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Abstract

For MIMO systems where it is desired to control
n state rates withn actuators, this paper proposes
a method to: 1) invert the design system’s control
dynamics to construct a control signal, 2) simul-
taneously estimate and adapt to differences be-
tween real and design actuator effectiveness, and
3) automatically switch control goals to attempt
to maintain critical control upon detection of (an)
ineffective actuator(s). The estimation and adap-
tation is based on indirect model reference adap-
tive control (indirect MRAC) similar to what is
discussed in [1].

1 Introduction

1.1 Motivating Example

Consider the example case of a simple v-tail UAV
with only four actuators: control surfaces on each
of the tails, and two counter-rotating propellers
under the wings. This configuration is shown in
figure 1.

The primary goal is to control the following
state-rates: roll acceleration, pitch acceleration,
yaw acceleration, and acceleration in the forward

Fig. 1 Motivating Example: Simple V-Tail UAV

direction (annotated ˙p, q̇, ṙ, andu̇ respectively).
However, each of the four actuators affects sev-
eral of the state-rates, so it is desired to invert the
system dynamics so that the necessary actuation
that will result in the desired state-rates can be
solved for directly. Next it is desired to maintain
this control inversion in spite of unknown, or an
unforeseen change in, actuator effectiveness.

Finally it is clear that critical control of this
kind of system (i.e. altitude and heading) should
be possible even if one or two actuators become
ineffective. Therefore, it is also desired to detect
such failures and switch to a critical control mode
in such cases.

1.2 Overview of Proposed Solution

The control method that is proposed to achieve
the above goals is outlined in block form in figure
2. The essence of the control method can be de-
scribed in three parts. First, a reference actuator
state is constructed by inverting the dynamics of a
model of the system in attempts to achieve some
desired state-rates. Second, the model is reused
in a kind of indirect model reference adaptive
controller (indirect MRAC) to estimate changes
in the effectiveness of the actuators and modu-
late the control signal appropriately to compen-
sate. Third, an effectiveness monitor is used to
detect ineffective actuators and switch the control
inversion to maintain critical control by abandon-
ing lower priority control goals as necessary.

This approach is especially useful for situa-
tions where it is unfeasible or uneconomical to
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dẋc

fc(x)

1
s

dx

nx

nẋc
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Fig. 2 Block Diagram of Proposed Control Scheme

have dedicated sensors to directly measure actu-
ator effectiveness. In the case of the simple v-
tail UAV described in section 1.1, such scenarios
could be a failure of the linkage between a servo
and a control surface or a propeller that becomes
unsecured from the motor. In both cases, the
actuators may continue to faithfully track com-
mands but, unbeknown to a typical controller,
would be completely ineffective.

2 Theory

2.1 Control Inversion

Consider a MIMO system that can be described
by:

ẋ(t) = f (x(t))+Br(t) (1)

wherex(t) ∈ R
n is the state of the system;f :

R
n → R

n is a possibly non-linear state function
that describes how the system state effects the
state derivatives;B ∈ R

n×m is a constant matrix
that describes how ideally effective actuators af-
fect the state derivatives; andr(t) ∈ R

m is a ref-
erence actuator state.

Let a corresponding model of this system be

given by:

ẋm(t) = fm(xm(t))+Bmr(t) (2)

with dimensions corresponding to those of the
real system.

Assume that it is desired to directly control
exactlym state derivatives with them actuators.
Then, without loss of generality, the system de-
scription in equation 1 can be divided as follows:

[
ẋc(t)
ẋu(t)

]

=

[
fc(x(t))
fu(x(t))

]

+

[
Bc

Bu

]

r(t) (3)

wherexc(t) ∈ R
m, xu(t) ∈ R

n−m, fc : Rn → R
m,

fu :Rn →R
m−n, Bc ∈R

m×m, andBu ∈R
(n−m)×m.

The subscript "c" indicates the grouping of state
derivatives that are desired to be directly con-
trolled and the subscript "u" indicates the group-
ing of state derivatives that are to be uncontrolled.

