx/xL/x
!n

c

,2

15 nL

0 21
0n

nn

21
∫∑ σ−+σ

−

σσ
=

∞

=

              (37b) 
where the exponential was expanded in power 
series, and binomial theorem: 

( )
( ){ }( ) ( ) ( )

1 2

/2/2

1 2
0

/ /

!/ ! ! / / ,

n

n
n mm

m

x L x

n m n m x L x

σ σ

σ σ
−

=

 + − = 
− −      ∑

                (38) 
can also be used: 

( )
( )

( )

31
1 2

/2/2
1 2

0 0

15

2

,
! !

m mn
n mm

nm
n m

Q

c

m n m

σ σ

σ σ
∞

− −−

= =

=

−
× Ι

−∑ ∑
   (39a) 

and m,nΙ  denotes the integral. 

( )( ) ,dxxLx 2/mnL

0

2/m
nm

−−≡Ι ∫           (39b) 

which can be reduced to an Euler’s Beta 
function. The beta function is defined 
(Whittaker & Watson, 1927) by: 

( ) ( ) ( ) ( ) ( ),/dyy1y,B 11

0

1 β+αΓβΓαΓ=−≡βα −β−α∫
                      (40a,b) 
and can be evaluated in terms of Gamma 
functions. The integrals (39b) are evaluated in 

terms of the Beta function via a change of 
variable. 

( )( )

( )( )
( ) ( )( ) ( )

1 /21 /2 /2

0
/ : 1

1 / 2,1 / 2

1 / 2 1 / 2 / 2 / 2 .

n mn m
nmy x L L y y dy

B m n m

m n m n

−− −≡ Ι = −

= + + −

= Γ + Γ + − Γ +

∫

            (41a-c) 
Substitution of (41c) in (39a) yields: 

( )
( )

( )

( ) ( )
( )

/2 /2

31
01 2 1 2

15

2 ! !

1 / 2 1 / 2 / 2
,

2 / 2

m n mm m

n

cL L L
Q

m n m

m n m

n

σ σ σ σ

−
∞

=

−    =    −    
Γ + Γ + −× Γ +

∑

                         (42) 
as the first contribution to (36). 

It may be expected that (42) is the main 
contribution to (36), and thus we seek upper 
bounds for the two remaining contributions are 
sought next. The second contribution to (36) 
concerns coincidence outside the path of the 
second aircraft: 

( )
( ){ }

32 1 2

1 2

15 / 2

exp / / ;
L

Q

c x x L dx

σ σ

σ σ
∞

=   
 × − + − ∫  (43a) 

an upper bound is obtained by replacing Lx ≥  
by L  in the first exponential:  

( ) ( )
( )

32 1 2 1

2

15 / 2 exp /

exp / ,
L

Q c L

c x L dx

σ σ σ

σ
∞

≤ −  
 × − − ∫        (43b) 

the change of variable (44a) leads: 

( )
( )

2

32 12 0
1

/ ,

15
exp / ,y

y c x L

Q c L e y dy
c

σ

σ
σ

∞
−

= −

≤ − ∫   (44a,b) 

to an integral (44b) which is evaluated in terms 
(Whittaker & Watson, 1927; Goursat, 1950) of 
the Gamma function: 

( ) !mm1dyye m

0

y ≡+Γ=∫ ∞ − ;          (45a) 

using (45a) in (44b) leads to the upper bound for 
the second contribution to ((36), viz.: ( )[ ] ( )./Lcexpc/15Q 1

2
132 σ−σ≤          (45b) 

The third contribution to (36) corresponds to 
coincidence outside the flight path of the first 
aircraft: 
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( )
( ){ }

33 1 2

0

1 2

15 / 2

exp / / ,

Q

c x L x dx

σ σ

σ σ
−∞

=   
 × − − + − ∫ (46a) 

( ) ( )
( )( )
1 2 10

2

15 / 2 exp /

exp / ;

c x

c L x dx

σ σ σ

σ

∞= −  
× − +

∫
          (46b) 

an upper bound is obtained by replacing in the 
second exponential LxL ≥+  by L: 

( ) ( )
( )

33 1 2 2

10

15 / 2 exp /

exp / .

