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Abstract  

Ramp and taxiway regions are the most 

congested areas of an aerodrome. High levels of 

activity are associated with these areas and 

aircraft are frequently surrounded by several 

types of obstacles, including other aircraft and 

vehicles. This paper discusses the 

correspondence and clustering techniques of a 

stereo vision system that can be installed on 

board an aircraft to detect and track generic 

obstacles around the aircraft during ground 

manoeuvres. 

1   Introduction  

The most congested area at an airport is the 

ramp.  This is a very dynamic environment, 

with several aircraft taxiing in and out of the 

stands and parked aircraft being refueled, 

loaded/unloaded and boarded simultaneously.  

Aircraft are situated very close to each other, 

making it demanding to manoeuvre an aircraft 

in such confined spaces.  Taxiways are also very 

busy, with multiple aircraft moving between the 

runway and the ramp and queuing to enter the 

runway.  Many different types of obstacles are 

found on ramps and taxiways, including aircraft, 

vehicles and fixed structures.  

Although several precautions are taken to 

prevent ground collisions between aircraft and 

obstacles, accidents still occur [1].  This 

suggests that current methods and systems only 

provide a partial solution to the problem. Of 

particular interest are collisions between two 

aircraft when taxiing.  Reports of some of these 

collisions can be found in the literature [2-6].  

The collisions investigated in these reports 

involve large commercial passenger aircraft.  In 

each of these accidents, the wing of a taxiing 

aircraft has come into contact with the wing or 

tail of a stationary aircraft.  Most of the 

collisions between two aircraft occur in fine 

weather and good visibility.  In most cases, the 

pilots of the taxiing aircraft are aware of the 

other aircraft but misjudge the separation 

between the two aircraft.  Judging distances 

from the cockpit of a large aircraft is not a 

trivial task.  In most cases, pilots either have a 

restricted view of the wingtips, an impaired 

view, or no view at all.  Distance judgement is 

complicated by the fact that most commercial 

transport aircraft have swept wings and these 

are subject to an effect known as swept wing 

growth or wing creep [7].  

A novel system is proposed in [8] and this 

can be installed on an aircraft to provide further 

protection against incidents and accidents 

(particularly wingtip collisions) on ramps and 

taxiways.  The solution proposed is an onboard 

non-collaborative system.  Such a system has 

the advantage of being completely independent 

of airport infrastructure and of other aircraft and 

obstacles.  The platform assumed is a large 

transport category aircraft, since such an aircraft 

is expected to benefit most from such a system.  

From this point onwards, this platform will be 

referred to as the ownship.  The main functional 

requirements of the proposed system are (a) to 

detect and track obstacles around an aircraft 

during ground manoeuvres and (b) to alert the 

flight crew in the event of loss of separation or a 

potential collision. 
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To meet the first requirement the system 

needs to detect generic obstacles.  However, 

since the biggest threats are, by far, vehicles and 

other aircraft, more care needs to be taken to 

detect these types of obstacles.  Also, for the 

system to have maximum effectiveness, it needs 

to focus on the most vulnerable areas of an 

aircraft.  Accordingly, it therefore needs to 

focus mainly on obstacle detection around the 

wingtips.  For this purpose, a rectangular 

protection zone is defined around each wingtip 

as shown in Fig. 1.  The size of this zone was 

determined by taking into consideration a 

number of parameters, such as typical wingtip 

clearances, taxi speeds and pilot reaction times. 

 

 

Fig. 1  Definition of a protection zone around 

the ownship’s wingtips. 

 

The protection zone is the smallest region 

around a wingtip that has to be clear of 

obstacles such that, in the event of a conflict 

(where an obstacle is detected as being on a 

collision course with the wingtip), the pilots will 

have enough time and space to react and bring 

the ownship to a stop without colliding with the 

obstacle.  This means that the system needs to 

focus on the detection and tracking of obstacles 

in the region beyond the boundaries of the 

protection zone.  Such a capability is necessary 

in order allow the detection of potential 

collisions – and, hence, to issue timely warnings 

– before an obstacle penetrates the protection 

zone.  If an obstacle enters the protection zone, 

it may be too late to avoid a collision. 