The model of the system can be divided in a
similar fashion:

[
ẋmc(t)
ẋmu(t)

]

=

[
fmc(xm(t))
fmu(xm(t))

]

+

[
Bmc

Bmu

]

r(t) (4)

Let us now take the top row of equation 4 and
attempt to invert the dynamics to construct a ref-
erence actuator state,r, that will result in some
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desired state rates, ˙xdc. To do so, let us assume
that the real system’s state is measurable, so that
we can set the model’s state,xm to the measured
real state, ˜x, and set the model’s state derivatives,
ẋmc, to the desired values, ˙xdc. Then the descrip-
tion becomes:

ẋdc(t) = fmc(x̃(t))+Bmcr(t) (5)

In the above equation,r is the only unknown
and it can be solved for if the model’s input ma-
trix, Bmc, is invertible. In that case, equation 5
can be rewritten as:

r(t) = B−1
mc [ẋdc(t)− fmc(x̃(t))] (6)

Finally, by comparing equation 5 to the top
row of equation 3, it is clear that, givenr from
equation 6, the real state rates that are desired to
be controlled, ˙xc, will match the desired values,
ẋdc, if the model perfectly describes the system
(i.e. fmc = fc andBmc = Bc) and the system state
is perfectly measurable (i.e. ˜x = x).

2.2 Adaptive Compensation for Actuator Ef-
fectiveness

2.2.1 Unknown Actuator Effectiveness

Now suppose that in reality, the effectiveness of
the actuators is either unknown, or has changed
due to some damage, failure, etc. In that case,
the description of the system can be written as:

[
ẋc(t)
ẋu(t)

]

=

[
fc(x(t))
fu(x(t))

]

+

[
Bc

Bu

]

Λ(t)u(t) (7)

where Λ(t) ∈ R
+m×m is a positive diagonal

matrix representing actuator effectiveness, and
u(t) ∈ R

m is the real actuator state.
It is desired to construct an actuator state,u,

such that the response of the real system to this
actuator state will match the response of the ideal
system to the reference actuator state,r. By in-
spection of equations 3 and 7, the response of the
real system tou and the response of the ideally
effective system tor, will match if u = Λ−1r.

However,u cannot be constructed fromΛ−1r
since the diagonal matrix of actuator effective-
ness,Λ, is not known a priori. Rather, let us de-
fine Λ̂ as the estimate ofΛ, and constructu such

that u = Λ̂−1r. Then the real system dynamics
become:
[

ẋc(t)
ẋu(t)

]

=

[
fc(x(t))
fu(x(t))

]

+

[
Bc

Bu

]

Λ(t)Λ̂−1(t)r(t) (8)

Note that if the system state,x, and the state
derivatives that are desired to be controlled, ˙xc,
are perfectly measurable, thenΛ is the only un-
known in the top row of equation 8. However,Λ
often cannot be solved for directly since one or
more elements ofr may often be zero. Rather,
let us attempt to define an error and a derivative
of Λ̂ such thatΛ̂ approachesΛ (i.e. an improved
estimate) wheneverr is not (close to) zero.

2.2.2 Adaptive Law

First, let us define error as the difference between
the state derivatives that are desired to be con-
trolled and their desired values:

e(t) = ẋc(t)− ẋdc(t) (9)

Similarly, measured error can be written as:

ẽ(t) = ˜̇xc(t)− ẋdc(t) (10)

where a tilde indicates a measured value.
Substituting equations 5 and 8 into the the

equation 9 gives:

e(t) = [ fc(x(t))+BcΛ(t)Λ̂−1(t)r(t)]

− [ fmc(x̃(t))+Bmcr(t)] (11)

Making the assumptions that the real sys-
tem perfectly matches the model (i.e.fc = fmc

and Bc = Bmc) and and the system state is per-
fectly measurable (i.e. ˜x = x), equation 11 can be
rewritten as:

e(t) = [✘✘✘✘✘fmc(x(t))+BmcΛ(t)Λ̂−1(t)r(t)]

− [✘✘✘✘✘fmc(x(t))+Bmcr(t)]

= Bmc[Λ(t)Λ̂−1(t)− I]r(t) (12)

Notice that if the estimatêΛ approachesΛ,
then error will approach zero.

