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Abstract  

This paper presents a study based on a novel 
safety evaluation concept designed to support 
definition phases of future air traffic manage-
ment (ATM) operational concepts. Engineering 
and decision support tools may take advantage 
of the findings on time buffers in current termi-
nal area (TMA) operations. The existence of 
such temporal windows for human activity is 
revealed analytically, establishing the hypo-
thesis that time buffers moderate the safety im-
pact of human performance variations. First, a 
surprisingly small time buffer for speed adviso-
ries was identified. With a refined experimental 
setup, it is then shown that the safety impact of 
delayed ATC interventions is acceptable up to 
¼ min. 

1   Introduction  

ATM has been repeatedly defying attempts of 
predicting safety occurrences not previously 
identified by safety analysts and operational 
ATM experts by means of simulation. On the 
other hand, emergent behavior evolving from 
comparatively simple models without prede-
fining potential hazards is a key feature of 
agent-based modeling and simulation (ABMS), 
which is why ATM safety research has favored 
this approach for the last 20 years, yet without 
significant standardization. 

Air transportation is known to be a complex, 
distributed and highly dynamic socio-technical 
system. Human factors, especially human errors 
are a known weakness, being a contributing 
factor to 80% and more of all safety occurrences 
[1]. However, it has recently been acknow-

ledged that also human performance variations 
can be safety critical if not appropriately ac-
counted for. Accident causation models reflect 
this by framing the human component with a 
context of technology, environment, and organi-
zational/social aspects [1, 2]. In consequence, 
simulative safety assessment of ATM concepts 
cannot significantly limit the scope, which has 
negative implications on abstraction and can 
contribute to ‘complexity explosion’ up to a 
point where models tend to become computa-
tionally infeasible or non-transparent. 

2   ATM Modeling and Simulation 

For classic human performance models, the 
modeling scope is very small and yet highly 
complex (including the human, its immanent 
environment, and limited factual/procedural 
knowledge). AirMIDAS [3] is an impressive 
example of continuing sophistication in that 
domain: It incorporates a goal-oriented produc-
tion model (comparable to ACT-R, EPIC, or 
SOAR [4]), an anthropometric model and vari-
ous custom models tailored to describe physio-
logical and/or psychological effects of interest 
to crew station design,  also in the ATM do-
main. Although there are promising achieve-
ments, the authors are critical about modeling 
effort, runtime performance, and interpretability 
of results, mostly because MIDAS may be too 
detailed for most of the candidate ATM appli-
cations. 

Recent approaches for the ATM domain, most 
notably NLR’s TOPAZ [5], use far more aggre-
gated models [6]. In TOPAZ, human operators 
are represented by state-models, which are spec-
ified by dynamically colored Petri-Nets (DCPN) 
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6   Agent Model 

6.1   Overview of Simulation System 

For agent based modeling and simulation, we 
use CTU Prague’s agent middleware platform 
AglobeX and the simulation environment 
AgentFly. 

As of March 2012, the agent model consists of 
the following entities: (1) Airbus A320 flight 
performance model with FMC logic. The model 
runs synchronous with simulation time with an 
update rate of 100 ms. It processes flight plans 
(waypoint list) and speed inputs by the pilot. 
The aircraft control by the FMC is based on 
pitch, roll and power (thrust). (2) Pilot agent 
without explicit intent except for ‘landing on 
designated runway’. Pilots communicate with 
ATC and their Aircraft. Aircraft communication 
is through the cockpit HMI. ATC communi-
cation is ‘verbal’ through a radio channel. (3) 
Radio channel agent that implements a blocking 
resource for all participants. This agent also 
determines the time needed to verbalize a given 
message with an estimator derived from the 
jACT-R implementation (50 ms per syllable, 
typical English syllable length of 3 characters, 
100 ms between words) plus additions (300ms 
listening for a free channel, 150 ms to formulate 
a sentence, spelling of callsigns and numbers, 
etc.). (4) Approach controller agent, that con-
tains the complex planning algorithms, as de-
scribed below. (5) Airport radar agent that de-
tects all aircrafts’ positions and reports updated 
‘images’ to the ATC agent with representative a 
cycle time of 4 s. All Agents except the Aircraft 
entity agent and the radar agent run asynchro-
nous with simulation time, which means that 
they trigger each other dependent of their cur-
rent activities and intents. 