The obstacle detection and tracking system 

has been implemented using stereo vision 

techniques, with a pair of stereo cameras located 

on either wingtip.  The functional block diagram 

of the system is provided in Fig. 2. This paper 

focuses on two computational blocks of the 

stereo vision process: correspondence and 

clustering.  These are typical steps of a stereo 

vision-based obstacle detection system.  

However, their implementation depends on the 

specific requirements of the application. 

 

 

Fig. 2  Functional block diagram of the stereo 

vision system. 

2 Correspondence  

Correspondence is the process of finding 

corresponding pairs of pixels in the stereo 

images.  This process is reduced to a one 

dimensional (1D) problem by warping the 

images during rectification (refer to Fig. 2).  

Rectification ensures that corresponding pixels 

have the same row coordinate.  Correspondence 

methods can be broadly classified into two 

categories: those that produce a dense disparity 

map and those that produce a sparse disparity 

map.  

Correspondence methods that produce a 

dense disparity map use intensity information 

and correlation techniques to compute the 

disparity of every pixel in the image.  These 

methods are further divided into local and 

global optimisation methods.  Local methods 

use local information in order to find 

corresponding points. These methods are also 

known as window methods. On the other hand, 

global correspondence methods use information 

from a larger region of the image in order to 
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find the disparity at each pixel. A 

comprehensive review and evaluation of dense 

correspondence methods can be found in [9].  

Correspondence methods that produce a 

sparse disparity map are also known as feature-

based correspondence methods. This is because 

they only compute the disparity of particular 

image features such as edges or corners.  The 

same correspondence methods that are used to 

obtain a dense disparity map can also be used to 

process only certain image features. 

2.1 Outline of the Algorithm  

In this application, the aim is not to reconstruct 

the whole scene but to detect obstacles within 

the scene.  For this reason, it is only necessary 

to find the disparity of subsets of the image that 

are likely to correspond to obstacles.  Therefore, 

a feature-based correspondence method using 

intensity information has been adopted. The 

image features that are processed are edge 

pixels.  There are several reasons for processing 

edges.  Firstly, edges contain the most important 

structural information about an image. They 

normally occur in textured image regions and 

are more likely to provide a reliable match.  

Most importantly, edges are a key feature of 

obstacles in the context of this application.  

Moreover, since edge pixels account for a small 

percentage of the whole image, computation 

time can be significantly reduced by using this 

approach.  Edges are detected using the Canny 

edge detection method [10].  This edge detector 

removes noisy edges while preserving 

continuous edge contours.  

The output of edge detection is a binary 

edge map with pixels either classified as edges 

(1) or non-edges (0).  For each edge pixel, the 

disparity is found using a local, window-based 

method.  This matches edge pixels in the left 

(reference) image to corresponding edge pixels 

in the right image as follows (refer to Fig. 3): 

1. A square window of pixels is selected around 

a pixel pl(x1,y1) in the left image. 

2. A similar window is selected around a 

candidate edge pixel, with the same row 

coordinate, in the right image. 

3. The matching cost between the left and right 

image windows is computed. 

4. Steps (2) and (3) are repeated for every edge 

pixel that is within the disparity search 

region. 

5. The right edge pixel pr(x2,y1) corresponding 

to the minimum matching cost (global 

minimum) is identified. 

6. The disparity d of pl(x1,y1) is given by: 

d=x1-x2
 

(1) 

 

 

Fig. 3 Window-based correspondence. 

 
In order to compare intensity regions in the 

left and right images, the Sum of Absolute 

Differences (SAD) matching cost is used.  Since 

the stereo vision system is to be used in an 

outdoor environment, it is important to 

compensate for photometric distortion.  This is 

done by normalising the intensity windows.  