Q c L

c x dx

σ σ σ

σ
∞

≤ −  
× −∫          (46c) 

The last integral is evaluated via a change of 
variable: 

( )
( )

2
1 33 2

2 0

/ : 15 /

exp / ,y

y c x Q c

c L e y dy

σ σ

σ
∞

−

 = ≤  
× − ∫       (47a) 

leading by (45a) to: ( )[ ] ( ) ./Lcexpc/15Q 2
2

233 σ−σ≤           (47b) 

If the upper bounds (45b) and (47b) are small 
relative to the first contribution (42) to (36), 
viz.: 

( )
( ) ( )

2
31

1 1
1 1 2 2

32 33

15 /

exp / exp /

,

Q c

c L c L

Q Q

σ σ σ σ− −

>>
 × − + − 

≥ +
              (48a) 
then (46) alone can be used in the safety 
criterions (12c), viz.: 

,QQnm108 310
112 ≥=× −−            (48b) 

with an error whose upper bound is specified by 
the ratio of the r.h.s. to l.h.s. of (48a). 
If the latter error is not acceptable, then (43a) 
and (46b) must be evaluated exactly. 
Concerning the second contribution (43a) to 
(36), the change of variable (49a): 

,sinhLLx,coshLx 22 α=−α=        (49a,b) 
implies (49b), and transforms (43a) to: 

( )

{ ( )

32 1 2

0

1/2 1/2
1 2

15 /

cosh sinh

exp cosh sinh

Q L

d

c L

σ σ

α α α

σ α σ α

∞

− −

=   
×
× − +
∫    (49c) 

Concerning the third contribution (46b) to (36) 
the change or variable (50a): 

,coshLLx,sinhLx 22 α=+α=       (50a,b) 
implies (50b), and leads to: 

( )
( ){ }

33 1 2 0

1/2 1/2
1 2

15 / sinh cosh

exp sinh cosh ,

Q L d

c L

σ σ α α α

σ α σ α

∞

− −

=   
× − +

∫
(50c) 

 which is similar to (49c) interchanging 1σ  with 

2σ . The integrals (49c) and (50c) can be 
evaluated numerically, and coincide in the case 
of equal r.m.s. position errors: 

( ) ( )
1 2 32 33

2 2
2 0

:

15
exp / .

4

Q Q

L
c L e e e dα α α

σ σ σ

σ α
σ

∞
−

= ≡ =

= − −∫
               (51a) 
A further change of variable (51b) yields: 

( ){ ( )
32 33

2 2 3
2 /

/ :

15
/ / .

2
y

c L

y c L e Q Q

L
e c L y c L y d y

α

σ

σ

σ σ
σ

∞
− −

= +
  = −  ∫

                       (51b) 
The exponential integral of order n is defined 
(Abramowitz & Stegun, 1965) by: 

( ) ,dyeyzE y

z

n
n

−
∞∫=             (52a) 

and allows evaluation of (51b), viz.: 

( )
( ){ ( ) ( ) ( )}

2
32 33

2 2
1 3

15 / 2

/ / / / .

Q Q L

c L E c L c L E c L

σ

σ σ σ σ−

 + =  
   × −   

              (52b) 
The sum of the three contributions (42) plus 
(49c) and (50c) or (52b), specifies: 

( ) ,QQQ,;LQQnm108 3332312130
112 ++=σσ≥=× −−

              (52c) 
as the safety condition. 

3 Application to four ATM scenarios 

The preceding safety-separation criteria are 
applied to the four major airway scenarios, viz. 
lateral separation in uncontrolled (§3.1) and 
controlled (§3.2) airspace and standard (§3.3) 
and reduced (§3.4) vertical separation. 
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3.1 Lateral separation in oceanic airspace 

The lateral separation in oceanic airspace is 
(53a): 

50 , 7,6,5,4,3,2,1 ,a aL nm nmσ= =       (53a,b) 

and the r.m.s. position error is given the seven 
values (53b) in Table 1, where the CPC are 
indicated for the Laplace, Gaussian and 
generalized probabilities. The Table 1 concerns 
aircraft with similar r.m.s. position errors.  

3.2 Lateral separation in controlled airspace 

In controlled airspace the lateral separation 
(53a) is reduced to (54a): 

5 , 0,7,06,05,0.4,0.3,0.1 ,b bL nm nmσ= = (54a,b) 

and the r.m.s. position errors considered (54b) 
are correspondingly smaller than (53b). As 
shown in Table 2 the safety criterion is met.  

