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Abstract  

Low cycle fatigue (LCF) tests were conducted at 
elevated temperatures of 760ºC and 980ºC 
under different dwell conditions on a single 
crystal nickel base superalloy. The specimens, 
which have crystallographic orientations near 
[001], [011] and [111], were tested under total 
fully reversed axial strain control. The 
experimental results indicated that the fatigue 
life-strain amplitude curves were temperature, 
crystallographic orientation and strain dwell 
dependent. When strain range was lower than 2% 
for [001] orientation, the fatigue life was longer 
at 760ºC and shorter at 980ºC for the same 
strain rang. However, when strain range was 
higher than 2% for [001] orientation, the 
reverse result was obtained. The longest fatigue 
life was observed for specimen with [001] 
orientation, while the shortest one for specimen 
with [111] orientation mainly due to variations 
in Young’s modulus with orientations. 
Compared with continuous cycling tests without 
strain dwell, the ones with tensile, compressive 
or tensile-compressive strain dwells showed 
some shorter fatigue lives. The difference of 
fatigue lives under different strain dwells 
reflects the fatigue-creep interactions at 
elevated temperature. The cyclic deformation 
and life distribution features were analysed and 
modified Cyclic damage accumulation (CDA) 
method was proposed to evaluate the fatigue life 
of the alloy. The prediction agrees well with the 
experimental results. 

1   Introduction 

The efficiency of gas turbine for jet engine 
relies in part on the temperature capability of 
turbine blade and vane material. The design of 
advanced jet engine with improved performance 
has led to the development of single crystal 
nickel base superalloy blade. Such alloy is 
superior to conventionally cast superalloy, 
because the elimination of the grain boundaries 
enhances elevated temperature ductility and 
single crystal casting process provides a 
preferred low modulus [001] texture orientation 
parallel to the solidification direction. The 
minor alloying elements used as grain boundary 
strengtheners are no longer useful here and act 
to reduce the incipient melting temperature. 
These result in a high creep strength and 
ductility as well as fatigue resistance [1, 2].  

Turbine blade material is subjected during 
service to complex thermal and mechanical 
loads. The blade root where the blade is 
attached to the turbine disc is primarily a 
cyclically loaded notched member. The 
combination of these factors can lead to high 
temperature LCF with possible fatigue-creep 
interaction [3-5]. High temperature LCF and 
creep-fatigue interaction resistances are 
considered to be the mechanical properties of 
major concern. The development of a life 
prediction procedure requires a proper 
understanding of LCF damage mechanisms 
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temperature gradients within ±2˚C over the 
specimen gauge length.  

A triangular waveform command signal, 
with the option of introducing strain dwell 
periods at tensile peaks or compressive valleys, 
was used during the tests. There were four 
different types of loading, namely continuous 
cycling (denoted as 0/0), cycling with a tensile 
strain dwell (t/0, t=60s), a compressive strain 
dwell (0/t, t=60s) and balanced strain dwells (t/t, 
t=30s). Throughout the tests, a continuous 
record was made of the load-time and strain-
time history to monitor the cyclic 
hardening/softening response. Hysteresis loops 
were also recorded regularly throughout the 
tests by computer. The load wave with tensile 
strain dwell is shown in Fig. 2. Strain was 
measured with a high temperature axial 
extensometer in 12mm gauge length. Specimen 
failure was defined as specimen rupture or as a 
reduction of the stabilized maximum cyclic 
stress range by 30%. TEM observations were 
conducted through JEOL 2000FX facility. TEM 
foils were made from the samples which were 
cut within gauge section either perpendicular or 
parallel to the axis of the specimens.  
 

 
Fig. 2. Load waves with tensile strain dwell. 

3   Results and Discussions  

3.1   Cyclic Stress-Strain Behavior  
The cyclic stress-strain response is an important 
aspect in LCF studies since it reflects the true 
stress-strain characteristic of a material under 
LCF condition. Fig. 3 shows the cyclic stress-
strain response of the single crystal alloy with 
[001], [011] and [111] orientations under 760°C 
and 980°C. The cyclic stress-strain data were 

derived through hysteresis loops of 50 pct of 
cyclic life (Nf /2) and they can be expressed 
approximately by Eqn. 1. 
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'222

n

KE
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⎛ Δ+

Δ
=

Δ σσε               (1) 