The matching cost between left and right image 

regions is therefore given by: 
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(2) 

where: 

dmin ≤ m ≤ dmax is the disparity search range, 

C(m) is the matching cost at disparity m, 

W represents the left and right image regions, 

Il(x,y) and Ir(x+m,y) are the intensities of pixels 

within the left and right windows respectively, 

µl and µr are the average intensities of the left 

and right image regions respectively, 

σl and σr are the standard deviations of the 

intensities of the left and right image regions 

respectively. 
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2.2  Selection of Window Size and Number 

of Windows 

One important issue that can affect the quality 

of the disparity map is the size of the window 

used during the correspondence process.  On 

one hand, a small window is prone to noise but 

is computationally quick and all the pixels 

within the window are likely to be at the same 

depth (i.e. the disparity will be constant within 

the window).  On the other hand, a larger 

window has a better Signal-to-Noise Ratio 

(SNR) but increases the processing time.  Also, 

as the window size is increased, it is more likely 

that the disparity changes within the window.  

This means that a larger window has a higher 

probability of containing occluded pixels which 

lead to increased differences between the left 

and right image regions used for matching. 

To choose a suitable window size, the 

correspondence algorithm was tested on 8 stereo 

images, the ground truth disparity maps of 

which were known.  These are standard test 

stereo images and are available in the literature 

[11].  Only the edge pixels were processed in 

each image.  Fig. 4 shows how the processing 

time
1
 and the percentage of correct disparities 

change when increasing the window size from 

3x3 pixels to 15x15 pixels.  It can be observed 

that the greatest increase in the percentage of 

correct disparities occurs when the window is 

enlarged from 3x3 pixels to 5x5 pixels.  Little 

improvement is observed for windows larger 

than 7x7 pixels.  The processing time increases 

non-linearly as the window size is increased. 

Since the biggest improvement in the 

accuracy of the disparity map is obtained when 

increasing the window size from 3x3 pixels to 

5x5 pixels, a window size of 5x5 pixels would 

provide the ideal compromise between disparity 

map quality and computation time.  However, in 

order to be on the safe side, a window size of 

7x7 pixels was chosen for this work. 

 

                                                
1 The percentage increase in processing time is measured 

with respect to the processing time when using a 

window size of 3x3 pixels. 

 
 

 
Fig. 4 The effect of correlation window size 

on the percentage of correct 

disparities (top) and percentage 

increase in processing time (bottom). 

 

Apart from window size, another important 

consideration is the number of correlation 

windows used.  If only a single window is used 

to match left and right image regions, a bad 

match is likely to occur whenever the regions 

contain depth discontinuities or occluded pixels, 

since these tend to increase the difference 

between the two regions.  This problem can be 

mitigated by using multiple windows, where 

each window is situated at a slightly different 

position with respect to the pixel of interest 

[12].  

To demonstrate the benefit of using a 

multi-window scheme, the correspondence 

algorithm was tested on 100 noisy synthetic 

images.  Nine 7x7 correlation windows (shown 

in Fig. 5) were used during the correspondence 

process.  When all of the images were 

processed, the total number of times that each 

type of window produced the best match 

(minimum matching cost) was expressed as a 
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percentage of the total number of processed 

edge pixels.  Another test was carried out to 

check the percentage increase in processing time 

when varying the number of correlation 

windows from 1 to 9.  The results are shown in 

Fig. 6. 

 

 
 

Fig. 5  Correlation windows used (the grey 

pixel represents the pixel of interest). 

 

 
 

 
Fig. 6  Percentage of best matches provided 

by each type of window (top) and 

percentage increase in processing time 

with number of windows (bottom). 

 

In the top figure, the numbers on the x axis 

represent the different types of windows shown 

in Fig. 5. As expected, the window that 

produces the least percentage of best matches is 

the central window (window type 5).  Since 

most of the edge pixels occur at object 

boundaries, the central window has a greater 

probability of containing depth discontinuities.  