Next, let us propose the definition for the
derivative ofΛ̂ as:

˙̂Λ(t)= γ diag(B−1
mc ẽ(t))Λ̂(t)diag[g(r(t),ε)] (13)
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whereγ,ε ∈ R
+ are constants to be defined by

the control designer, andg(r(t),ε) is a modified
inverting function given by:

(g(α,ε))i =

{
1/αi |αi|> ε
αi/ε2 |αi| ≤ ε

(14)

Assuming perfect measurement, equation 12
can be substituted into equation 13, and proper-
ties of diagonal matrices can be employed to sim-
plify the estimation dynamics to:

˙̂Λ(t) = γ diag[✘✘✘✘B−1
mc Bmc(Λ(t)Λ̂−1(t)− I)r(t)]

Λ̂(t)diag[g(r(t),ε)]
= γ (Λ(t)Λ̂−1(t)− I)diag(r(t))

Λ̂(t)diag[g(r(t),ε)]§

= γ (Λ(t)Λ̂−1(t)− I)Λ̂(t)diag(r(t))

diag[g(r(t),ε)]†

= γ (Λ(t)✘✘✘✘✘✘Λ̂−1(t)Λ̂(t)− Λ̂(t))diag(r(t))

diag[g(r(t),ε)]
= γ (Λ(t)− Λ̂(t))diag(r(t))diag[g(r(t),ε)]

(15)

In order to simplify future notation, let us de-
fine a few new matrices as follows:

R(t) = diag(r(t))

G(t,ε) = diag[g(r(t),ε)]
K(t,ε) = R(t)G(t,ε) (16)

Upon inspection of K, we find that the ele-
ments are:

κii(t,ε) =

{

1 |ri(t)|> ε
r2

i (t)/ε2 |ri(t)| ≤ ε
(17)

which indicates that K is a positive-diagonal ma-
trix.

Substituting matrix K into equation 15 gives:

˙̂Λ(t) = γ (Λ(t)− Λ̂(t))K(t,ε) (18)

†diag(~a)diag(~b) = diag(~b)diag(~a)
‡diag(~a)~b = diag(~b)~a
§diag(diag(~a)~b) = diag(~a)diag(~b)
¶diag(~a+~b) = diag(~a)+diag(~b)

Note that the above equation is strictly diago-
nal, so each diagonal element can be considered
individually as follows:

˙̂λii(t) = γ (λii − λ̂ii(t))κii(t,ε) (19)

Now let us consider the above equation in 3
cases at some timet:

1. ri(t) = 0

2. |ri(t)|> ε

3. 0< |ri(t)| ≤ ε

2.2.3 Analysis Case 1

In the first case,ri = 0 makesκii = 0, thereby
simplifying equation 19 to:

˙̂λii(t) = 0 (20)

So at timet, λ̂ii is neither converging toward
nor diverging from the true value,λii (i.e. criti-
cally stable).

2.2.4 Analysis Case 2

In the second case,|ri|> ε makesκii = 1, thereby
simplifying equation 19 to:

˙̂λii(t) = γ (λii − λ̂ii(t)) (21)

Taking the Laplace transform of this differ-
ential equation gives the following transfer func-
tion:

λ̂ii(s)
λii(s)

=
1

γ−1s+1
(22)

which is a simple first-order lag ofλii with time-
constantγ−1.

Figure 3 shows the positive and negative ap-
proach trajectories for̂λii to a constantλii, mov-
ing backwards in time from when̂λii is within 1%
of the value ofλii.

Notice that increasingγ increases the speed
of the approach.
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Fig. 3 Approach Trajectories of Actuator Effec-
tiveness Estimates

2.2.5 Analysis Case 3

In the third case, 0< |ri(t)| ≤ ε makesκii(t,ε) =
r2

i (t)/ε2, and equation 19 becomes:

˙̂λii(t) = γ (λii − λ̂ii(t))
r2(t)

ε2 (23)

The case statement 0< |ri(t)| ≤ ε can be
rephrased as 0< r2

i (t)/ε2 ≤ 1. Therefore, the ef-
fect of r2

i (t)/ε2 in the above equations is equivalent
to decreasing the value ofγ, i.e. a slower asymp-
totic approach toλii.

2.2.6 Error Dynamics

Sections 2.2.3 through 2.2.5 prove that, assuming
perfect measurement and a perfect model of the
system, the estimates of actuator effectiveness,
Λ̂, are guaranteed to asymptotically approach the
true values,Λ, wheneverr 6= 0. Furthermore, the
speed of approach will be maximum (i.e. time
constant ofγ−1) whenever|r| ≥ ε.

