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Abstract

Nowadays, frequency-domain time-linearized
flow solvers are widely employed for aerospace
engineering applications like turbomachinery or
wing aeroelacticity. Due to substantial savings
in the computational costs compared to the clas-
sical time-nonlinear methods, these methods are
promising in the context of industrial design
process in aeronautics. Nevertheless, the time-
linearized solution is often relying on the as-
sumption of frozen turbulence which can lead
to significant discrepancies in the unsteady flow
prediction, especially when the steady flow ex-
hibits strong shock-wave boundary layer interac-
tions. In the present paper, we propose to ac-
count for effects of the turbulence on the un-
steady field by linearizing the k-ω turbulence
closure of Wilcox. To this end, an Auto-
matic Derivation Tool is applied to the dis-
cretized Reynolds Average Navier-Stokes solver
Turb’FlowTM. The resulting time-linearized
LRANS solver Turb’LinTMis used to computed
the unsteady response of forced shock-wave mo-
tion in a transonic nozzle due to harmonic back
pressure fluctuations. The accuracy of the present
methodology is assessed by comparison with
time-nonlinear and harmonic-balance solutions
for both weak and strong shock-wave turbulent
boundary layer interactions forced by an excita-
tion frequency equal to 500 Hz.

1 Introduction

Important progresses have been made during
the last decades in the development of time-
linearized solvers for a wide range of unsteady
time-periodic flows ([1],[2],[3]). Compared
to the conventional time non-linear Reynolds-
Averaged Navier-Stokes methods (URANS),
such frequency-domain based approaches com-
bine high computational time efficiency with a
high level of accuracy at high excitation frequen-
cies. For these reasons, the time-linearized meth-
ods are very popular for aeronautical engineer-
ing problems where flow unsteadiness is charac-
terized by harmonic oscillations with small am-
plitudes. However, it is well known that these
approaches suffer from a lack of robustness and
accuracy when strong local non-linear effects
are present in the underlying steady problems
as for instance, transonic nozzle configurations
with flow separations. The main reason of this
loss of accuracy is due to the fact that most
of time-linearized solvers assume that the turbu-
lence is frozen to the steady state during the un-
steady computations. Obviously, this drawback
can be raised by using an harmonic balance ap-
proach [4, 5] which naturally accounts for un-
steady perturbations in the turbulent eddy viscos-
ity by means of several coupled pseudo-steady
flows. In this work, a different approach is in-
vestigated by means of the linearization of the k-
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ω turbulence model ([6]) employed for the com-
putation of the steady flow. As a consequence,
this formulation can be employed in the context
of both time-linearized flows and gradient-based
approaches for aerodynamic design optimization.

2 Time-linearized Navier-Stokes methodol-
ogy (LRANS)

The flow is modelled by the Reynolds-Averaged
Navier-Stokes equations (RANS). A finite vol-
ume method is employed to discretize the gov-
erning equations on a structured multiblock grid

d
dt

(J(p) q)+F(p,q) = 0 (1)

where q is the vector of nodal conservative and
turbulent variables, J denotes the vector of mesh
cells volume, p is the vector determining bound-
ary conditions, F is the non-linear function ex-
pressing the balance of convective and viscous
fluxes. In the framework of linear analysis,
the imposed instantaneous operating conditions
p and the unknown q are modelled as :

p = p+δpeiωt , (2)

q = q+δqeiωt (3)

where (p, q) are the steady state values and (δp,
δq) are the small perturbation harmonic ampli-
tudes at a prescribed angular frequency ω.

Introducing the previous decomposition in
the RANS equations (Eq. [1] ) and neglecting
high order terms gives an uncoupled system of
equations whose unknown is (q, δq)

F(q,p) = 0 (4){
iωJ(p)+

∂F
∂q

(q,p)
}

δq =−∂F
∂p

(q,p)δp (5)

Equation (4) corresponds to the RANS for-
mulation for the steady flow (SRANS). The time-
linearized solution (LRANS) is described in the
frequency domain by Eq. (5). The most impor-
tant work in solving the LRANS equations is to
compute the jacobian matrices of the flux with
respect to δq and δp.