Therefore, the disparity is not constant within 

the window, leading to bad matches.  The best 

matches are produced by window types 6-9, 

where the pixel of interest lies at the corner of 

the correlation window.  These four windows 

account for over half of the best matches.  

Moreover, there is only a 2.9% increase in 

processing time when using four windows as 

opposed to a single window.  Therefore, as a 

compromise between matching accuracy and 

processing time, a 4-window scheme (consisting 

of window types 6-9) was adopted in this work. 

2.3 Detection of Incorrect Disparities 

After estimating the disparity of a pixel, a 

number of tests are carried out to ensure that 

this disparity is reliable and accurate.  The first 

test exploits the uniqueness constraint which 

states that a left image pixel should match 

uniquely with a right image pixel.  Assume that, 

when finding the disparity of a left image pixel 

pl1, the best match is provided by a right image 

pixel pr, with matching cost C1 (Fig. 7).  If, 

when determining the disparity of another left 

image pixel pl2, the best match is again provided 

by the right image pixel pr, with matching cost 

C2, the uniqueness constraint is violated and, 

therefore, one of the matches must be incorrect. 

In this case, the matching costs C1 and C2 are 

compared and the better match is accepted while 

the other is rejected.  

 

 

Fig. 7 Violation of the uniqueness constraint. 

If the uniqueness constraint is satisfied, a 

second test is carried out. This is called the 

sharpness test and it compares the disparity 
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corresponding to the global minimum with the 

disparity associated with three pseudo-minima: 

 

3

min

1

i

i

d d d



    
(3) 

where: 

dmin is the disparity corresponding to the global 

minimum, 

di is the disparity corresponding to the pseudo-

minima. 

A large value of ∆d implies that the 

pseudo-minima occur far from the position of 

the global minimum.  In this case the match is 

considered to be ambiguous unless the matching 

cost of the global minimum is much smaller 

than that of the pseudo-minima.  On the other 

hand, a small value of ∆d implies that the 

pseudo-minima are close to the global minimum 

and the match is considered to be reliable even 

if the score of the global minimum is not much 

smaller than that of the pseudo-minima. 

If ∆d is larger than a certain threshold (due 

to an ambiguous match), a third test is carried 

out.  This is called the distinctiveness test and it 

compares the error value of the global minimum 

with that of the pseudo-minima: 

 

3

min

1

i

i

C C C



    
(4) 

where: 

Cmin is the matching cost corresponding to the 

global minimum, 

Ci is the matching cost corresponding to the 

pseudo-minima. 

If ∆C is greater than a certain threshold, the 

disparity is considered to be valid; otherwise, it 

is rejected. The sharpness and distinctiveness 

tests were adopted from [13]. 

Fig. 8 shows two correlation profiles 

obtained using the correspondence algorithm 

described.  The top figure shows a profile where 

the location of the global minimum is clear and 

distinct.  This profile satisfies the sharpness test 

and, therefore, the pixel disparity associated 

with it is considered to be valid. The bottom 

figure shows an ambiguous correlation profile, 

the result of repetitive texture.  The location of 

the global minimum cannot be accurately 

determined from this profile and, therefore, it is 

successfully rejected by the sharpness and 

distinctiveness tests. 

 

 
 

 

Fig. 8  Correlation profiles: reliable profile 

(top) and ambiguous profile (bottom) 

detected by the correspondence 

algorithm. 