3.3 – Standard vertical separation 

The probabilities of vertical separation can be 
less upward than downward, due to gravity, 
proximity to the service ceiling, etc…; apart 
from this correction (Campos & Marques, 2007, 
2011), the preceding theory can be used with the 
standard vertical separation (55a): 

2000 , 300,200,150,100,70,50,40 ,c cL ft ftσ= =
           (55a,b) 
and r.m.s. deviations (55b), showing in Table 3 
that the safety criterion is met.  

3.4 Reduced vertical separation  

The RSVM introduced by Eurocontrol in upper 
European air space halves the vertical separation 
(56a) to (58a): 

1000 , 150,100,75,50,40,35,25,20 ,d dL ft ftσ= =

     (56a,b) 
and the r.m.s. position errors are 
correspondingly reduced from (56b) to (58b) in 
Table 4.  

4 Discussion 

The separation-position accuracy or technology-
capacity trade-off was made for an air corridor 
ATM scenario with aircraft flying along the 

same flight path or on parallel flight paths with 
a constant separation. The generalized 
probability distribution leads to lower values of 
the r.m.s. deviation to meet the ICAO TLS, than 
the Laplace and Gaussian. Although the latter 
distributions are simpler, they underestimated 
the collision risk, and do not yield safe 
predictions. Using simultaneously lateral and 
vertical separations leads to much lower 
collision probabilities, and allows reducing each 
separation for the same overall safety. In the 
case of aircraft flying on parallel tracks, it is 
desirable to use alternate directions of flight, 
because: (i) adjacent flight paths correspond to 
aircraft flying in opposite directions, which 
spend less time close to each other, reducing the 
collision probability (Campos & Marques, 
2002; Eurocontrol, 1988; Reich, 1966); (ii) the 
aircraft which spend more time ‘close’ by are on 
a parallel track at twice the separation 2L, thus 
allowing a larger r.m.s. position error for the 
same safety. 
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Table 1. Lateral a CPC for the Laplace, Gaussian and generalized probabilities. 

Probability distribution Laplace Gauss Generalized 
quantity 

aσ  Q1a Q2a Q3a 

Unit nm - - - 
10 nm 2,42E-04 5,45E-06 3,80E-04 
5 nm 7,72E-07 1,57E-13 3,58E-05 
4 nm 3,47E-08 1,91E-19 1,28E-05 
3 nm 1,68E-10 2,17E-32 2,75E-06 
2 nm 2,84E-15 9,77E-70 1,92E-07 
1 nm 4,95E-30 1,04E-272 3,88E-10 

0.5 nm 3,84E-60 0,00E-00 4,70E-14 
 

Table 2. Lateral b CPC for the Laplace, Gaussian and generalized probabilities. 

Probability distribution Laplace Gauss Generalized 
quantity 

bσ  Q1b Q2b Q3b 

Unit nm - - - 
1,0 nm 2,42E-03  5,45E-04 3,80E-03 
0,5 nm 7,72E-06  1,57E-11 3,58E-04 
0,4 nm 3,47E-07  1,91E-17 1,28E-04 
0,3 nm 1,68E-09  2,17E-30 2,75E-05 
0,2 nm 2,84E-14  9,77E-68 1,92E-06 
0,1 nm 4,95E-29  1,04E-270 3,88E-09 
0,05 nm 3,84E-59  0,00E-00 4,70E-13 

 

Table 3. Vertical a CPC for the Laplace, Gaussian and generalized probabilities. 

Probability distribution Laplace Gauss Generalized 
quantity 

cσ  Q1c Q2c Q3c 

Unit ft - - - 
300 ft 9,88E-07  4,68E-11 4,03E-06 
200 ft 1,93E-08  9,79E-17 8,76E-07 
100 ft 5,39E-14  1,05E-48 2,11E-08 
50 ft 1,10E-25  2,16E-178 8,12E-11 
40 ft 1,24E-31  6,49E-276 8,21E-12 

 

Table 4. Vertical b CPC for the Laplace, Gaussian and generalized probabilities. 

Probability distribution Laplace Gauss Generalized 
quantity 

dσ  Q1a Q2a Q3a 

Unit ft - - - 
150 ft 1,98E-06  1,87E-10 8,05E-06 
100 ft 3,86E-08  3,92E-16 1,71E-06 
50 ft 1,08E-13  4,20E-48 4,04E-08 
15 ft 2,55E-41  0,00E-00 6,86E-13 

 

 

 

 