3 Computational methods

In this work, the steady flow solution (Eq. 4) and
the unsteady non-linear flow solution are com-
puted using the TurbflowTMsolver [7, 8]. Spatial
discretization is based on the 3rd order ROE FDS
scheme with HCUI (Harmonic Cubic Upwind
Interpolation) flux limiting. Turbulent equa-
tions are discretized using a second order up-
wind scheme in conjunction with SMARTER
(Sharp Monotonic Algorithm for Realistic Trans-
port Equation Revised) limiters [9]. The URANS
solver is based on the same spatial discretiza-
tion. Time-integration is performed using a 5
steps Runge-Kutta scheme.

The LRANS solution (Eq. 5) is computed
using the Turb’LinTMsoftware by FLUOREM.
Note that, for this case, a spatial central scheme is
employed in order to deal efficiently with acous-
tic predictions. A GMRES Krylov algorithm
without pseudo-time is employed to solve the re-
sulting linear system. This approach was found
to be more robust than conventional LRANS ap-
proaches based on pseudo-time marching [10].
The partial derivatives in Eq. 5 are evaluated ex-
actly by applying an Automatic Differentiation
Tool developed by FLUOREM to the F function
(Eq. 1) computed using Turb’Flow. Since the
initial purpose of this software was to deal with
parametrized steady flow solutions [11, 12], any
turbulence model implemented in the underlying
RANS solver could be derived. In this study, all
computations (if not specified otherwise) are car-
ried out using the k-ω model ([6]). This model
was chosen based on its efficiency to deal with
reverse pressure gradient. A limiting procedure
is applied in order to ensure the physical meaning
of the turbulent kinetic production term. As far as
LRANS computations are concerned, we investi-
gate two different approaches. First, we apply
the frozen turbulence assumption which means
that the time-linearized equations (F.T. LRANS)
are solved for the conservatives variables only.
The second approach, namely the harmonic tur-
bulence RANS method (H.T. LRANS) assumes
that the response of the unsteady turbulent field
is harmonic.

2



Turbulent LRANS

4 Experimental configuration

The studied experimental configuration
([13],[14]) consists in a transonic nozzle
equipped with a two-dimensional bump at its
lower wall (Fig. 1). The nozzle geometry is
100 mm wide and 120mm high. The length
of the bump is equal to 184 mm. This facility
was designed to deal with forced oscillations of
shock-wave boundary layer interaction (SWBLi).
The setup can be employed to investigate un-
steady phenomena commonly observed for
turbomachinery applications, like for instance,
potential effects or rotor-stator interactions, by
imposing periodic back pressure fluctuations
downstream of the flow. A rotating elliptical
cam is used to generate pressure perturbation up
to 500 Hz. The shock-wave is then expected to
interact with the boundary layer. This configu-
ration aims to reproduce the SWBLi observed
on the suction side of turbomachinery blades
near choked flutter operating conditions. For
this case, the non-linear interaction between the
back-pressure fluctuation and the shock-wave
can lead to large oscillations of the aerody-
namical force acting on the bump. Accurate
prediction of such unsteady loads represents a
crucial issue in aeromechanical design of turbo-
machinery blades in order to prevent aeroelastic
instability and flutter.

Fig. 1 Test section of the studied experimental
facility (Bron [14] 2004)

5 Computation of two-dimensional unsteady
flows

5.1 Flow configuration

First, the results are discussed by means of
two-dimensional numerical simulations. Both
URANS and harmonic balance RANS are used
as reference solutions to validate the LRANS
computations. The size of the computational
domain results from previous numerical stud-
ies performed in [13]. The specific heat ratio
equals γ = 1.4 and the perfect gas constant is
R = 287J/kg/K. The thermal conductivity is
assumed constant k = 2.5410−2m.kg/K.s3 while
the dynamic viscosity follows the Sutherland law.
The thickness of the boundary layer imposed at
the inlet is equal to 9 mm. Walls are considered
as adiabatic.

Two different operating points (see table 1)
were selected in order to highlight the sensitivity
of the time-linearized solution in the presence of
strong non-linear effect interactions. Both cases
use an excitation frequency of 500 Hz.