2.4 Disparity Refinement  

It is assumed that disparity varies smoothly over 

a very small region of pixels.  Therefore, for 

every valid disparity, a second degree 

polynomial is fitted to the global minimum and 

its two closest neighbours to calculate the 
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disparity with sub-pixel precision using 

Equation (5): 

 

min min
2( 2 )

min min

min

d -1 d 1

subpixel min
d -1 d d +1

C C
d d

C C C


 

 

 (5) 

2.5 Reduction of Computation Time  

One of the factors that affect the processing 

time of correspondence is the disparity search 

range.  This depends on the stereo setup and on 

the size of the region over which obstacles need 

to be detected.  In this application, the main 

region of interest is the protection zone.  The 

disparity of features varies significantly within 

the protection area (from 208 pixels at 4m to 17 

pixels at 50m).  If each edge pixel is processed 

by using the full disparity search range, the 

computation time complexity will be high.  One 

way of handling such a large range of disparities 

and reducing the processing time is by using 

multi-resolution techniques [14, 15]. 

The most common approach consists of 

sub-sampling the original stereo images in order 

to create an image pyramid with very low 

resolution images at the top and increasingly 

higher resolution images towards the bottom of 

the pyramid. The coarse images contain 

approximate information about the scene.  

Consequently, correspondence is first carried 

out on the lowest resolution images using the 

full disparity search range. This provides rough 

estimates of disparity.  Then, correspondence is 

carried out at the next level of the pyramid.  

This time, however, the disparity search range 

for each pixel (referred to as a child pixel) is 

restricted by the disparity of its parent pixel in 

the previous level.  For example, assume that 

the disparity of a parent pixel is dp and that the 

dimensions of images at each level of the 

pyramid are double those of images at the 

previous level.
2
  Then, the disparity search 

range for a child pixel in the higher resolution 

image is reduced to: 

 
2 ( ) 2p search pd d pixels d      (6) 

                                                
2  In this case, each parent pixel would have four child 

pixels. 

where   is a user-defined tolerance value.  

This process is repeated for the remaining 

levels of the pyramid, with a smaller value of   

being used as image resolution increases.  

Hence, the disparity search range becomes 

narrower down the pyramid and a more precise 

estimate of disparity is obtained. 

This strategy speeds up the overall 

processing time.  However, the main 

disadvantage of this approach is that disparity 

errors tend to propagate down the pyramid.  If 

the disparity of a parent pixel is incorrect and, 

as a result, the true disparity of its child pixels 

falls outside the restricted disparity search 

range, the computed disparity of the child pixels 

will also be incorrect.  The correspondence 

algorithm will not be able to recover from such 

an error in the remaining levels of the pyramid.  

One way of trying to prevent disparity errors 

from propagating through the pyramid would be 

to use a larger tolerance value and hence widen 

the disparity search range.  However, this would 

increase the processing time and would defeat 

the whole purpose of the multi-resolution 

approach.  For this reason, a slightly different 

approach is proposed in this work. 

First, a low resolution version of the stereo 

images is obtained by sub-sampling the original 

images.  The dimensions of the low resolution 

images are four times smaller than those of the 

original images.
3
  Correspondence is carried out 

on the coarse images using the full disparity 

search range given by: 

 
0 ( ) 52searchd pixels   (7) 

 

Due to their very small size, the coarse 

images are processed very quickly.  Then, the 

maximum and minimum disparities of the 

images (dmax and dmin) are determined. dmax and 

dmin are scaled and the original images are then 

processed using the following disparity search 

range: 

 

min max4 ( ) 4searchd d pixels d   (8) 

                                                
3  The maximum disparity of the original images is 

considered to be 208 pixels. This is equivalent to a 

disparity of 208/4 = 52 pixels in the coarse images. 
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With this method, individual disparity 

errors that occur when processing the low 

resolution images are very unlikely to propagate 

to the original images.  This is because the 

disparity search range for a child pixel in the 

original images is not directly linked to the 

disparity of its parent pixel.  Therefore, as long 

as dmax and dmin are correct, the correspondence 

algorithm can recover from any disparity errors 

that occur when processing the coarse images.  

The main assumption being made in this 

implementation is that obstacles will only 

occupy part of the detection area during any 

single frame.  Hence, the range of disparities 

will vary between frames and will rarely reach 

the boundaries of the full disparity search range.  