6.2   Perception Module for Radar Images 

Our approach controller agent model uses the 
timeline construction method above but com-
bines the remaining distance estimation with a 
linear prediction of future locations in order to 
perform planning of its actions with a time hori-
zon of a few seconds up to 6 minutes. 

6.3   Modeled Air Traffic Control Strategies 

The approach controller’s strategies and the 
resulting task model are described in detail in 
[11-13]. In summary, there are (1) a task to 
pick-up new aircraft, plan an initial route (in-
cluding the possibility for a direct-to-final-
approach) and send them to their route, (2) a 
path stretching task that flexibly issues turn-
onto-downwind and turn-onto-final advisories 
to make use of the RNAV trombone infrastruc-
ture, (3) a speed monitor task that adapts air-
craft’s speeds depending on the location on 
route as well as traffic ahead and traffic follow-
ing, (4) a queue merge task that adapts speeds of 
aircraft on joining routes based on an estimated 
time of arrival (ETA, constructed from estimat-
ed distance remaining and current ground 
speed) at join waypoint timeline, and finally (5) 
an observe radar task that identifies potential 
conflicts and triggers one of the tasks above, 
mostly based on the internal timeline con-
structed by the method described above. 

We currently perform expert interviews to vali-
date and refine this model. As a first result, we 
have learnt that the strategies employed in eve-
ryday operations differ significantly from the 
strategies defined in standard operating proce-
dures [12].  

6.4   Adaptions to investigate Time Buffers 

In order to study time buffers by means of simu-
lation, the approach controller model’s internal 
timing was artificially constrained. Apart from 
voicing all advisories for transmission through 
the R/T channel, there had been no temporal 
constraints, resulting in an ideally ‘fast’ model. 
The model was adapted to run in cycles of 1 
second, and instructions were added to constrain 
all tasks to respective multiples of this basic 
cycle. Two constraints variables were added 
based on the task’s effects on the aircraft’s 4D 
trajectory: (1) a cycle time for approach route 
assignation and path shortening/stretching tasks 
(horizontal component) and (2) a cycle time for 
speed and altitude management tasks (vertical / 
longitudinal component). 
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8   Summary and Outlook 

With this paper, time windows defining safety-
neutral buffers for potentially delayed reactions 
of human players were motivated and explained 
by discussing the problem analytically. Time-
lines were introduced as an important helper to 
analyze traffic situations and derive the need for 
controller interventions. Consequently, a me-
thod for efficient construction of timelines by 
means of vector fields was presented. This ap-
proach is utilized in our approach controller 
agent model as the logical sub-module for the 
perception of radar images. After the current 
development stage of our agent based simula-
tion system was briefly presented, we intro-
duced the experimental setup for investigating 
time buffers in current TMA operations. 

The results show that there are different time 
buffers for various tasks/rules whose quantity 
differ significantly depending on the type of 
task (and its look-ahead time). These findings 
allow us to introduce time-constraining limita-
tions and variations of performance in a precise 
and purpose-driven manner, in order to repro-
duce flexible and variable human behavior into 
the agent based model. As next steps, the sam-
pling technique must be elaborated and auto-
mated in order to evaluate all possible value 
pairs. Stochastic modeling and Monte-Carlo 
simulation will be our next big step in order to 
evaluate unfavorable combinations of varying 
human performance as a safety hazard. 

A novel validation technique for artificial con-
troller models evolves out of the analyses pre-
sented here: The time buffer remaining when 
advisories are issued is comparable to real-life 
human performance. 
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