Inspection of equation 12 has already shown
that error,e, goes to zero when̂Λ approachesΛ.
Now let us examine the error dynamics during
that approach.

Taking the derivative of equation 12 with re-
spect to time gives:

ė(t) = Bmc[Λ(t)Λ̂−1(t)− I]ṙ(t)

+BmcΛ̇(t)Λ̂−1(t)r(t)

−BmcΛ(t)Λ̂−1(t) ˙̂Λ(t)Λ̂−1(t)r(t) (24)

Let us make a few assumptions to simplify
this analysis. First, let us assume that real actua-

tor effectiveness does not change often (i.e. dam-
age or failures are rare) sȯΛ is typically 0 and
therefore the second term in equation 24 is typi-
cally 0. Second, we have just shown that the es-
timateΛ̂ is guaranteed to approach a constantΛ,
so the first term in this equation is also guaran-
teed to go to zero. Furthermore, sincer is usu-
ally bounded and smooth for actuators, ˙r is also
bounded and cannot be sustained away from zero.
Therefore, we can ignore the first two terms while
being aware that they may occasionally perturb
the remaining dynamics.

Ignoring the first two terms of equation 24
and substituting in equation 12 and the simplified
notation of equations 16 gives:

ė(t) = −BmcΛ(t)Λ̂−1(t)[γ diag(B−1
mc e(t))

✚
✚✚Λ̂(t)

G(t,ε)]
✟
✟
✟✟Λ̂−1(t)r(t)†

= − γ BmcΛ(t)Λ̂−1(t)G(t,ε)
diag(r(t))B−1

mce(t)†‡

= − γ BmcΛ(t)Λ̂−1(t)K(t,ε)B−1
mc

︸ ︷︷ ︸

A

e(t) (25)

According to [2] The stability of the above
equation can be determined by analyzing the
eigenvalues of matrixA, where eigenvalues are
all of the solutions,ν, to the equation:

det{A−νI}= 0 (26)

Expanding matrixA and using properties of
determinants, equation 26 becomes:

det{−γ BmcΛ(t)Λ̂−1(t)K(t,ε)B−1
mc −νI}= 0

⇓

det{Bmc[−γ Λ(t)Λ̂−1(t)K(t,ε)−νI]B−1
mc}= 0

⇓

✘✘✘✘✘det(Bmc)det{−γ Λ(t)Λ̂−1(t)K(t,ε)
−νI}✘✘✘✘✘det(B−1

mc ) = 0* ||

⇓

det{−γ Λ(t)Λ̂−1(t)K(t,ε)−νI}= 0 (27)

* det(AB) = det(A)det(B)
||det(A−1) = det(A)−1

5
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What remains is purely diagonal, so the
eigenvalues are simply each of the diagonal el-
ements of the inner left part:

νi(t) =−γ
λii(t)

λ̂ii(t)
κii(t) (28)

Sinceγ, λii, λ̂ii, andκii are positive, then it
is clear that theith eigenvalue is real and negative
whenri is not zero (and zero when it is). Negative
eigenvalues indicate that the error will asymptot-
ically approach zero with speed proportional to
the size of the eigenvalue. Therefor, increasing
γ and decreasingε will generally result in an in-
crease the speed of the approach.

2.3 Automatic Compensation for Failed Ac-
tuators

Section 2.2 showed that the effectiveness of an
actuator can be quickly and accurately estimated.
This includes the case where an actuator becomes
ineffective, i.e. effectiveness near zero.

When one or more ofm actuators become in-
effective, the ability to directly controlm state
derivatives is no longer achievable. However,
the control inversion process presented in sec-
tion 2.1 can be modified to maintain control of
higher-priority state derivatives, while releasing
control of lower-priority state derivatives. Specif-
ically, the model of the input matrix,Bmc, used
to build the reference actuator state,r, in equa-
tion 6 can be manipulated such that effective ac-
tuators should not attempt to affect lower-priority
state derivatives, and contributions from ineffec-
tive actuators to higher-priority states should be
ignored.