Thus, computation time is significantly reduced 

by using this modified multi-resolution 

approach. 

2.6 Correspondence Results  

Fig. 9 shows the results obtained when carrying 

out correspondence on a pair of noisy images 

featuring a typical aerodrome scene.  As 

expected, objects that are closer to the cameras 

have a higher disparity.  Also, the disparity 

varies smoothly over individual objects in the 

scene.  The peaks in the disparity histogram 

give an indication of the number and size of 

objects in the scene.  By looking at the edge 

map and the disparity map, it can be observed 

that the disparity of most edge pixels has been 

computed successfully.  Some isolated pixels 

with incorrect disparities can, however, be 

identified. These are pixels whose disparity 

differs significantly from that of neighboring 

pixels. Steps to remove these ‘noisy’ pixels are 

discussed next. 

 

  

(a) Left intensity image (b) Left edge map 

 

 
 

 

(c) Edge disparity map (d) Disparity histogram 

 

Fig. 9 Correspondence results. 
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3 Clustering  

After correspondence is carried out, 

corresponding pairs of pixels are mapped onto 

3D coordinates by means of triangulation.  

Assuming that the ground is flat in the vicinity 

of the ownship, obstacle points are then detected 

by measuring the height of each point above the 

ground.  If the height exceeds a certain 

threshold, then the point is assumed to belong to 

an obstacle.  However, due to errors in the 

previous stages of stereo vision, certain edge 

points are mapped onto incorrect 3D positions.  

As a result, height thresholding is not sufficient 

to filter out ground features and incorrect 3D 

points.  Consequently, after detecting potential 

obstacle points, the next step is to group these 

points into individual obstacles.  By the end of 

this process the remaining ‘noisy’ points will 

have been removed while the true obstacle 

points are retained. 

Individual obstacles are obtained from the 

set of potential obstacle points by means of 

clustering techniques.  Clustering is the process 

of organising data sets (such as a set of 3D 

points) into groups (called clusters) based on a 

number of neighborhood and similarity criteria.  

Ideally, clustering should maximise the distance  

between clusters (also known as the inter-

cluster distance) and minimise the distance 

between points in the same cluster (also known 

as the intra-cluster distance).  There are two 

main classifications of clustering techniques: 

hierarchical clustering and non-hierarchical 

(partitional) clustering. 

Hierarchical clustering is further divided 

into agglomerative and divisive clustering.  

Agglomerative clustering follows a bottom-up 

approach.  Each point is initially treated as a 

cluster.  Then, the two closest clusters are 

merged into a single cluster.  This merging 

process is repeated by measuring the distance 

between clusters and merging the two closest 

clusters.  As the clusters become larger, more 

distant clusters are linked together and the 

dissimilarity between elements of the same 

cluster increases.  Eventually, all the points are 

grouped into a single cluster. 

Divisive clustering follows a top-down 

approach.  The points are initially treated as one 

cluster.  This is repeatedly divided into smaller 

clusters until some stopping condition is met.  In 

the limit, the number of clusters is equal to the 

total number of points.  

The second category of clustering 

techniques is partitional clustering.  These 

techniques divide the data set into clusters, 

typically by trying to minimise some criterion or 

error function. 

3.1 Outline of the Algorithm  

The stereo vision system needs to be able to 

detect a wide range of obstacles, particularly 

aircraft extremities and vehicles.  The number 

and size of obstacles in each frame is unknown.  

The shape of the obstacles, and the fact that 

only the edge pixels are processed, suggests that 

the clusters will tend to be elongated.  Taking 

these points into consideration, it was decided to 

implement a new agglomerative, hierarchical 

clustering technique.  As will be shown, this 

algorithm uses both spatial and non-spatial 

attributes to cluster obstacle points. 

Initially, the obstacle points are treated as 

individual clusters.  The clustering algorithm 

then proceeds as follows: 

1. The first point is selected from the 3D point 

cloud and is labelled as Cluster n. This 

point is defined as the root. n is initialised 

to 1. 