Where Δε  is total strain range, Δσ is total stress 
range, E is Young’s Modulus, K′ and n′ are 
cyclic strength coefficient and cyclic strain 
hardening index. In Fig. 3, the symbols 
represent experimental data of cyclic stress-
strain response and the lines are calculated 
values by Eqn. 1. The experimental data are 
correspondence well with calculated values. 
Parameters K′ and n′ are determined by 
regression analysis to the stress-strain data and 
are shown in Table 1 for different temperatures 
and orientations, respectively.  
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 Fig. 3 Cyclic stress-strain curves at different 

temperatures 
Table 1  LCF parameters at different temperatures 

Temperature ,°C Orientation K′ n′ 

760 [001] 3022 0.157 

980 [001] 3813 0.257 

760 [011] 1816 0.091 

760 [111] 2086 0.104 

The test results reveal temperature and 
orientation affections on cyclic stress-strain 
behavior. At 760°C, the stress amplitude is the 
highest with [111] orientation and the lowest 
with [001] one for the same strain amplitude. 
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temperature, and some dislocations climbed 
over γ′ phases and the alloy represented cyclic 
softening behavior at 980˚C, shown as in Fig. 7. 
The test results also show that the alloy 
generally represents cyclic hardening and the 
hardening degree decreases with strain range 
decreases, no matter which orientation the alloy 
is with when tested at 760˚C. At both 
temperatures, a saturation stage occurs until the 
final failure after initial cyclic hardening or 
cyclic softening. This is because that a 
homeostasis between dislocation formation and 
dislocation annihilation was attained, as shown 
in Fig. 4 and Fig. 5. 

 

 
 

Fig. 7 Microstructure of the alloy tested at 980 °C, 
Δε=2.4%, [001] 

 

3.3   LCF Life Behavior  

3.3.1   Temperature effect on LCF Life  

The influence of temperature on LCF life of the 
single crystal alloy with [001] orientation is 
illustrated in Fig. 8. The cyclic total strain range 
at 760°C and 980°C as a function of cyclic 
numbers to failure measured in experiments is 
shown in Fig. 8. The □ and ○ symbols express 
the test data at 760°C and 980°C, respectively. 
The relationship between cyclic total strain 
range Δε (%) and cyclic numbers o to failure Nf 
(cycle) is approximated by Coffin-Mansion 
power equation [6], which is also shown in Fig. 
8 with dash line for 760°C and solid line for 
980°C. 

The results indicate that, unlike the 
temperature dependence of yield stress which 
sharply decreases in the temperature range 

varying from 760°C to 980°C, fatigue life of the 
alloy at 980°C is comparable to or slightly 
higher than those at 760°C when strain range 
higher than 2%. Generally, at different strain 
range, the temperature dependence of fatigue 
life has different trend. At lower strain range 
(lower than 2%), LCF life at 980°C is shorter 
than that at 760°C, and the contrary is the case 
at higher strain range (higher than 2%). In other 
words, LCF life is more sensitive to the strain 
range at 760°C. This may be the result of 
different cumulative damage mechanism at 
different temperatures of the alloy. It can be 
seen from the hysteresis loop that more plastic 
deformation was borne on specimen at 980°C 
under the same strain amplitude, which means 
that an increment on the strain range results in a 
smaller increment on the stress range at 980°C. 
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Fig. 8 LCF life at different temperatures. 
 

3.3.2   Orientation effect on LCF Life 

LCF life at 760°C as a function of strain range 
and orientation is displayed in figure 4. LCF life 
was highly orientation dependent at this 
intermediate temperature. Fatigue lives with 
[001] and [111] orientation represent the upper 
and lower bounds, respectively. The similar 
results were reported by Chieratti [3] and Li [4, 
5] in that LCF life of single crystal, Mar-M200 
and SRR99. This behavior is mainly due to 
variations in Young’s modulus with orientation. 
At 760°C, The Young’s moduli are 105.5GPa, 
187.5GPa and 223.3GPa for [001], [011] and 
[111] orientations. The Young’s moduli are very 
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different with varied orientations. A satisfactory 
correlation was obtained when fatigue life was 
taken as a function of stress range at 50 pct of 
cyclic life (Nf /2), shown as in Fig. 10. The 
orientation affection can be decrease and no 
significant consistent orientation dependence. t 
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Fig. 9 Fatigue life on a strain amplitude basis at 760°C 
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Fig.10 Fatigue life on a stress amplitude basis at 760°C 
 
 

3.3.3   Strain dwell effect on LCF Life  

It has been found that strain dwell have an 
obvious effect on the LCF life for different 
materials [4, 5]. Both tensile and compressive 
strain dwell result in more damage of material 
as fatigue-creep interaction. However, various 
materials and different temperatures may results 
in conflicting arguments. The study on single 
crystal SRR99 indicates that the influence of 

hold (dwell) time on fatigue life is strongly 
dependent on temperature [4, 5], which was 
attributed to their effect on crack initiation and 
crack propagation.  