For example, consider a system with four ac-
tuators. The control designer decides that, in
the case of failure of actuator 2, control of state
derivatives 1, 2 and 3 should be maintained, and
state derivative 4 should be released. This is
achieved by placing zeros in the elements ofBmc

that correspond to actuator 2’s contribution to
state derivatives 1, 2 and 3; and actuator 1, 3 and

4’s contribution to state derivative 4, as follows:






B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34

B41 B42 B43 B44






→







B11 0 B13 B14

B21 0 B23 B24

B31 0 B33 B34

0 B42 0 0







When the estimate of the effectiveness of ac-
tuator 2 drops below a threshold that is prede-
termined by the control designer, the controller
should automatically switchBmc in the formula-
tion of r, i.e. equation 6, to the above predeter-
mined modifiedBmc.

Let us then rephrase equation 6 with this be-
havior in mind:

r(t) = B̂−1
mc [ẋdc(t)− fmc(x̃(t))] (29)

whereB̂mc is the nominalBmc when no actuators
are estimated to be ineffective, but switches to a
modified version ofBmc when an actuator is es-
timated to be ineffective. Note that there should
be a different modified version ofBmc for each
combination of failures that can remain control-
lable. The control designer must exercise some
caution when choosing which state derivative(s)
to release in each failure scenario to ensure that
B̂mc remains invertible and the overall system re-
mains controllable.

3 Simulation Results

The theory described in section 2 was applied to
a simplified simulation of the small v-tail UAV
described in section 1.1.

Given four actuators, two counter-rotating
propellers and control surfaces on each of the two
tails, it was desired to control the following four
state rates: ˙p, q̇, ṙ, andu̇. The control inversion
described in section 2.1 was successfully applied
to this model to isolate each of those rates for in-
dependent control.

An example simulation result is presented in
the following figures. In this example, the simu-
lation begins trimmed in straight and level flight.
The tail control surfaces are deflected slightly to
produce a pitch-down moment to counteract a
pitch-up moment from the engines.

6
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Fig. 4 Aircraft States

Figure 4 shows the result to the aircraft atti-
tude and speed. Figure 5 shows the actuator state.
Figure 6 shows the estimation of actuator effec-
tiveness.
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Fig. 5 Actuator Commands

At t = 5 seconds, the left tail control surface
loses 80% of its effectiveness. The adaptive con-
troller proposed in section 2.2 quickly and accu-
rately estimates the reduced effectiveness of the
actuator and effectively compensates by increas-
ing deflection.
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Fig. 6 Actuator Effectiveness Estimates

At t = 15 seconds, the left control surface be-
comes completely ineffective. The ineffective-
ness is quickly detected and the scheme proposed
in section 2.3 is stimulated in order to abandon
control of ṙ in favor of the higher priority state
rates: ˙p, q̇, andu̇.

In this simulation, simple PID controllers
were used in the outer-loop to control airspeed
through ˙u, altitude through ˙q, heading through
ṗ, and remove sideslip through ˙r. After aban-
doning control of ˙r, the outer-loop controller was
able to recover the desired heading, but resulted
in crabbed flight (non-wings-level sideslip) since
there was no longer the ability to remove sideslip
through ˙r.

These simulation results effectively demon-
strate the intended use for the control method
proposed in this paper. Loss of actuator effective-
ness is effectively compensated for using indirect
model reference adaptive control until the effec-

7
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tiveness drops below some predetermined mini-
mum threshold. At that point the actuator is con-
sidered ineffective and the controller automati-
cally abandons control of some low priority state
derivative in order to maintain critical control of
the higher priority state derivatives.

4 Sensitivity Analysis

Section 2 introduced the theory and stability
proofs for the adaptive control inversion method
presented in this paper. However, the stabil-
ity proofs often relied on strict assumptions of
perfect measurement and incorporation of a per-
fectly accurate model of the system. This section
will consider various deviations from those as-
sumptions, similar to the analysis performed in
[3].