Pin
t Pout

s T in
t δPs

A 160 kPa 112 kPa 303 K 1.25 kPa
B 160 kPa 106 kPa 303 K 2.12 kPa

Table 1 Description of the operating points em-
ployed for two-dimensional unsteady computa-
tions with an excitation frequency equal to 500
Hz

5.2 Time non-linear solution

In order to get a better understanding of the ef-
fects of turbulence closure and spatial discretiza-
tion onto the steady flow, a second RANS solver
for structured grids was employed in this work
(http://sourceforge.net/projects/aerodynamics/).
The Navier-Stokes equations with near-wall
wall-normal-free RSM closure [15, 16] are
solved using an implicit upwind-biased dis-
cretization, with dual-time-stepping for both
steady and unsteady flow configurations [17].

Fig. 2 shows the cartography of the steady
Mach number field obtained for the flow config-
urations depicted in Tab. 1. We clearly observed
that the shock-wave extends up to the middle of

3



PHILIT, FERRAND, LABIT & CHASSAING

the nozzle for case A while the nozzle is entirely
chocked for case B. Both configurations exhibit a
flow separation over the bump whose characteris-
tics are reported in Tab. 2 for the case of the k-ω
and RSM turbulence closures.

Fig. 2 Mach Number for configuration A (up)
and B (down)
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Fig. 3 Isentropic Mach Number on bump wall
for configuration A (up) and B (down)

[m] xshock xsep. xreatt.
Wilcox (A) 0.0627 0.0666 0.0730
Wilcox (B) 0.0809 0.0843 0.1275
RSM (A) 0.0621 0.065 0.075
RSM (B) 0.0835 0.088 0.122

Table 2 Influence of turbulence modeling onto the
characteristics of the flow separation regions.

The corresponding isentropic Mach number dis-
tributions over the bump are presented in Fig. 3.
As far as the case A is concerned, we remark that
minors differences between the two methods are
observed at the peak of the shock-wave and in
the diverging section of the nozzle. In particular,
the Mach number at the shock-wave is slightly
stronger for the RSM-RANS computations.

Figure 4 presents the distributions of the am-
plitude and phase of the pressure perturbation ob-
tained for case B (Tab. 1). The time-nonlinear
RSM-RANS results were obtained using 360 in-
stants per period for the back-pressure excita-
tion. As expected, we note that the location of
the shock-wave strongly affects the unsteady re-
sults. These discrepancies, which are observed
from x = 0.09 to x = 0.16 for both the amplitude
and phase of the pressure fluctuations, are mainly
due to differences in the turbulence closures. In
the vicinity of the shock a 40◦ shift is observed
as well as near the reattachement point. We also
remark that a constant amplitude of the pressure
perturbation is given by the RSM-RANS solution
inside the separation region. However, a different
shape is observed for the case of the k-ω turbu-
lence model.
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Fig. 4 Pressure fluctuation on bump wall, config-
uration B

5.3 Analysis of LRANS results

Here, the performance of the LRANS method
for capturing unsteady flows is analyzed in great
details. First we only focus on LRANS re-
sults based on the frozen-turbulence assump-
tion. However, in order to quantify the effect
of the steady-state onto the perturbated pres-
sure field, we compare the results obtained using
Turb’LinTMwith central space discretization to
those resulting from an upwind discretization of
the time-linearized equations [10] coupled with
the RSM-RANS steady flow solver presented in
the previous section. As a consequence, we ex-
pect to observe similar quantitative difference as
those obtained for URANS results. Fig. 5 shows
the distribution of the pressure fluctuation for
both the lower wall with the bump and the up-
per wall. We see that the agreement between
the LRANS methods is better for the upper wall
since the SW-BL interaction is not as strong as
those observed over the bump. Again, this is di-
rectly related to the computation of the turbulent

steady-field.
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Fig. 5 Normalized pressure fluctuations over the
bump (top view) and along the upper wall (down
view) obtained for case B (Tab. 1) using upwind
or central LRANS methods based on frozen tur-
bulence but with different steady fields

Now, we investigate the importance to account
for time-harmonic fluctuations of the turbulent
field by means of the Turb’LinTMflow solver.
Fig. 6 and 7 show the pressure distribution ob-
tained for case A (Pout

s = 112 kPa) computed us-
ing URANS and LRANS with both Harmonic
Turbulence and Frozen Turbulence methods.