2. A search is carried out for points that are 

within a specific distance from the root. 

These points are defined as children of the 

root. 

3. A search is carried out for points that are 

within a specific distance from each child. 

This step is repeated for any subsequent 

children until no more children are found. 

All children are assigned the same label 

(Cluster n) as the root. 

4. All points labelled as Cluster n are removed 

from the 3D point cloud and n is 

incremented by 1. 

5. Steps (1)-(4) are repeated until the 3D point 

cloud is empty and all the points are 

labelled. 
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6. Any clusters that do not satisfy certain 

criteria are removed. 

The clustering process is illustrated through 

a simple 2D example in Fig. 10. It can be 

observed that Cluster 1 is formed after 4 

iterations of Step (3) whereas Cluster 2 is 

formed after 2 iterations. 

 

 

Fig. 10 The clustering process. 

3.2 Grouping and Filtering Criteria  

3.2.1 Grouping Criteria  

During Steps (2) and (3) of the clustering 

algorithm, the distance between a point and the 

root/child is defined in terms of three grouping 

criteria (which are weighted such that the 

individual weights add up to 1): 

 C3d – The 3D Euclidean distance between the 

two points. This is the most important 

measure and is given the greatest weighting 

(w1 = 0.5). 

 C2d – The 2D Euclidean distance between the 

pixels corresponding to the two points.  This 

is an important measure which is made under 

the assumption that points that are close in 

3D space are also close in the image plane.  It 

is not as important as the first criterion 

because it is possible that neighboring points 

in the image plane are far apart in 3D space. 

This can happen, for instance, at object 

boundaries. This criterion is given a 

weighting of w2 = 0.4. 

 Cint – The absolute difference in intensity 

between the pixels corresponding to the two 

points. It is expected that, if the pixels belong 

to the same object and are situated close to 

each other, the intensity difference between 

them will be very small.  However, it is also 

possible that completely unrelated pixels 

have the same intensity.  For this reason, this 

measure is given the smallest weighting (w3 

= 0.1). 

Rather than imposing ‘hard’ thresholds for 

each criterion (i.e. a criterion is either met or 

not), it was decided to use ‘soft’ thresholding 

where  C3d, C2d and Cint are mapped onto score 

values between 0 and 1 as shown in Fig. 11.  

Since the three criteria have different units, the 

mapping also serves to normalise the data.  

Then, each score is multiplied by its 

corresponding weighting value and the overall 

distance D between the two points is calculated 

as follows: 

 

1 3 2 2 3 intd dD w S w S w S    (9) 

where: 

S3d, S2d and Sint are the score values associated 

with each criterion, 

w1 = 0.5, w2 = 0.4 and w3 = 0.1 are the 

weighting values associated with each criterion, 

w1 + w2 + w3 = 1. 

As can be observed, D can vary between 0 

and 1.  If D is greater than a certain threshold 

(set at thres1 = 0.7), the two points are 

considered to belong to the same cluster. 

 

 

Fig. 11 Mapping of grouping criteria onto score values 
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3.2.2 Filtering Criteria  

In Step (6) of the clustering algorithm, the 

following weighted criteria are used to filter the 

clusters: 

 
3d

C  – The average 3D distance between 

neighboring points in the cluster.  This gives 

an indication of point density.  The greater 

the density, the more likely it is that the 

cluster is an obstacle.  This criterion is given 

a weighting of w4 = 0.4. 

 
2d

C  – The average 2D distance between 

pixels corresponding to neighboring points in 

the cluster.  Like the first criterion, this gives 

an indication of point density.  However, 

because of the possibility that neighboring 

pixels might be far apart in 3D (as mentioned 

when describing C2d), this criterion is given a 

smaller weighting (w5 = 0.3). 

 Cpts – The number of points in the cluster. 