4.1 Measurement Noise and Disturbances

For this analysis, let us assume that the real sys-
tem perfectly matches the model of the system
(i.e. fc = fmc and Bc = Bmc), except that it is
subject to some disturbances to both the state
and state derivatives. In addition, let us assume
that the measurements of both the state and state
derivatives contain some noise. Then the system
can be described by:

ẋc(t) = fmc(x(t)+dx(t))

+BmcΛ(t)Λ̂−1(t)r(t)+dẋc(t)

x̃(t) = x(t)+dx(t)+nx(t)
˜̇xc(t) = ẋc(t)+nẋc(t) (30)

In this case, the measured error, ˜e, will differ
from true error since it will contain measurement
noise. Substituting the above system descriptions
into the definition of measured error, equation 10,
gives:

ẽ(t) = [ fmc(x(t)+dx(t))+BmcΛ(t)Λ̂−1(t)r(t)

+dẋc(t)+nẋc(t)]− [ fmc(x(t)+dx(t)

+nx(t))+Bmcr(t)]

= Bmc[Λ(t)Λ̂−1(t)− I]r(t)+

[dẋc(t)+nẋc(t)+ fmc(x(t)+dx(t))

− fmc(x(t)+dx(t)+nx(t))]

}

ñ(t)

= Bmc[Λ(t)Λ̂−1(t)− I]r(t)+ ñ(t) (31)

where all of the noise and disturbance terms have
been grouped into a single term called ˜n.

The above description of measured error can
then be substituted into the definition of the es-
timate derivative, equation 13, and simplified as
follows:

˙̂Λ(t) = γ diag{B−1
mc [Bmc(Λ(t)Λ̂−1(t)− I)r(t)

+ ñ(t)]}Λ̂(t)G(t,ε)
= γ Λ̂(t){diag[(Λ(t)Λ̂−1(t)− I)r(t)]

+diag(B−1
mc ñ(t))}G(t,ε)†¶

= γ Λ̂(t){(Λ(t)Λ̂−1(t)− I)diag(r(t))

+diag(B−1
mc ñ(t))}G(t,ε)§

= γ {(Λ(t)− Λ̂(t))+ Λ̂(t)diag(B−1
mc ñ(t))

R−1(t)}R(t)G(t,ε)
= γ {Λ(t)K(t,ε)− Λ̂(t)[K(t,ε)

−diag(B−1
mc ñ(t))G(t,ε)]} (32)

Upon inspection, we find that the resulting es-
timate dynamics are identical to the ideal case,
equation 18, except that they include an extra
term containing ˜n. Here are few observations that
can be made from the presence of this extra term:

• (B−1
mc ñ)i · g(ri,ε) perturbsλ̂ii either toward

zero if negative or toward positive infinity
if positive

• This perturbation will occur with a "gain"
of γ ·g(ri,ε)

• A sustained(B−1
mc ñ)i · g(ri,ε)> λ̂ii ·κii will

causêλii to diverge toward infinity at an ex-
ponentially increasing rate

• A large enough excursion toward zero will
cause the effectiveness monitor to believe
that an actuator has become ineffective

Now let us examine the effects of these es-
timation dynamics on the real error dynamics.

8
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Substituting the system description from equa-
tions 30 into the definition of real error, equation
9, gives:

e(t) = [ fmc(x(t)+dx(t))+BmcΛ(t)Λ̂−1(t)r(t)

+dẋc(t)]− [ fmc(x(t)+dx(t)+nx(t))

+Bmcr(t)]

= Bmc[Λ(t)Λ̂−1(t)− I]r(t)+

[dẋc(t)+ fmc(x(t)+dx(t))

− fmc(x(t)+dx(t)+nx(t))]

}

n(t)

= Bmc[Λ(t)Λ̂−1(t)− I]r(t)+n(t) (33)

which is identical to the measured error, but with-
out the influence of noise from the measurement
of the state rates.

Taking the derivative of the above equation
with respect to time gives:

ė(t) = Bmc[Λ(t)Λ̂−1(t)− I]ṙ(t)

+BmcΛ̇(t)Λ̂−1(t)r(t)

−BmcΛ(t)Λ̂−1(t) ˙̂Λ(t)Λ̂−1(t)r(t)

+ ṅ(t) (34)

Let us analyze this equation one term at a
time as had been done for the ideal case, equa-
tion 12, in section 2.2.6. Let us again assume that
real actuator effectiveness does not change often
(i.e. damage or failures are rare) soΛ̇ is typically
0 and therefore the second term in equation 34 is
typically 0. It was also shown in section 2.2.6 that
the third term is stabilizing and will drive the er-
ror asymptotically toward zero. The fourth term
is the direct effect of the disturbances and noise
on the error dynamics and is not affected by the
designers choice ofγ andε. While this term will
perturb error away from zero, the third term’s sta-
bilizing effect will bring the error back toward
zero.