The specimens of the present alloy studied 
with [001] orientation always exhibites shorter 
fatigue life with strain dwell compared with 
specimens without strain dwell at different 
temperatures of 760°C and 980°C, regardless of 
the type of loading, as shown in Fig. 11 and 
Fig.12,. This means that both of tensile dwell 
and compressive dwell has additional damage to 
the alloy. On the other hand, such an influence 
on fatigue life may be related to the change of 
frequency. As well known, high frequency 
corresponds to low fatigue life. In this study the 
total dwell time is 60s, one cycle period with 
strain dwell increases by more than one order of 
magnitude. In addition, strain dwell may affects 
the cyclic deformation in the following aspects: 
mean stress with tensile dwells generating 
compressive mean stress and with compressive 
dwells generating tensile mean stress, inelastic 
strain, time dependent creep damage and 
oxidation. All of these factors enhance fatigue 
crack initiation and propagation. By comparing 
different strain dwell types from Fig. 11 and 
Fig.12, it can be observed that the combined 
results for tensile strain dwell, compressive 
strain dwell and tensile-compressive strain 
dwell are substantially the same. 
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Fig. 11. Strain range-life curves with different strain 
dwell at 760°C. 
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Fig. 12 Strain range-life curves with different strain 
dwell at 980°C. 

 

3.4   LCF Life Prediction  
Cyclic damage accumulation (CDA) method 

was used by NASA for fatigue-creep life 
prediction [7, 8]. In the present study, a 
modified CDA method was used to predict the 
life of the single crystal superalloy, which can 
be expressed by Eq. 2.  
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m

tntnnAfn

nnA
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65max43
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)(/

log
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Δ

σε
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          (2) 

 
where A, n1, n2, n3, n4, n5 and n6 are material 
constants. Δε is total strain range, Δσ is total 
stress range, σm is mean stress, σmax is the 
maximum stress. tt is tensile strain dwell time, tc 
is compressive strain dwell time. )( hklAf  is 
orientation function, its value is 1 for the case of 
[001] orientation, 0.25 for [011] orientation and 
0.33 for [111] orientation. )( hklAf  can be 
expressed by Eq. 3.  
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A[hkl]  is orientation parameter, , which can be 
expressed by Eq. 4. 
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h, k, l are values of orientation index. 
The prediction values and test data are shown in 
Fig. 13 of 760°C and in Fig. 14 of 980°C. It 
reveals a good correlation between calculated 
value and test data (±2 times), no matter the 
specimen axis is parallel to any crystallographic 
orientation of [001], [011] and [111]. This fact 
suggests that the fatigue life of the present alloy 
can be predicted reasonably well by using 
modified  CDA  method. 
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Fig. 13 Prediction results by CDA method vs.  test data 
at 760°C 
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Fig. 14 Prediction results by CDA method vs.  test data 
at 980°C 

4   Summary  

(1) The fatigue life-strain curves of the alloy 
were temperature dependent. When strain 
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range was lower than 2% for [001] 
orientation, the fatigue life was longer at 
760ºC and shorter at 980ºC for the same 
strain range. However, when strain range 
was higher than 2%, the reverse result was 
obtained. 

(2) At 760 ºC, the alloy generally represents 
cyclic hardening within the first ten cycles 
and the degree of hardening declines with 
strain range decreases. At 980 ºC, the alloy 
generally represents cyclic softening and the 
degree of softening declines with strain 
amplitude decreases. Most of dislocations 
were formed firstly in γ matrix and then 
expanded into γ′ phase at 760ºC or climbed 
over γ′ phase at 980ºC. 

(3) The crystal orientation has a great influence 
on fatigue life. The longest fatigue life was 
observed for specimen with [001] 
orientation, while the shortest one for 
specimen with [111] orientation. It mainly 
due to variations in Young’s modulus with 
orientations. 

(4) Compared with continuous cycling test, the 
one with tensile, compressive or tensile-
compressive strain dwell showed some 
shorter life. Modified CDA method gives a 
good evaluation of LCF life.  
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