Similarly to potential interactions in turboma-
chines, outlet static pressure fluctuations propa-
gate upstream at a relative velocity |c−U |. As
long as the propagating speed is unchanged, the
slope of the phase angle also remains constant.
However in the vicinity of the shock, the phase
angle increases corresponding to a downstream
propagating evanescent wave. Moreover, we no-
tice that the agreement of the phase distribution
is excellent between LRANS and URANS.
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Fig. 6 Normalized Pressure Fluctuations on Up-
per wall for weak shock (case A)
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Fig. 7 Normalized Pressure Fluctuations on
bump wall for weak shock (case A)

Some discrepancies are visible on the lower

wall where boundary layer effects are more im-
portant due to the impact of the shock-wave.
These results suggest that for unsteady flows
without strong shock boundary layer interaction,
the frozen turbulence model gives accurate pre-
dictions of the time-linearized pressure field.

Now we examine the results obtained for
Pout

s = 106 kPa at the lower wall (case B, Fig.
9). Before shock position, the phase compo-
nent was zeroed when it was found too noisy be-
cause of low amplitude. In this case, the ampli-
tude of pressure waves is less that those observed
for case A (Fig. 7). A possible explanation is
that flow gradients involved in the steady flow at
Pout

s = 106 kPa are weakened due the presence of
the flow separation. Thus, the resulting unsteady
fluctuations are less significant when the shock-
wave oscillates.

We clearly observe on Fig. 9 that results
obtained using LRANS with frozen turbulence
strongly differ from those computed from H.T.
LRANS and URANS. In particular we remark
that these discrepancies extend outwards from the
separation regions. On the contrary, the agree-
ment of the predictions at the upper wall is satis-
fying (Fig. 8) since the impinging shock-wave is
not strong enough to induce a separated flow.

From a physical point of view, the pressure
field at the separation point seems to be in phase
with those of the shock position, which means
that the flow separation is bounded to the shock
motion.

5.4 Non-linear coupling effects

Recall that the LRANS formulation means that
the unsteady flow can be decomposed as a small
time-harmonic perturbation superimposed to an
underlying steady flow. Since we focus in this
work to unsteady flows with local strong non-
linear interaction, it is interesting to compare
the performance of the HT-LRANS with those
of an harmonic-balance RSM-RANS formula-
tion (HB-RSM-RANS). This approach, which is
based on the Fourier decomposition of the flow
variables and residuals was developed from the
steady RSM-RANS solver presented in section
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Fig. 8 Normalized Pressure Fluctuations on Up-
per wall for strong shock (case B)
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Fig. 9 Normalized Pressure Fluctuations on
bump wall for strong shock (case B)

5.2. A Time spectral procedure was implemented
for the solution of the harmonic balance equa-
tions as described by [4]. The resulting coupled
pseudo-steady states are solved using the same
spatial and time-integration schemes to those em-
ployed for the RSM-RANS solver. Here, a single
pressure harmonic was considered in the Fourier
decomposition, leading to three pseudo-steady
RANS computations. The amplitude of the first
pressure harmonic coefficient is compared with
the pressure fluctuations obtained from the HT-
RANS in Fig. 10. It is very interesting to note
that the agreement between the two methods is
excellent since different grid sizes and spatial
discretization were employed. In particular, the
magnitude and the sharpness of the pressure peak
agree very satisfactorily. Then we can reasonably
conclude that, for this particular flow configura-
tion, the coupling effect of the time-averaged and
the 1st harmonic has minor influences onto the
unsteady flows.

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

x[m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

a
m
p
l
i
t
u
d
e
[−

]

H. T. LRANS

HB RSM RANS

0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

x[m]

−90

0

90

180

270

Φ
[d
e
g
r
e
e
]

Fig. 10 Comparison of first harmonic of pressure
fluctuation on bump wall - case B
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6 Extension to three-dimensional flows

6.1 Numerical set up

In this part, results are discussed by the means
of three-dimensional numerical computations.
Available experimental data from Bron [13] are
used for validation purpose. A single operating
point corresponding to Tab. 3 was retained. The
excitation frequency of back pressure fluctuation
was set to 500 Hz.