This gives an idea of obstacle size.  Given 

the different sizes of obstacles that are likely 

to be present in the scene, the number of 

points can vary considerably.  Furthermore, 

the number of points does not only depend 

on obstacle size but also on the distance from 

the camera.  Nevertheless, it can still be 

assumed that very small clusters are due to 

noise.  This criterion is assigned a weighting 

of w6 = 0.3. 

As in the case of the grouping criteria, soft 

thresholding is used and 
3d

C , 
2d

C  and Cpts are 

mapped onto score values between 0 and 1 as 

shown in Fig. 12. Then, each score value is 

multiplied by its corresponding weighting value 

and the overall score S is calculated as follows: 

4 5 63 2 ptsd d
S w S w S w S    (10) 

where: 

S3d, S2d and Spts are the score values associated 

with each criterion, 

w4 = 0.4, w5 = 0.3 and w6 = 0.3 are the 

weighting values associated with each criterion, 

w4 + w5 + w6 = 1. 

S can vary between 0 and 1.  If S is greater 

than a certain threshold (set at thres2 = 0.7), the 

cluster is assumed to be valid; otherwise, it is 

removed. 

The density of points in 3D space decreases 

with increasing distance from the cameras.  This 

is mainly due to triangulation uncertainty which 

affects range resolution and positional accuracy.  

Hence, this factor needs to be taken into account 

when normalising C3d and 
3d

C .  For this 

purpose, thresholds t1, t2, t7 and t8 increase 

linearly with distance as follows: 

1 1

2 2

7 1

8 2

t k z

t k z

t k z

t k z









 (11) 

where: 

z is the z coordinate of the point (such as the 

root) whose children need to be determined, 

z  is the average of the z coordinates of all the 

points within a cluster, 

k1 and k2 are positive constants. 

Suitable values for thresholds t1..t12 used in 

the clustering algorithm were determined 

experimentally by varying the threshold values 

and running the algorithm on different synthetic 

images.  

 

 

 

Fig. 12 Mapping of filtering criteria onto score values 
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3.3 Clustering Results  

Figure 13 shows an example of the results of 

clustering.  In this scenario, the ownship is 

approaching an aircraft which is of a similar 

size to it.  From Fig. 13(c), it is apparent that 

obstacle detection based on height thresholding 

is not sufficient to eliminate all of the ‘noisy’ 

points.  A significant number of noisy points are 

still present and some of them are actually 

inside the protection zone.  Figure 13(d) shows 

the significant improvement obtained after 

clustering (the clusters are represented by 

different colours in Figs. 13(b) and 13(d)).  

Most of the noisy points, including those that 

were previously detected in the protection zone, 

are removed.  At the same time, however, the 

points corresponding to the aircraft and to the 

hangar behind it, are preserved.  The shape and 

orientation of the aircraft is clearly visible in 

Fig. 13(d) and it is also observed that, since the 

hangar is further away from the ownship, the 

points corresponding to it (represented by the 

green and red clusters) are more dispersed than 

the points corresponding to the aircraft.  The 

clustering algorithm is able to detect such 

distant obstacles by adjusting its thresholds 

dynamically.

 

 

 

 

 
 

(a) Obstacle points superimposed on 

intensity image before clustering 

 

 

 
(b) Plan view of obstacle points before 

clustering  

 
 

(c) Obstacle points superimposed on 

intensity image after clustering 

 

 

 
(d) Plan view of obstacle points after 

clustering 

 

 

 

 

 
Fig. 13 The clustering results. 
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4 Conclusion 

This paper has presented the correspondence 

and clustering techniques of a stereo vision 

system to detect and track generic obstacles 

around an aircraft on ramps and taxiways.  

These techniques have been shown to be 

effective by testing them with noisy, synthetic, 

stereo images that are representative of the 

aerodrome environment.  

Future work will focus on additional testing 

– using synthetic images generated under 

various illumination, visibility, and image noise 

conditions, as well as real images captured at an 

actual airport.  
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