In section 2.2.6, it had been argued that the
first term in equation 12 would quickly go to zero
sinceΛ̂ was guaranteed to approachΛ. In this
case however, equation 32 shows that noise and
disturbances can perturb̂Λ away fromΛ, and that
those perturbations have a "gain" ofγ · g(r,ε). A
large deviation fromΛ, especially toward zero,

can cause error to become very sensitive to actu-
ator transients.

In order to mitigate the negative effects of
noise and disturbances that have been exposed in
this section, the "gain",γ ·g(ri,ε), should be made
as small as possible. However, this exposes a de-
sign trade-off. It has been shown in section 2.2
that the speed of approach of the effectiveness es-
timates to the true values is proportional toγ ·κii,
which isγ · g(ri,ε) · ri. Clearly the designer must
carefully chooseγ andε to get the fastest estima-
tion possible while protecting against sensitivity
to noise and disturbances.

4.2 Uncertainty in the State Function

For this analysis, let us assume perfect measure-
ments and that the real system input matrix per-
fectly matches the model (i.e.Bc = Bmc), but that
the real state function,fc, differs from the model,
fmc. Then the system can be described by:

˜̇xc(t) = ẋc(t) = fc(x(t))+BmcΛ(t)Λ̂−1(t)r(t)

x̃(t) = x(t) (35)

Substituting the above system descriptions
into the definition of measured error, equation 10,
gives:

ẽ(t) = [ fc(x(t))+BmcΛ(t)Λ̂−1(t)r(t)]

− [ fmc(x(t))+Bmcr(t)]

= Bmc[Λ(t)Λ̂−1(t)− I]r(t)+

[ fc(x(t))− fmc(x(t))]
︸ ︷︷ ︸

δ f (x(t))

(36)

where the difference in contribution from the
modeled and real state functions has been
grouped into a single term calledδ f (x(t)).

The above description of measured error can
then be substituted into the definition of the esti-
mate derivative, equation 13, giving:

˙̂Λ(t) = γ {Λ(t)K(t,ε)− Λ̂(t)[K(t,ε)
−diag(B−1

mc δ f (x(t)))G(t,ε)]} (37)

This result is strikingly similar to that for the
previously investigated case of the system in the

9
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presence of disturbances and noise. In this case
again, modeling error in the state function per-
turbsΛ̂ away fromΛ with a "gain" of γ · g(r,ε).
The same observations that were made about the
influence of noise and disturbances can be made
about modeling error in the state function.

As for the error dynamics, since we have as-
sumed perfect measurement, then real error,e, is
identical to measured error, ˜e, so the time deriva-
tive of e can be written by taking the derivative of
equation 36, giving:

ė(t) = Bmc[Λ(t)Λ̂−1(t)− I]ṙ(t)

+BmcΛ̇(t)Λ̂−1(t)r(t)

− γ BmcΛ(t)Λ̂−1(t)K(t,ε)B−1
mce(t)

+ Jfc− fmc(x(t)) ẋc(t) (38)

This result is also similar to to that for the
previously investigated case of the system in the
presence of disturbances and measurement noise.
The only difference in this case is that the con-
trol designer may have some influence on the fi-
nal term of the error dynamics by the choice of
the model state function. It behooves the control
designer to include a model that is as accurate as
possible to mitigate the negative effects of state
function modeling error.

4.3 Uncertainty in the Input Matrix

For this analysis, let us assume perfect measure-
ments and that the real system state function per-
fectly matches the model (i.e.fc = fmc), but that
the real input matrix,Bc, differs from the model,
Bmc. Then the system can be described by:

˜̇xc(t) = ẋc(t) = fmc(x(t))+BcΛ(t)Λ̂−1(t)r(t)

x̃(t) = x(t) (39)

Substituting the above system descriptions
into the definition of measured error, equation 10,
gives:

ẽ(t) = [✘✘✘✘✘fmc(x(t))+BcΛ(t)Λ̂−1(t)r(t)]

− [✘✘✘✘✘fmc(x(t))+Bmcr(t)]

= [BcΛ(t)Λ̂−1(t)−Bmc]r(t) (40)