Pin
t Pout

s T in
t δPs

B 160 kPa 106 kPa 303 K 2.12 kPa

Table 3 Description of operating point for three-
dimensional unsteady computation with a fre-
quency equal to 500 Hz

The whole numerical set up of previous two-
dimensional studies was re-used. The 3D grid
was generated by extruding the two-dimensional
grid in the spanwise direction. Half of the noz-
zle is simulated to reduce computational cost by
using a symmetry boundary condition.

6.2 Steady state results

Fig. 11 shows the three-dimensional structure of
the steady state flow. A shockwave is located
over the bump followed by a central separation.
But, some phenomena that could not be captured
through previous two-dimensional computation
are now visible like corner separations due to
thickening of side walls boundary layers. This
greatly modifies the available section for the free
flow and moves upstream the shock-wave com-
pared to two-dimensional simulations. In order to
predict the closest possible steady solution to ex-
perimental data, these structures have to be taken
into account. Thus, a special interest was paid to
inlet conditions (boundary layer) as well as outlet
pressure setting.

As shown on Fig. 12 , a good agreement
was obtained on steady pressure distribution at
different spanwise positions. Only the central
separation seems to be underestimated, leading

to a shock position which is slightly downstream
of the experimental one at mid-span. Moreover,
this difference may also originate from small un-
steadiness of the shockwave and limitation of our
turbulence model. Nevertheless, we could expect
a fair comparison of predicted and experimental
unsteady behavior.

Fig. 11 Experimental oil visualization of steady
state flow structure (top view from BRON [13]) -
case B
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Fig. 12 Pressure distribution at 10%, 25% and
50% spanwise

6.3 LRANS computations of back-pressure
fluctuations

Now, the performances of the LRANS method is
evaluated. In particular, the influence of turbu-
lence assumptions : either frozen or harmonic
is investigated. Results were computed using
Turb’Lin with the hypothesis of a back pressure
plane wave. As a consequence, viscous effects
of boundary layers at the fluctuating outlet were
neglected.

A comparison of the unsteady pressure distri-
bution over the bump with experimental data is
presented in Figs. 13, 14 and 15 for three differ-

ent slices.
Since non-linearities are important in the re-

gions of shockwave impact and separation, the
frozen turbulence hypothesis failed completly.
On the opposite, harmonic turbulence provides a
really good agreement in terms of phase and nor-
malized amplitude. At 10% spanwise, the ampli-
tude was underestimated probably because of the
viscous coupling with side wall was not correctly
taken into account. In LRANS computations,
peaks of pressure amplitude are located slightly
downstream regarding experimental data. A pos-
sible explanation is that the shockwave position
is not located correcly in the steady state flow.

From a physical point of view, the back-wave
pressure fluctuation propagates quite homoge-
neously between x = 0.13m and x = 0.2m since
phase and amplitude behave similarly whatever
the span-wise position.
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Fig. 13 Comparison of normalized pressure fluc-
tuations at 10 % spanwise
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Fig. 14 Comparison of normalized pressure fluc-
tuations at 25 % spanwise
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Fig. 15 Comparison of normalized pressure fluc-
tuations at 50 % spanwise

7 Conclusion

A Linearized Reynolds Averaged Navier-Stokes
solver, Turb’Lin, was successfully applied to the
prediction of pressure fluctuations in a transonic
nozzle. To this end the turbulence model of
Wilcox was linearized using automatic differ-
entiation in order to improve the accuracy of
the LRANS method in regions characterized by
strong non-linear phenomena. Intensive numer-
ical studies were performed for two-dimensional
configurations with an excitation frequency equal
to 500 Hz. Dramatic improvements were ob-
served for the case of strong shock-wave tur-
bulent boundary layer interaction compared to
two different LRANS method based on the as-
sumption of frozen turbulence. These results
were confirmed by the comparison of the H.T.
LRANS method with an harmonic balance RSM
RANS approach. Moreover, the benefit of using
this time-linearized turbulence model was even
more visible for three-dimensional results. Fu-
ture work must be devoted to the study of the
computational efficiency of the LRANS method
(and the conditioning of the corresponding lin-
ear systems) for different values of the excita-
tion frequency. Moreover the use of the Boussi-
nesq law is questionable in the region of SW-TBL
interaction. As a consequence, the lineariza-
tion of time-lagged turbulence model represents
a promising alternative to deal with forced oscil-
lation of strongly separated flows.
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