The above description of measured error can
then be substituted into the definition of the esti-
mate derivative, equation 13, giving:

˙̂Λ(t) = γ diag{B−1
mc [Bc(Λ(t)Λ̂−1(t)− I)r(t)]}

Λ̂(t)G(t,ε)
= γ Λ̂(t)[diag(B−1

mc BcΛ(t)Λ̂−1(t)r(t))

−diag(Ir(t))]G(t,ε)
= γ [diag(Λ̂(t)B−1

mcBcΛ̂−1(t)Λ(t)r(t))G(t,ε)
− Λ̂(t)K(t,ε)] (41)

Here it is found that the failure ofB−1
mc to

cancel with Bc prevents much of the simpli-
fication that would have been possible other-
wise. This equation shows that the estimate
dynamics will act as a first-order lag filter of
diag(Λ̂B−1

mc BcΛ̂−1Λr)G(r,ε), which will likely be
different from the true values,Λ, as a function of
r.

Ideally,B−1
mc Bc should be close toI, but a rea-

sonably sufficient condition for that case has not
yet been identified.

As for the error dynamics, since we have as-
sumed perfect measurement, then real error,e, is
identical to measured error, ˜e, so the time deriva-
tive of e can be written by taking the derivative of
equation 40, giving:

ė(t) = Bmc[B
−1
mc BcΛ(t)Λ̂−1(t)− I]ṙ(t)

+BcΛ̇(t)Λ̂−1(t)r(t)

− γ BcΛ(t)Λ̂−1(t)K(t,ε)B−1
mce(t) (42)

To ensure stability of these dynamics the
eigenvalues of the matrix−γBcΛΛ̂−1K(r,ε)B−1

mc
should be negative. However, a reasonably suf-
ficient condition for that case has not yet been
identified.

5 Conclusion

5.1 Summary of Findings

This paper proposed a method to: 1) invert a
MIMO system’s design control dynamics to con-
struct a control signal, 2) simultaneously estimate
and adapt to differences between real and de-
sign actuator effectiveness, and 3) automatically
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switch control goals to attempt to maintain criti-
cal control upon detection of (an) ineffective ac-
tuator(s). The estimation and adaptation is based
on indirect model reference adaptive control (in-
direct MRAC).

The proposed method was demonstrated for a
simplified simulation of a small v-tail UAV. The
method was able to quickly identify and adapt to
a partial and subsequent total actuator failure. In
the latter case, control of sidelsip was automat-
ically abandoned in order to preserve the higher
priority control of heading, altitude and airspeed.

Finally, this method was analyzed for sensi-
tivity to disturbances, measurement noise, and
modeling uncertainty. It was found that a fun-
damental trade-off exists between the speed of
convergence and the sensitivity to disturbances,
noise, and uncertainty in the state function, espe-
cially for small actuator commands. A sufficient
condition that guarantees stability in the presence
of modeling uncertainty in the input matrix could
not yet be determined.

5.2 Future Work

Several areas of investigation remain for this pro-
posed control method, including consideration
of control bandwidth limitations and saturation.
Furthermore, the analysis presented in this pa-
per suggests that some knowledge of the spectral
intensity of the expected disturbances and mea-
surement noise could be used to set the proposed
design parameters,γ andε.

The analysis presented in this paper showed
that the proposed method is well suited for sys-
tems where the actuators are typically com-
manded away from zero, since the estimates of
actuator effectiveness are less susceptible to er-
ror due to disturbances and measurement noise in
such cases. Propellers are one such kind of actua-
tor, so it is desired to attempt to adapt this method
to a multi-rotor UAV. Unfortunately, quadrotors
are not controllable in the event of a single actu-
ator failure, but a hexarotor may be. However, a
hexarotor is an example of an over-actuated sys-
tem (i.e. more actuators than degrees of con-
trol freedom), so the input matrix,Bmc is not

square. Therefore, future work will be to adapt
this method to control of an over-actuated sys-
tem.

Finally, the analysis presented in this paper
showed that this method has a fundamental trade-
off between the speed of adaptation and sensitiv-
ity to disturbances, measurement noise, and error
in the modeling of the state function. Future work
will be to investigate the possibility of decoupling
the adaptation gain from robustness as has been
achieved by theL1 control scheme as discussed
in [3].
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